diff --git a/.github/actions/build/action.yml b/.github/actions/build/action.yml index 2b470d9dc..219d9d630 100644 --- a/.github/actions/build/action.yml +++ b/.github/actions/build/action.yml @@ -25,4 +25,15 @@ runs: mkdir dist mklink /j .\dist\bin .\x64\Release\ shell: cmd - # ------------ End Windows Build --------------- \ No newline at end of file + # ------------ End Windows Build --------------- + # ------------ Windows Build With EXEC_ENV_OLS and USE_BING_INFRA --------------- + - name: Add VisualStudio command line tools into path + if: runner.os == 'Windows' + uses: ilammy/msvc-dev-cmd@v1 + - name: Run configure and build for Windows with Bing feature flags + if: runner.os == 'Windows' + run: | + mkdir build_bing && cd build_bing && cmake .. -DEXEC_ENV_OLS=1 -DUSE_BING_INFRA=1 -DUNIT_TEST=True && msbuild diskann.sln /m /nologo /t:Build /p:Configuration="Release" /property:Platform="x64" -consoleloggerparameters:"ErrorsOnly;Summary" + cd .. + shell: cmd + # ------------ End Windows Build --------------- diff --git a/.github/actions/generate-high-dim-random/action.yml b/.github/actions/generate-high-dim-random/action.yml new file mode 100644 index 000000000..65e9b7e38 --- /dev/null +++ b/.github/actions/generate-high-dim-random/action.yml @@ -0,0 +1,28 @@ +name: 'Generating Random Data (Basic)' +description: 'Generates the random data files used in acceptance tests' +runs: + using: "composite" + steps: + - name: Generate Random Data (Basic) + run: | + mkdir data + + echo "Generating random 1020,1024,1536D float and 4096 int8 vectors for index" + dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1020D_5K_norm1.0.bin -D 1020 -N 5000 --norm 1.0 + #dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1024D_5K_norm1.0.bin -D 1024 -N 5000 --norm 1.0 + dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1536D_5K_norm1.0.bin -D 1536 -N 5000 --norm 1.0 + dist/bin/rand_data_gen --data_type int8 --output_file data/rand_int8_4096D_5K_norm1.0.bin -D 4096 -N 5000 --norm 1.0 + + echo "Generating random 1020,1024,1536D float and 4096D int8 avectors for query" + dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1020D_1K_norm1.0.bin -D 1020 -N 1000 --norm 1.0 + #dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1024D_1K_norm1.0.bin -D 1024 -N 1000 --norm 1.0 + dist/bin/rand_data_gen --data_type float --output_file data/rand_float_1536D_1K_norm1.0.bin -D 1536 -N 1000 --norm 1.0 + dist/bin/rand_data_gen --data_type int8 --output_file data/rand_int8_4096D_1K_norm1.0.bin -D 4096 -N 1000 --norm 1.0 + + echo "Computing ground truth for 1020,1024,1536D float and 4096D int8 avectors for query" + dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/rand_float_1020D_5K_norm1.0.bin --query_file data/rand_float_1020D_1K_norm1.0.bin --gt_file data/l2_rand_float_1020D_5K_norm1.0_1020D_1K_norm1.0_gt100 --K 100 + #dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/rand_float_1024D_5K_norm1.0.bin --query_file data/rand_float_1024D_1K_norm1.0.bin --gt_file data/l2_rand_float_1024D_5K_norm1.0_1024D_1K_norm1.0_gt100 --K 100 + dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/rand_float_1536D_5K_norm1.0.bin --query_file data/rand_float_1536D_1K_norm1.0.bin --gt_file data/l2_rand_float_1536D_5K_norm1.0_1536D_1K_norm1.0_gt100 --K 100 + dist/bin/compute_groundtruth --data_type int8 --dist_fn l2 --base_file data/rand_int8_4096D_5K_norm1.0.bin --query_file data/rand_int8_4096D_1K_norm1.0.bin --gt_file data/l2_rand_int8_4096D_5K_norm1.0_4096D_1K_norm1.0_gt100 --K 100 + + shell: bash diff --git a/.github/actions/generate-random/action.yml b/.github/actions/generate-random/action.yml index 75554773e..2755067df 100644 --- a/.github/actions/generate-random/action.yml +++ b/.github/actions/generate-random/action.yml @@ -9,18 +9,21 @@ runs: echo "Generating random vectors for index" dist/bin/rand_data_gen --data_type float --output_file data/rand_float_10D_10K_norm1.0.bin -D 10 -N 10000 --norm 1.0 + dist/bin/rand_data_gen --data_type float --output_file data/rand_float_10D_10K_unnorm.bin -D 10 -N 10000 --rand_scaling 2.0 dist/bin/rand_data_gen --data_type int8 --output_file data/rand_int8_10D_10K_norm50.0.bin -D 10 -N 10000 --norm 50.0 dist/bin/rand_data_gen --data_type uint8 --output_file data/rand_uint8_10D_10K_norm50.0.bin -D 10 -N 10000 --norm 50.0 echo "Generating random vectors for query" dist/bin/rand_data_gen --data_type float --output_file data/rand_float_10D_1K_norm1.0.bin -D 10 -N 1000 --norm 1.0 + dist/bin/rand_data_gen --data_type float --output_file data/rand_float_10D_1K_unnorm.bin -D 10 -N 1000 --rand_scaling 2.0 dist/bin/rand_data_gen --data_type int8 --output_file data/rand_int8_10D_1K_norm50.0.bin -D 10 -N 1000 --norm 50.0 dist/bin/rand_data_gen --data_type uint8 --output_file data/rand_uint8_10D_1K_norm50.0.bin -D 10 -N 1000 --norm 50.0 - + echo "Computing ground truth for floats across l2, mips, and cosine distance functions" dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/rand_float_10D_10K_norm1.0.bin --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --K 100 dist/bin/compute_groundtruth --data_type float --dist_fn mips --base_file data/rand_float_10D_10K_norm1.0.bin --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/mips_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --K 100 dist/bin/compute_groundtruth --data_type float --dist_fn cosine --base_file data/rand_float_10D_10K_norm1.0.bin --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/cosine_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --K 100 + dist/bin/compute_groundtruth --data_type float --dist_fn cosine --base_file data/rand_float_10D_10K_unnorm.bin --query_file data/rand_float_10D_1K_unnorm.bin --gt_file data/cosine_rand_float_10D_10K_unnorm_10D_1K_unnorm_gt100 --K 100 echo "Computing ground truth for int8s across l2, mips, and cosine distance functions" dist/bin/compute_groundtruth --data_type int8 --dist_fn l2 --base_file data/rand_int8_10D_10K_norm50.0.bin --query_file data/rand_int8_10D_1K_norm50.0.bin --gt_file data/l2_rand_int8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100 diff --git a/.github/workflows/build-python-pdoc.yml b/.github/workflows/build-python-pdoc.yml new file mode 100644 index 000000000..28766ad02 --- /dev/null +++ b/.github/workflows/build-python-pdoc.yml @@ -0,0 +1,80 @@ +name: DiskANN Build PDoc Documentation +on: [workflow_call] +jobs: + build-reference-documentation: + permissions: + contents: write + runs-on: ubuntu-latest + steps: + - name: Checkout repository + uses: actions/checkout@v3 + with: + fetch-depth: 1 + - name: Set up Python 3.9 + uses: actions/setup-python@v2 + with: + python-version: 3.9 + - name: Install python build + run: python -m pip install build + shell: bash + # Install required dependencies + - name: Prepare Linux environment + run: | + sudo scripts/dev/install-dev-deps-ubuntu.bash + shell: bash + # We need to build the wheel in order to run pdoc. pdoc does not seem to work if you just point it at + # our source directory. + - name: Building Python Wheel for documentation generation + run: python -m build --wheel --outdir documentation_dist + shell: bash + - name: "Run Reference Documentation Generation" + run: | + pip install pdoc pipdeptree + pip install documentation_dist/*.whl + echo "documentation" > dependencies_documentation.txt + pipdeptree >> dependencies_documentation.txt + pdoc -o docs/python/html diskannpy + - name: Create version environment variable + run: | + echo "DISKANN_VERSION=$(python <> $GITHUB_ENV + - name: Archive documentation version artifact + uses: actions/upload-artifact@v2 + with: + name: dependencies + path: | + dependencies_documentation.txt + - name: Archive documentation artifacts + uses: actions/upload-artifact@v2 + with: + name: documentation-site + path: | + docs/python/html + # Publish to /dev if we are on the "main" branch + - name: Publish reference docs for latest development version (main branch) + uses: peaceiris/actions-gh-pages@v3 + if: github.ref == 'refs/heads/main' + with: + github_token: ${{ secrets.GITHUB_TOKEN }} + publish_dir: docs/python/html + destination_dir: docs/python/dev + # Publish to / if we are releasing + - name: Publish reference docs by version (main branch) + uses: peaceiris/actions-gh-pages@v3 + if: github.event_name == 'release' + with: + github_token: ${{ secrets.GITHUB_TOKEN }} + publish_dir: docs/python/html + destination_dir: docs/python/${{ env.DISKANN_VERSION }} + # Publish to /latest if we are releasing + - name: Publish latest reference docs (main branch) + uses: peaceiris/actions-gh-pages@v3 + if: github.event_name == 'release' + with: + github_token: ${{ secrets.GITHUB_TOKEN }} + publish_dir: docs/python/html + destination_dir: docs/python/latest diff --git a/.github/workflows/disk-pq.yml b/.github/workflows/disk-pq.yml index 35c662184..6e71e7999 100644 --- a/.github/workflows/disk-pq.yml +++ b/.github/workflows/disk-pq.yml @@ -34,6 +34,11 @@ jobs: run: | dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskfull_oneshot -R 16 -L 32 -B 0.00003 -M 1 dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16 + - name: build and search disk index (one shot graph build, cosine, no diskPQ) (float) + if: success() || failure() + run: | + dist/bin/build_disk_index --data_type float --dist_fn cosine --data_path data/rand_float_10D_10K_unnorm.bin --index_path_prefix data/disk_index_cosine_rand_float_10D_10K_unnorm_diskfull_oneshot -R 16 -L 32 -B 0.00003 -M 1 + dist/bin/search_disk_index --data_type float --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/disk_index_cosine_rand_float_10D_10K_unnorm_diskfull_oneshot --result_path /tmp/res --query_file data/rand_float_10D_1K_unnorm.bin --gt_file data/cosine_rand_float_10D_10K_unnorm_10D_1K_unnorm_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16 - name: build and search disk index (one shot graph build, L2, no diskPQ) (int8) if: success() || failure() run: | @@ -66,6 +71,11 @@ jobs: run: | dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskfull_sharded -R 16 -L 32 -B 0.00003 -M 0.00006 dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_10D_10K_norm1.0_diskfull_sharded --result_path /tmp/res --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/l2_rand_float_10D_10K_norm1.0_10D_1K_norm1.0_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16 + - name: build and search disk index (sharded graph build, cosine, no diskPQ) (float) + if: success() || failure() + run: | + dist/bin/build_disk_index --data_type float --dist_fn cosine --data_path data/rand_float_10D_10K_unnorm.bin --index_path_prefix data/disk_index_cosine_rand_float_10D_10K_unnorm_diskfull_sharded -R 16 -L 32 -B 0.00003 -M 0.00006 + dist/bin/search_disk_index --data_type float --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/disk_index_cosine_rand_float_10D_10K_unnorm_diskfull_sharded --result_path /tmp/res --query_file data/rand_float_10D_1K_unnorm.bin --gt_file data/cosine_rand_float_10D_10K_unnorm_10D_1K_unnorm_gt100 --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16 - name: build and search disk index (sharded graph build, L2, no diskPQ) (int8) run: | dist/bin/build_disk_index --data_type int8 --dist_fn l2 --data_path data/rand_int8_10D_10K_norm50.0.bin --index_path_prefix data/disk_index_l2_rand_int8_10D_10K_norm50.0_diskfull_sharded -R 16 -L 32 -B 0.00003 -M 0.00006 diff --git a/.github/workflows/dynamic-labels.yml b/.github/workflows/dynamic-labels.yml new file mode 100644 index 000000000..0f3b56eb9 --- /dev/null +++ b/.github/workflows/dynamic-labels.yml @@ -0,0 +1,102 @@ +name: Dynamic-Labels +on: [workflow_call] +jobs: + acceptance-tests-dynamic: + name: Dynamic-Labels + strategy: + fail-fast: false + matrix: + os: [ubuntu-latest, windows-2019, windows-latest] + runs-on: ${{matrix.os}} + defaults: + run: + shell: bash + steps: + - name: Checkout repository + if: ${{ runner.os == 'Linux' }} + uses: actions/checkout@v3 + with: + fetch-depth: 1 + - name: Checkout repository + if: ${{ runner.os == 'Windows' }} + uses: actions/checkout@v3 + with: + fetch-depth: 1 + submodules: true + - name: DiskANN Build CLI Applications + uses: ./.github/actions/build + + - name: Generate Data + uses: ./.github/actions/generate-random + + - name: Generate Labels + run: | + echo "Generating synthetic labels and computing ground truth for filtered search with universal label" + dist/bin/generate_synthetic_labels --num_labels 50 --num_points 10000 --output_file data/rand_labels_50_10K.txt --distribution_type random + + echo "Generating synthetic labels with a zipf distribution and computing ground truth for filtered search with universal label" + dist/bin/generate_synthetic_labels --num_labels 50 --num_points 10000 --output_file data/zipf_labels_50_10K.txt --distribution_type zipf + + - name: Test a streaming index (float) with labels (Zipf distributed) + run: | + dist/bin/test_streaming_scenario --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --universal_label 0 --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/index_zipf_stream -R 64 --FilteredLbuild 200 -L 50 --alpha 1.2 --insert_threads 8 --consolidate_threads 8 --max_points_to_insert 10000 --active_window 4000 --consolidate_interval 2000 --start_point_norm 3.2 --unique_labels_supported 51 + + echo "Computing groundtruth with filter" + dist/bin/compute_groundtruth_for_filters --data_type float --universal_label 0 --filter_label 1 --dist_fn l2 --base_file data/index_zipf_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_zipf_base-act4000-cons2000-max10000_1 --label_file data/index_zipf_stream.after-streaming-act4000-cons2000-max10000_raw_labels.txt --tags_file data/index_zipf_stream.after-streaming-act4000-cons2000-max10000.tags + echo "Searching with filter" + dist/bin/search_memory_index --data_type float --dist_fn l2 --filter_label 1 --fail_if_recall_below 40 --index_path_prefix data/index_zipf_stream.after-streaming-act4000-cons2000-max10000 --result_path data/res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_zipf_base-act4000-cons2000-max10000_1 -K 10 -L 20 40 60 80 100 150 -T 64 --dynamic true --tags 1 + + echo "Computing groundtruth w/o filter" + dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/index_zipf_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_zipf_base-act4000-cons2000-max10000 + echo "Searching without filter" + dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_zipf_stream.after-streaming-act4000-cons2000-max10000 --result_path res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_zipf_base-act4000-cons2000-max10000 -K 10 -L 20 40 60 80 100 -T 64 + + - name: Test a streaming index (float) with labels (random distributed) + run: | + dist/bin/test_streaming_scenario --data_type float --dist_fn l2 --data_path data/rand_float_10D_10K_norm1.0.bin --universal_label 0 --label_file data/rand_labels_50_10K.txt --index_path_prefix data/index_rand_stream -R 64 --FilteredLbuild 200 -L 50 --alpha 1.2 --insert_threads 8 --consolidate_threads 8 --max_points_to_insert 10000 --active_window 4000 --consolidate_interval 2000 --start_point_norm 3.2 --unique_labels_supported 51 + + echo "Computing groundtruth with filter" + dist/bin/compute_groundtruth_for_filters --data_type float --universal_label 0 --filter_label 1 --dist_fn l2 --base_file data/index_rand_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_rand_base-act4000-cons2000-max10000_1 --label_file data/index_rand_stream.after-streaming-act4000-cons2000-max10000_raw_labels.txt --tags_file data/index_rand_stream.after-streaming-act4000-cons2000-max10000.tags + echo "Searching with filter" + dist/bin/search_memory_index --data_type float --dist_fn l2 --filter_label 1 --fail_if_recall_below 40 --index_path_prefix data/index_rand_stream.after-streaming-act4000-cons2000-max10000 --result_path data/res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_rand_base-act4000-cons2000-max10000_1 -K 10 -L 20 40 60 80 100 150 -T 64 --dynamic true --tags 1 + + echo "Computing groundtruth w/o filter" + dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/index_rand_stream.after-streaming-act4000-cons2000-max10000.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_rand_base-act4000-cons2000-max10000 + echo "Searching without filter" + dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_rand_stream.after-streaming-act4000-cons2000-max10000 --result_path res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_rand_base-act4000-cons2000-max10000 -K 10 -L 20 40 60 80 100 -T 64 + + - name: Test Insert Delete Consolidate (float) with labels (zipf distributed) + run: | + dist/bin/test_insert_deletes_consolidate --data_type float --dist_fn l2 --universal_label 0 --label_file data/zipf_labels_50_10K.txt --FilteredLbuild 70 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_zipf_ins_del -R 64 -L 10 --alpha 1.2 --points_to_skip 0 --max_points_to_insert 7500 --beginning_index_size 0 --points_per_checkpoint 1000 --checkpoints_per_snapshot 0 --points_to_delete_from_beginning 2500 --start_deletes_after 5000 --do_concurrent true --start_point_norm 3.2 --unique_labels_supported 51 + + echo "Computing groundtruth with filter" + dist/bin/compute_groundtruth_for_filters --data_type float --filter_label 5 --universal_label 0 --dist_fn l2 --base_file data/index_zipf_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_zipf_random10D_1K_wlabel_5 --label_file data/index_zipf_ins_del.after-concurrent-delete-del2500-7500_raw_labels.txt --tags_file data/index_zipf_ins_del.after-concurrent-delete-del2500-7500.tags + echo "Searching with filter" + dist/bin/search_memory_index --data_type float --dist_fn l2 --filter_label 5 --fail_if_recall_below 10 --index_path_prefix data/index_zipf_ins_del.after-concurrent-delete-del2500-7500 --result_path data/res_zipf_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_zipf_random10D_1K_wlabel_5 -K 10 -L 20 40 60 80 100 150 -T 64 --dynamic true --tags 1 + + echo "Computing groundtruth w/o filter" + dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/index_zipf_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_zipf_random10D_1K + echo "Searching without filter" + dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_zipf_ins_del.after-concurrent-delete-del2500-7500 --result_path res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_zipf_random10D_1K -K 10 -L 20 40 60 80 100 -T 64 + + - name: Test Insert Delete Consolidate (float) with labels (random distributed) + run: | + dist/bin/test_insert_deletes_consolidate --data_type float --dist_fn l2 --universal_label 0 --label_file data/rand_labels_50_10K.txt --FilteredLbuild 70 --data_path data/rand_float_10D_10K_norm1.0.bin --index_path_prefix data/index_rand_ins_del -R 64 -L 10 --alpha 1.2 --points_to_skip 0 --max_points_to_insert 7500 --beginning_index_size 0 --points_per_checkpoint 1000 --checkpoints_per_snapshot 0 --points_to_delete_from_beginning 2500 --start_deletes_after 5000 --do_concurrent true --start_point_norm 3.2 --unique_labels_supported 51 + + echo "Computing groundtruth with filter" + dist/bin/compute_groundtruth_for_filters --data_type float --filter_label 5 --universal_label 0 --dist_fn l2 --base_file data/index_rand_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_rand_random10D_1K_wlabel_5 --label_file data/index_rand_ins_del.after-concurrent-delete-del2500-7500_raw_labels.txt --tags_file data/index_rand_ins_del.after-concurrent-delete-del2500-7500.tags + echo "Searching with filter" + dist/bin/search_memory_index --data_type float --dist_fn l2 --filter_label 5 --fail_if_recall_below 40 --index_path_prefix data/index_rand_ins_del.after-concurrent-delete-del2500-7500 --result_path data/res_rand_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_rand_random10D_1K_wlabel_5 -K 10 -L 20 40 60 80 100 150 -T 64 --dynamic true --tags 1 + + echo "Computing groundtruth w/o filter" + dist/bin/compute_groundtruth --data_type float --dist_fn l2 --base_file data/index_rand_ins_del.after-concurrent-delete-del2500-7500.data --query_file data/rand_float_10D_1K_norm1.0.bin --K 100 --gt_file data/gt100_rand_random10D_1K + echo "Searching without filter" + dist/bin/search_memory_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_rand_ins_del.after-concurrent-delete-del2500-7500 --result_path res_stream --query_file data/rand_float_10D_1K_norm1.0.bin --gt_file data/gt100_rand_random10D_1K -K 10 -L 20 40 60 80 100 -T 64 + + - name: upload data and bin + uses: actions/upload-artifact@v3 + with: + name: dynamic + path: | + ./dist/** + ./data/** diff --git a/.github/workflows/labels.yml b/.github/workflows/labels.yml index e811c1ff5..5555f7f84 100644 --- a/.github/workflows/labels.yml +++ b/.github/workflows/labels.yml @@ -27,7 +27,7 @@ jobs: uses: ./.github/actions/build - name: Generate Data - uses: ./.github/actions/generate-random + uses: ./.github/actions/generate-random - name: Generate Labels run: | @@ -55,11 +55,16 @@ jobs: dist/bin/build_memory_index --data_type uint8 --dist_fn cosine --FilteredLbuild 90 --universal_label 0 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/rand_labels_50_10K.txt --index_path_prefix data/index_cosine_rand_uint8_10D_10K_norm50_wlabel dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --filter_label 10 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -L 16 32 dist/bin/search_memory_index --data_type uint8 --dist_fn cosine --filter_label 10 --fail_if_recall_below 70 --index_path_prefix data/index_cosine_rand_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -L 16 32 + + echo "Searching without filters" + dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_rand_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 32 64 + dist/bin/search_memory_index --data_type uint8 --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/index_cosine_rand_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 32 64 + - name: build and search disk index with labels using L2 and Cosine metrics (random distributed labels) if: success() || failure() run: | - dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --universal_label 0 --FilteredLbuild 90 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/rand_labels_50_10K.txt --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50_wlabel -R 16 -L 32 -B 0.00003 -M 1 - dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --filter_label 10 --fail_if_recall_below 50 --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50_wlabel --result_path /tmp/res --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16 + dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --universal_label 0 --FilteredLbuild 90 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/rand_labels_50_10K.txt --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50_wlabel -R 32 -L 5 -B 0.00003 -M 1 + dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --filter_label 10 --fail_if_recall_below 50 --index_path_prefix data/disk_index_l2_rand_uint8_10D_10K_norm50_wlabel --result_path temp --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_rand_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16 - name: build and search in-memory index with labels using L2 and Cosine metrics (zipf distributed labels) if: success() || failure() run: | @@ -67,18 +72,26 @@ jobs: dist/bin/build_memory_index --data_type uint8 --dist_fn cosine --FilteredLbuild 90 --universal_label 0 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/index_cosine_zipf_uint8_10D_10K_norm50_wlabel dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --filter_label 5 --fail_if_recall_below 70 --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -L 16 32 dist/bin/search_memory_index --data_type uint8 --dist_fn cosine --filter_label 5 --fail_if_recall_below 70 --index_path_prefix data/index_cosine_zipf_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel -L 16 32 + + echo "Searching without filters" + dist/bin/compute_groundtruth --data_type uint8 --dist_fn l2 --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100 + dist/bin/compute_groundtruth --data_type uint8 --dist_fn cosine --base_file data/rand_uint8_10D_10K_norm50.0.bin --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/cosine_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 --K 100 + dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 32 64 + dist/bin/search_memory_index --data_type uint8 --dist_fn cosine --fail_if_recall_below 70 --index_path_prefix data/index_cosine_zipf_uint8_10D_10K_norm50_wlabel --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100 -L 32 64 + - name: build and search disk index with labels using L2 and Cosine metrics (zipf distributed labels) if: success() || failure() run: | - dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --universal_label 0 --FilteredLbuild 90 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/disk_index_l2_zipf_uint8_10D_10K_norm50_wlabel -R 16 -L 32 -B 0.00003 -M 1 - dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --filter_label 5 --fail_if_recall_below 50 --index_path_prefix data/disk_index_l2_zipf_uint8_10D_10K_norm50_wlabel --result_path /tmp/res --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16 + dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --universal_label 0 --FilteredLbuild 90 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/disk_index_l2_zipf_uint8_10D_10K_norm50_wlabel -R 32 -L 5 -B 0.00003 -M 1 + dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --filter_label 5 --fail_if_recall_below 50 --index_path_prefix data/disk_index_l2_zipf_uint8_10D_10K_norm50_wlabel --result_path temp --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16 + - name : build and search in-memory and disk index (without universal label, zipf distributed) if: success() || failure() run: | dist/bin/build_memory_index --data_type uint8 --dist_fn l2 --FilteredLbuild 90 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel_nouniversal - dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --FilteredLbuild 90 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/disk_index_l2_zipf_uint8_10D_10K_norm50_wlabel_nouniversal -R 16 -L 32 -B 0.00003 -M 1 + dist/bin/build_disk_index --data_type uint8 --dist_fn l2 --FilteredLbuild 90 --data_path data/rand_uint8_10D_10K_norm50.0.bin --label_file data/zipf_labels_50_10K.txt --index_path_prefix data/disk_index_l2_zipf_uint8_10D_10K_norm50_wlabel_nouniversal -R 32 -L 5 -B 0.00003 -M 1 dist/bin/search_memory_index --data_type uint8 --dist_fn l2 --filter_label 5 --fail_if_recall_below 70 --index_path_prefix data/index_l2_zipf_uint8_10D_10K_norm50_wlabel_nouniversal --query_file data/rand_uint8_10D_1K_norm50.0.bin --recall_at 10 --result_path temp --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel_nouniversal -L 16 32 - dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --filter_label 5 --index_path_prefix data/disk_index_l2_zipf_uint8_10D_10K_norm50_wlabel_nouniversal --result_path /tmp/res --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel_nouniversal --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16 + dist/bin/search_disk_index --data_type uint8 --dist_fn l2 --filter_label 5 --index_path_prefix data/disk_index_l2_zipf_uint8_10D_10K_norm50_wlabel_nouniversal --result_path temp --query_file data/rand_uint8_10D_1K_norm50.0.bin --gt_file data/l2_zipf_uint8_10D_10K_norm50.0_10D_1K_norm50.0_gt100_wlabel_nouniversal --recall_at 5 -L 5 12 -W 2 --num_nodes_to_cache 10 -T 16 - name: Generate combined GT for each query with a separate label and search if: success() || failure() run: | diff --git a/.github/workflows/multi-sector-disk-pq.yml b/.github/workflows/multi-sector-disk-pq.yml new file mode 100644 index 000000000..8ea55c88d --- /dev/null +++ b/.github/workflows/multi-sector-disk-pq.yml @@ -0,0 +1,60 @@ +name: Disk With PQ +on: [workflow_call] +jobs: + acceptance-tests-disk-pq: + name: Disk, PQ + strategy: + fail-fast: false + matrix: + os: [ubuntu-latest, windows-2019, windows-latest] + runs-on: ${{matrix.os}} + defaults: + run: + shell: bash + steps: + - name: Checkout repository + if: ${{ runner.os == 'Linux' }} + uses: actions/checkout@v3 + with: + fetch-depth: 1 + - name: Checkout repository + if: ${{ runner.os == 'Windows' }} + uses: actions/checkout@v3 + with: + fetch-depth: 1 + submodules: true + - name: DiskANN Build CLI Applications + uses: ./.github/actions/build + + - name: Generate Data + uses: ./.github/actions/generate-high-dim-random + + - name: build and search disk index (1020D, one shot graph build, L2, no diskPQ) (float) + if: success() || failure() + run: | + dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_1020D_5K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_1020D_5K_norm1.0_diskfull_oneshot -R 32 -L 500 -B 0.003 -M 1 + dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_1020D_5K_norm1.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_float_1020D_1K_norm1.0.bin --gt_file data/l2_rand_float_1020D_5K_norm1.0_1020D_1K_norm1.0_gt100 --recall_at 5 -L 250 -W 2 --num_nodes_to_cache 100 -T 16 + #- name: build and search disk index (1024D, one shot graph build, L2, no diskPQ) (float) + # if: success() || failure() + # run: | + # dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_1024D_5K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_1024D_5K_norm1.0_diskfull_oneshot -R 32 -L 500 -B 0.003 -M 1 + # dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_1024D_5K_norm1.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_float_1024D_1K_norm1.0.bin --gt_file data/l2_rand_float_1024D_5K_norm1.0_1024D_1K_norm1.0_gt100 --recall_at 5 -L 250 -W 2 --num_nodes_to_cache 100 -T 16 + - name: build and search disk index (1536D, one shot graph build, L2, no diskPQ) (float) + if: success() || failure() + run: | + dist/bin/build_disk_index --data_type float --dist_fn l2 --data_path data/rand_float_1536D_5K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_float_1536D_5K_norm1.0_diskfull_oneshot -R 32 -L 500 -B 0.003 -M 1 + dist/bin/search_disk_index --data_type float --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_float_1536D_5K_norm1.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_float_1536D_1K_norm1.0.bin --gt_file data/l2_rand_float_1536D_5K_norm1.0_1536D_1K_norm1.0_gt100 --recall_at 5 -L 250 -W 2 --num_nodes_to_cache 100 -T 16 + + - name: build and search disk index (4096D, one shot graph build, L2, no diskPQ) (int8) + if: success() || failure() + run: | + dist/bin/build_disk_index --data_type int8 --dist_fn l2 --data_path data/rand_int8_4096D_5K_norm1.0.bin --index_path_prefix data/disk_index_l2_rand_int8_4096D_5K_norm1.0_diskfull_oneshot -R 32 -L 500 -B 0.003 -M 1 + dist/bin/search_disk_index --data_type int8 --dist_fn l2 --fail_if_recall_below 70 --index_path_prefix data/disk_index_l2_rand_int8_4096D_5K_norm1.0_diskfull_oneshot --result_path /tmp/res --query_file data/rand_int8_4096D_1K_norm1.0.bin --gt_file data/l2_rand_int8_4096D_5K_norm1.0_4096D_1K_norm1.0_gt100 --recall_at 5 -L 250 -W 2 --num_nodes_to_cache 100 -T 16 + + - name: upload data and bin + uses: actions/upload-artifact@v3 + with: + name: multi-sector-disk-pq + path: | + ./dist/** + ./data/** diff --git a/.github/workflows/perf.yml b/.github/workflows/perf.yml new file mode 100644 index 000000000..1595a4221 --- /dev/null +++ b/.github/workflows/perf.yml @@ -0,0 +1,26 @@ +name: DiskANN Nightly Performance Metrics +on: + schedule: + - cron: "41 14 * * *" # 14:41 UTC, 7:41 PDT, 8:41 PST, 08:11 IST +jobs: + perf-test: + name: Run Perf Test from main + runs-on: ubuntu-latest + steps: + - name: Checkout repository + uses: actions/checkout@v3 + with: + fetch-depth: 1 + - name: Build Perf Container + run: | + docker build --build-arg GIT_COMMIT_ISH="$GITHUB_SHA" -t perf -f scripts/perf/Dockerfile scripts + - name: Performance Tests + run: | + mkdir metrics + docker run -v ./metrics:/app/logs perf &> ./metrics/combined_stdouterr.log + - name: Upload Metrics Logs + uses: actions/upload-artifact@v3 + with: + name: metrics + path: | + ./metrics/** diff --git a/.github/workflows/pr-test.yml b/.github/workflows/pr-test.yml index 38eefb3ff..f84953b8c 100644 --- a/.github/workflows/pr-test.yml +++ b/.github/workflows/pr-test.yml @@ -18,12 +18,18 @@ jobs: disk-pq: name: Disk with PQ uses: ./.github/workflows/disk-pq.yml + multi-sector-disk-pq: + name: Multi-sector Disk with PQ + uses: ./.github/workflows/multi-sector-disk-pq.yml labels: name: Labels uses: ./.github/workflows/labels.yml dynamic: name: Dynamic uses: ./.github/workflows/dynamic.yml + dynamic-labels: + name: Dynamic Labels + uses: ./.github/workflows/dynamic-labels.yml python: name: Python uses: ./.github/workflows/build-python.yml diff --git a/.github/workflows/push-test.yml b/.github/workflows/push-test.yml index 4de999014..89e6ae018 100644 --- a/.github/workflows/push-test.yml +++ b/.github/workflows/push-test.yml @@ -6,6 +6,13 @@ jobs: fail-fast: true name: DiskANN Common Build Checks uses: ./.github/workflows/common.yml + build-documentation: + permissions: + contents: write + strategy: + fail-fast: true + name: DiskANN Build Documentation + uses: ./.github/workflows/build-python-pdoc.yml build: strategy: fail-fast: false @@ -28,6 +35,17 @@ jobs: with: fetch-depth: 1 submodules: true + - name: Build dispannpy dependency tree + run: | + pip install diskannpy pipdeptree + echo "dependencies" > dependencies_${{ matrix.os }}.txt + pipdeptree >> dependencies_${{ matrix.os }}.txt + - name: Archive dispannpy dependencies artifact + uses: actions/upload-artifact@v3 + with: + name: dependencies + path: | + dependencies_${{ matrix.os }}.txt - name: DiskANN Build CLI Applications uses: ./.github/actions/build # python: diff --git a/.github/workflows/python-release.yml b/.github/workflows/python-release.yml index a1e72ad90..a15d4d161 100644 --- a/.github/workflows/python-release.yml +++ b/.github/workflows/python-release.yml @@ -6,7 +6,14 @@ jobs: python-release-wheels: name: Python uses: ./.github/workflows/build-python.yml + build-documentation: + strategy: + fail-fast: true + name: DiskANN Build Documentation + uses: ./.github/workflows/build-python-pdoc.yml release: + permissions: + contents: write runs-on: ubuntu-latest needs: python-release-wheels steps: diff --git a/AnyBuildLogs/latest.txt b/AnyBuildLogs/latest.txt new file mode 100644 index 000000000..38b4a947f --- /dev/null +++ b/AnyBuildLogs/latest.txt @@ -0,0 +1 @@ +20231019-111207-d314f8bf \ No newline at end of file diff --git a/CMakeLists.txt b/CMakeLists.txt index 89530f818..3d3d2b860 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -14,6 +14,7 @@ # such behavior. # Contact for this feature: gopalrs. + # Some variables like MSVC are defined only after project(), so put that first. cmake_minimum_required(VERSION 3.15) project(diskann) @@ -52,6 +53,9 @@ endif() include_directories(${PROJECT_SOURCE_DIR}/include) +if(NOT PYBIND) + set(DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS ON) +endif() # It's necessary to include tcmalloc headers only if calling into MallocExtension interface. # For using tcmalloc in DiskANN tools, it's enough to just link with tcmalloc. if (DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS) @@ -92,7 +96,9 @@ if (MSVC) set(Boost_USE_STATIC_LIBS ON) endif() -find_package(Boost COMPONENTS program_options) +if(NOT MSVC) + find_package(Boost COMPONENTS program_options) +endif() # For Windows, fall back to nuget version if find_package didn't find it. if (MSVC AND NOT Boost_FOUND) @@ -219,13 +225,13 @@ if (MSVC) # Tell CMake how to build the tcmalloc linker library from the submodule. add_custom_target(build_libtcmalloc_minimal DEPENDS ${TCMALLOC_LINK_LIBRARY}) add_custom_command(OUTPUT ${TCMALLOC_LINK_LIBRARY} - COMMAND ${CMAKE_VS_MSBUILD_COMMAND} gperftools.sln /m /nologo - /t:libtcmalloc_minimal /p:Configuration="Release-Patch" - /property:Platform="x64" - /p:PlatformToolset=v${MSVC_TOOLSET_VERSION} - /p:WindowsTargetPlatformVersion=${CMAKE_VS_WINDOWS_TARGET_PLATFORM_VERSION} - WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/gperftools) - + COMMAND ${CMAKE_VS_MSBUILD_COMMAND} gperftools.sln /m /nologo + /t:libtcmalloc_minimal /p:Configuration="Release-Patch" + /property:Platform="x64" + /p:PlatformToolset=v${MSVC_TOOLSET_VERSION} + /p:WindowsTargetPlatformVersion=${CMAKE_VS_WINDOWS_TARGET_PLATFORM_VERSION} + WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/gperftools) + add_library(libtcmalloc_minimal_for_exe STATIC IMPORTED) add_library(libtcmalloc_minimal_for_dll STATIC IMPORTED) diff --git a/README.md b/README.md index 2922c16c1..a20a1d671 100644 --- a/README.md +++ b/README.md @@ -1,13 +1,15 @@ # DiskANN -[![DiskANN Paper](https://img.shields.io/badge/Paper-NeurIPS%3A_DiskANN-blue)](https://papers.nips.cc/paper/9527-rand-nsg-fast-accurate-billion-point-nearest-neighbor-search-on-a-single-node.pdf) -[![DiskANN Paper](https://img.shields.io/badge/Paper-Arxiv%3A_Fresh--DiskANN-blue)](https://arxiv.org/abs/2105.09613) -[![DiskANN Paper](https://img.shields.io/badge/Paper-Filtered--DiskANN-blue)](https://harsha-simhadri.org/pubs/Filtered-DiskANN23.pdf) [![DiskANN Main](https://github.com/microsoft/DiskANN/actions/workflows/push-test.yml/badge.svg?branch=main)](https://github.com/microsoft/DiskANN/actions/workflows/push-test.yml) [![PyPI version](https://img.shields.io/pypi/v/diskannpy.svg)](https://pypi.org/project/diskannpy/) [![Downloads shield](https://pepy.tech/badge/diskannpy)](https://pepy.tech/project/diskannpy) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) +[![DiskANN Paper](https://img.shields.io/badge/Paper-NeurIPS%3A_DiskANN-blue)](https://papers.nips.cc/paper/9527-rand-nsg-fast-accurate-billion-point-nearest-neighbor-search-on-a-single-node.pdf) +[![DiskANN Paper](https://img.shields.io/badge/Paper-Arxiv%3A_Fresh--DiskANN-blue)](https://arxiv.org/abs/2105.09613) +[![DiskANN Paper](https://img.shields.io/badge/Paper-Filtered--DiskANN-blue)](https://harsha-simhadri.org/pubs/Filtered-DiskANN23.pdf) + + DiskANN is a suite of scalable, accurate and cost-effective approximate nearest neighbor search algorithms for large-scale vector search that support real-time changes and simple filters. This code is based on ideas from the [DiskANN](https://papers.nips.cc/paper/9527-rand-nsg-fast-accurate-billion-point-nearest-neighbor-search-on-a-single-node.pdf), [Fresh-DiskANN](https://arxiv.org/abs/2105.09613) and the [Filtered-DiskANN](https://harsha-simhadri.org/pubs/Filtered-DiskANN23.pdf) papers with further improvements. This code forked off from [code for NSG](https://github.com/ZJULearning/nsg) algorithm. @@ -105,7 +107,7 @@ Please cite this software in your work as: author = {Simhadri, Harsha Vardhan and Krishnaswamy, Ravishankar and Srinivasa, Gopal and Subramanya, Suhas Jayaram and Antonijevic, Andrija and Pryce, Dax and Kaczynski, David and Williams, Shane and Gollapudi, Siddarth and Sivashankar, Varun and Karia, Neel and Singh, Aditi and Jaiswal, Shikhar and Mahapatro, Neelam and Adams, Philip and Tower, Bryan and Patel, Yash}}, title = {{DiskANN: Graph-structured Indices for Scalable, Fast, Fresh and Filtered Approximate Nearest Neighbor Search}}, url = {https://github.com/Microsoft/DiskANN}, - version = {0.6.0}, + version = {0.6.1}, year = {2023} } ``` diff --git a/apps/build_disk_index.cpp b/apps/build_disk_index.cpp index b617a5f4a..f48b61726 100644 --- a/apps/build_disk_index.cpp +++ b/apps/build_disk_index.cpp @@ -107,6 +107,8 @@ int main(int argc, char **argv) metric = diskann::Metric::L2; else if (dist_fn == std::string("mips")) metric = diskann::Metric::INNER_PRODUCT; + else if (dist_fn == std::string("cosine")) + metric = diskann::Metric::COSINE; else { std::cout << "Error. Only l2 and mips distance functions are supported" << std::endl; diff --git a/apps/build_memory_index.cpp b/apps/build_memory_index.cpp index 92b269f4f..544e42dee 100644 --- a/apps/build_memory_index.cpp +++ b/apps/build_memory_index.cpp @@ -22,50 +22,6 @@ namespace po = boost::program_options; -template -int build_in_memory_index(const diskann::Metric &metric, const std::string &data_path, const uint32_t R, - const uint32_t L, const float alpha, const std::string &save_path, const uint32_t num_threads, - const bool use_pq_build, const size_t num_pq_bytes, const bool use_opq, - const std::string &label_file, const std::string &universal_label, const uint32_t Lf) -{ - diskann::IndexWriteParameters paras = diskann::IndexWriteParametersBuilder(L, R) - .with_filter_list_size(Lf) - .with_alpha(alpha) - .with_saturate_graph(false) - .with_num_threads(num_threads) - .build(); - std::string labels_file_to_use = save_path + "_label_formatted.txt"; - std::string mem_labels_int_map_file = save_path + "_labels_map.txt"; - - size_t data_num, data_dim; - diskann::get_bin_metadata(data_path, data_num, data_dim); - - diskann::Index index(metric, data_dim, data_num, false, false, false, use_pq_build, num_pq_bytes, - use_opq); - auto s = std::chrono::high_resolution_clock::now(); - if (label_file == "") - { - index.build(data_path.c_str(), data_num, paras); - } - else - { - convert_labels_string_to_int(label_file, labels_file_to_use, mem_labels_int_map_file, universal_label); - if (universal_label != "") - { - LabelT unv_label_as_num = 0; - index.set_universal_label(unv_label_as_num); - } - index.build_filtered_index(data_path.c_str(), labels_file_to_use, data_num, paras); - } - std::chrono::duration diff = std::chrono::high_resolution_clock::now() - s; - - std::cout << "Indexing time: " << diff.count() << "\n"; - index.save(save_path.c_str()); - if (label_file != "") - std::remove(labels_file_to_use.c_str()); - return 0; -} - int main(int argc, char **argv) { std::string data_type, dist_fn, data_path, index_path_prefix, label_file, universal_label, label_type; @@ -164,35 +120,37 @@ int main(int argc, char **argv) size_t data_num, data_dim; diskann::get_bin_metadata(data_path, data_num, data_dim); + auto index_build_params = diskann::IndexWriteParametersBuilder(L, R) + .with_filter_list_size(Lf) + .with_alpha(alpha) + .with_saturate_graph(false) + .with_num_threads(num_threads) + .build(); + + auto filter_params = diskann::IndexFilterParamsBuilder() + .with_universal_label(universal_label) + .with_label_file(label_file) + .with_save_path_prefix(index_path_prefix) + .build(); auto config = diskann::IndexConfigBuilder() .with_metric(metric) .with_dimension(data_dim) .with_max_points(data_num) - .with_data_load_store_strategy(diskann::MEMORY) + .with_data_load_store_strategy(diskann::DataStoreStrategy::MEMORY) + .with_graph_load_store_strategy(diskann::GraphStoreStrategy::MEMORY) .with_data_type(data_type) .with_label_type(label_type) .is_dynamic_index(false) + .with_index_write_params(index_build_params) .is_enable_tags(false) .is_use_opq(use_opq) .is_pq_dist_build(use_pq_build) .with_num_pq_chunks(build_PQ_bytes) .build(); - auto index_build_params = diskann::IndexWriteParametersBuilder(L, R) - .with_filter_list_size(Lf) - .with_alpha(alpha) - .with_saturate_graph(false) - .with_num_threads(num_threads) - .build(); - - auto build_params = diskann::IndexBuildParamsBuilder(index_build_params) - .with_universal_label(universal_label) - .with_label_file(label_file) - .with_save_path_prefix(index_path_prefix) - .build(); auto index_factory = diskann::IndexFactory(config); auto index = index_factory.create_instance(); - index->build(data_path, data_num, build_params); + index->build(data_path, data_num, filter_params); index->save(index_path_prefix.c_str()); index.reset(); return 0; diff --git a/apps/build_stitched_index.cpp b/apps/build_stitched_index.cpp index 80481f8b0..60e38c1be 100644 --- a/apps/build_stitched_index.cpp +++ b/apps/build_stitched_index.cpp @@ -285,7 +285,9 @@ void prune_and_save(path final_index_path_prefix, path full_index_path_prefix, p auto pruning_index_timer = std::chrono::high_resolution_clock::now(); diskann::get_bin_metadata(input_data_path, number_of_label_points, dimension); - diskann::Index index(diskann::Metric::L2, dimension, number_of_label_points, false, false); + + diskann::Index index(diskann::Metric::L2, dimension, number_of_label_points, nullptr, nullptr, 0, false, false, + false, false, 0, false); // not searching this index, set search_l to 0 index.load(full_index_path_prefix.c_str(), num_threads, 1); diff --git a/apps/search_disk_index.cpp b/apps/search_disk_index.cpp index b46b37aef..7e2a7ac6d 100644 --- a/apps/search_disk_index.cpp +++ b/apps/search_disk_index.cpp @@ -118,13 +118,13 @@ int search_disk_index(diskann::Metric &metric, const std::string &index_path_pre { return res; } - // cache bfs levels + std::vector node_list; - diskann::cout << "Caching " << num_nodes_to_cache << " BFS nodes around medoid(s)" << std::endl; - //_pFlashIndex->cache_bfs_levels(num_nodes_to_cache, node_list); - if (num_nodes_to_cache > 0) - _pFlashIndex->generate_cache_list_from_sample_queries(warmup_query_file, 15, 6, num_nodes_to_cache, num_threads, - node_list); + diskann::cout << "Caching " << num_nodes_to_cache << " nodes around medoid(s)" << std::endl; + _pFlashIndex->cache_bfs_levels(num_nodes_to_cache, node_list); + // if (num_nodes_to_cache > 0) + // _pFlashIndex->generate_cache_list_from_sample_queries(warmup_query_file, 15, 6, num_nodes_to_cache, + // num_threads, node_list); _pFlashIndex->load_cache_list(node_list); node_list.clear(); node_list.shrink_to_fit(); diff --git a/apps/search_memory_index.cpp b/apps/search_memory_index.cpp index 44817242c..1a9acc285 100644 --- a/apps/search_memory_index.cpp +++ b/apps/search_memory_index.cpp @@ -74,7 +74,8 @@ int search_memory_index(diskann::Metric &metric, const std::string &index_path, .with_metric(metric) .with_dimension(query_dim) .with_max_points(0) - .with_data_load_store_strategy(diskann::MEMORY) + .with_data_load_store_strategy(diskann::DataStoreStrategy::MEMORY) + .with_graph_load_store_strategy(diskann::GraphStoreStrategy::MEMORY) .with_data_type(diskann_type_to_name()) .with_label_type(diskann_type_to_name()) .with_tag_type(diskann_type_to_name()) @@ -130,7 +131,7 @@ int search_memory_index(diskann::Metric &metric, const std::string &index_path, std::vector> query_result_dists(Lvec.size()); std::vector latency_stats(query_num, 0); std::vector cmp_stats; - if (not tags) + if (not tags || filtered_search) { cmp_stats = std::vector(query_num, 0); } @@ -162,7 +163,7 @@ int search_memory_index(diskann::Metric &metric, const std::string &index_path, for (int64_t i = 0; i < (int64_t)query_num; i++) { auto qs = std::chrono::high_resolution_clock::now(); - if (filtered_search) + if (filtered_search && !tags) { std::string raw_filter = query_filters.size() == 1 ? query_filters[0] : query_filters[i]; @@ -178,8 +179,19 @@ int search_memory_index(diskann::Metric &metric, const std::string &index_path, } else if (tags) { - index->search_with_tags(query + i * query_aligned_dim, recall_at, L, - query_result_tags.data() + i * recall_at, nullptr, res); + if (!filtered_search) + { + index->search_with_tags(query + i * query_aligned_dim, recall_at, L, + query_result_tags.data() + i * recall_at, nullptr, res); + } + else + { + std::string raw_filter = query_filters.size() == 1 ? query_filters[0] : query_filters[i]; + + index->search_with_tags(query + i * query_aligned_dim, recall_at, L, + query_result_tags.data() + i * recall_at, nullptr, res, true, raw_filter); + } + for (int64_t r = 0; r < (int64_t)recall_at; r++) { query_result_ids[test_id][recall_at * i + r] = query_result_tags[recall_at * i + r]; @@ -220,7 +232,7 @@ int search_memory_index(diskann::Metric &metric, const std::string &index_path, float avg_cmps = (float)std::accumulate(cmp_stats.begin(), cmp_stats.end(), 0) / (float)query_num; - if (tags) + if (tags && !filtered_search) { std::cout << std::setw(4) << L << std::setw(12) << displayed_qps << std::setw(20) << (float)mean_latency << std::setw(15) << (float)latency_stats[(uint64_t)(0.999 * query_num)]; diff --git a/apps/test_insert_deletes_consolidate.cpp b/apps/test_insert_deletes_consolidate.cpp index 700f4d7b6..97aed1864 100644 --- a/apps/test_insert_deletes_consolidate.cpp +++ b/apps/test_insert_deletes_consolidate.cpp @@ -11,6 +11,7 @@ #include #include "utils.h" +#include "filter_utils.h" #include "program_options_utils.hpp" #include "index_factory.h" @@ -91,16 +92,23 @@ std::string get_save_filename(const std::string &save_path, size_t points_to_ski return final_path; } -template +template void insert_till_next_checkpoint(diskann::AbstractIndex &index, size_t start, size_t end, int32_t thread_count, T *data, - size_t aligned_dim) + size_t aligned_dim, std::vector> &location_to_labels) { diskann::Timer insert_timer; - #pragma omp parallel for num_threads(thread_count) schedule(dynamic) for (int64_t j = start; j < (int64_t)end; j++) { - index.insert_point(&data[(j - start) * aligned_dim], 1 + static_cast(j)); + if (!location_to_labels.empty()) + { + index.insert_point(&data[(j - start) * aligned_dim], 1 + static_cast(j), + location_to_labels[j - start]); + } + else + { + index.insert_point(&data[(j - start) * aligned_dim], 1 + static_cast(j)); + } } const double elapsedSeconds = insert_timer.elapsed() / 1000000.0; std::cout << "Insertion time " << elapsedSeconds << " seconds (" << (end - start) / elapsedSeconds @@ -141,35 +149,50 @@ void build_incremental_index(const std::string &data_path, diskann::IndexWritePa size_t max_points_to_insert, size_t beginning_index_size, float start_point_norm, uint32_t num_start_pts, size_t points_per_checkpoint, size_t checkpoints_per_snapshot, const std::string &save_path, size_t points_to_delete_from_beginning, - size_t start_deletes_after, bool concurrent) + size_t start_deletes_after, bool concurrent, const std::string &label_file, + const std::string &universal_label) { size_t dim, aligned_dim; size_t num_points; diskann::get_bin_metadata(data_path, num_points, dim); aligned_dim = ROUND_UP(dim, 8); + bool has_labels = label_file != ""; + using TagT = uint32_t; + using LabelT = uint32_t; + + size_t current_point_offset = points_to_skip; + const size_t last_point_threshold = points_to_skip + max_points_to_insert; bool enable_tags = true; using TagT = uint32_t; - auto data_type = diskann_type_to_name(); - auto tag_type = diskann_type_to_name(); + auto index_search_params = diskann::IndexSearchParams(params.search_list_size, params.num_threads); diskann::IndexConfig index_config = diskann::IndexConfigBuilder() .with_metric(diskann::L2) .with_dimension(dim) .with_max_points(max_points_to_insert) .is_dynamic_index(true) .with_index_write_params(params) - .with_search_threads(params.num_threads) - .with_initial_search_list_size(params.search_list_size) - .with_data_type(data_type) - .with_tag_type(tag_type) - .with_data_load_store_strategy(diskann::MEMORY) + .with_index_search_params(index_search_params) + .with_data_type(diskann_type_to_name()) + .with_tag_type(diskann_type_to_name()) + .with_label_type(diskann_type_to_name()) + .with_data_load_store_strategy(diskann::DataStoreStrategy::MEMORY) + .with_graph_load_store_strategy(diskann::GraphStoreStrategy::MEMORY) .is_enable_tags(enable_tags) + .is_filtered(has_labels) + .with_num_frozen_pts(num_start_pts) .is_concurrent_consolidate(concurrent) .build(); diskann::IndexFactory index_factory = diskann::IndexFactory(index_config); auto index = index_factory.create_instance(); + if (universal_label != "") + { + LabelT u_label = 0; + index->set_universal_label(u_label); + } + if (points_to_skip > num_points) { throw diskann::ANNException("Asked to skip more points than in data file", -1, __FUNCSIG__, __FILE__, __LINE__); @@ -187,9 +210,6 @@ void build_incremental_index(const std::string &data_path, diskann::IndexWritePa << " points since the data file has only that many" << std::endl; } - size_t current_point_offset = points_to_skip; - const size_t last_point_threshold = points_to_skip + max_points_to_insert; - if (beginning_index_size > max_points_to_insert) { beginning_index_size = max_points_to_insert; @@ -215,7 +235,7 @@ void build_incremental_index(const std::string &data_path, diskann::IndexWritePa if (beginning_index_size > 0) { - index->build(data, beginning_index_size, params, tags); + index->build(data, beginning_index_size, tags); } else { @@ -226,7 +246,7 @@ void build_incremental_index(const std::string &data_path, diskann::IndexWritePa std::cout << "Initial non-incremental index build time for " << beginning_index_size << " points took " << elapsedSeconds << " seconds (" << beginning_index_size / elapsedSeconds << " points/second)\n "; - current_point_offset = beginning_index_size; + current_point_offset += beginning_index_size; if (points_to_delete_from_beginning > max_points_to_insert) { @@ -235,8 +255,21 @@ void build_incremental_index(const std::string &data_path, diskann::IndexWritePa << " points since the data file has only that many" << std::endl; } + std::vector> location_to_labels; if (concurrent) { + // handle labels + const auto save_path_inc = get_save_filename(save_path + ".after-concurrent-delete-", points_to_skip, + points_to_delete_from_beginning, last_point_threshold); + std::string labels_file_to_use = save_path_inc + "_label_formatted.txt"; + std::string mem_labels_int_map_file = save_path_inc + "_labels_map.txt"; + if (has_labels) + { + convert_labels_string_to_int(label_file, labels_file_to_use, mem_labels_int_map_file, universal_label); + auto parse_result = diskann::parse_formatted_label_file(labels_file_to_use); + location_to_labels = std::get<0>(parse_result); + } + int32_t sub_threads = (params.num_threads + 1) / 2; bool delete_launched = false; std::future delete_task; @@ -251,7 +284,8 @@ void build_incremental_index(const std::string &data_path, diskann::IndexWritePa auto insert_task = std::async(std::launch::async, [&]() { load_aligned_bin_part(data_path, data, start, end - start); - insert_till_next_checkpoint(*index, start, end, sub_threads, data, aligned_dim); + insert_till_next_checkpoint(*index, start, end, sub_threads, data, aligned_dim, + location_to_labels); }); insert_task.wait(); @@ -271,12 +305,21 @@ void build_incremental_index(const std::string &data_path, diskann::IndexWritePa delete_task.wait(); std::cout << "Time Elapsed " << timer.elapsed() / 1000 << "ms\n"; - const auto save_path_inc = get_save_filename(save_path + ".after-concurrent-delete-", points_to_skip, - points_to_delete_from_beginning, last_point_threshold); index->save(save_path_inc.c_str(), true); } else { + const auto save_path_inc = get_save_filename(save_path + ".after-delete-", points_to_skip, + points_to_delete_from_beginning, last_point_threshold); + std::string labels_file_to_use = save_path_inc + "_label_formatted.txt"; + std::string mem_labels_int_map_file = save_path_inc + "_labels_map.txt"; + if (has_labels) + { + convert_labels_string_to_int(label_file, labels_file_to_use, mem_labels_int_map_file, universal_label); + auto parse_result = diskann::parse_formatted_label_file(labels_file_to_use); + location_to_labels = std::get<0>(parse_result); + } + size_t last_snapshot_points_threshold = 0; size_t num_checkpoints_till_snapshot = checkpoints_per_snapshot; @@ -287,7 +330,8 @@ void build_incremental_index(const std::string &data_path, diskann::IndexWritePa std::cout << std::endl << "Inserting from " << start << " to " << end << std::endl; load_aligned_bin_part(data_path, data, start, end - start); - insert_till_next_checkpoint(*index, start, end, (int32_t)params.num_threads, data, aligned_dim); + insert_till_next_checkpoint(*index, start, end, (int32_t)params.num_threads, data, + aligned_dim, location_to_labels); if (checkpoints_per_snapshot > 0 && --num_checkpoints_till_snapshot == 0) { @@ -320,8 +364,7 @@ void build_incremental_index(const std::string &data_path, diskann::IndexWritePa { delete_from_beginning(*index, params, points_to_skip, points_to_delete_from_beginning); } - const auto save_path_inc = get_save_filename(save_path + ".after-delete-", points_to_skip, - points_to_delete_from_beginning, last_point_threshold); + index->save(save_path_inc.c_str(), true); } @@ -337,6 +380,10 @@ int main(int argc, char **argv) points_to_delete_from_beginning, start_deletes_after; bool concurrent; + // label options + std::string label_file, label_type, universal_label; + std::uint32_t Lf, unique_labels_supported; + po::options_description desc{program_options_utils::make_program_description("test_insert_deletes_consolidate", "Test insert deletes & consolidate")}; try @@ -385,6 +432,24 @@ int main(int argc, char **argv) po::value(&start_deletes_after)->default_value(0), ""); optional_configs.add_options()("start_point_norm", po::value(&start_point_norm)->default_value(0), "Set the start point to a random point on a sphere of this radius"); + + // optional params for filters + optional_configs.add_options()("label_file", po::value(&label_file)->default_value(""), + "Input label file in txt format for Filtered Index search. " + "The file should contain comma separated filters for each node " + "with each line corresponding to a graph node"); + optional_configs.add_options()("universal_label", po::value(&universal_label)->default_value(""), + "Universal label, if using it, only in conjunction with labels_file"); + optional_configs.add_options()("FilteredLbuild,Lf", po::value(&Lf)->default_value(0), + "Build complexity for filtered points, higher value " + "results in better graphs"); + optional_configs.add_options()("label_type", po::value(&label_type)->default_value("uint"), + "Storage type of Labels , default value is uint which " + "will consume memory 4 bytes per filter"); + optional_configs.add_options()("unique_labels_supported", + po::value(&unique_labels_supported)->default_value(0), + "Number of unique labels supported by the dynamic index."); + optional_configs.add_options()( "num_start_points", po::value(&num_start_pts)->default_value(diskann::defaults::NUM_FROZEN_POINTS_DYNAMIC), @@ -418,30 +483,41 @@ int main(int argc, char **argv) return -1; } + bool has_labels = false; + if (!label_file.empty() || label_file != "") + { + has_labels = true; + } + + if (num_start_pts < unique_labels_supported) + { + num_start_pts = unique_labels_supported; + } + try { diskann::IndexWriteParameters params = diskann::IndexWriteParametersBuilder(L, R) .with_max_occlusion_size(500) .with_alpha(alpha) .with_num_threads(num_threads) - .with_num_frozen_points(num_start_pts) + .with_filter_list_size(Lf) .build(); if (data_type == std::string("int8")) - build_incremental_index(data_path, params, points_to_skip, max_points_to_insert, - beginning_index_size, start_point_norm, num_start_pts, - points_per_checkpoint, checkpoints_per_snapshot, index_path_prefix, - points_to_delete_from_beginning, start_deletes_after, concurrent); + build_incremental_index( + data_path, params, points_to_skip, max_points_to_insert, beginning_index_size, start_point_norm, + num_start_pts, points_per_checkpoint, checkpoints_per_snapshot, index_path_prefix, + points_to_delete_from_beginning, start_deletes_after, concurrent, label_file, universal_label); else if (data_type == std::string("uint8")) - build_incremental_index(data_path, params, points_to_skip, max_points_to_insert, - beginning_index_size, start_point_norm, num_start_pts, - points_per_checkpoint, checkpoints_per_snapshot, index_path_prefix, - points_to_delete_from_beginning, start_deletes_after, concurrent); + build_incremental_index( + data_path, params, points_to_skip, max_points_to_insert, beginning_index_size, start_point_norm, + num_start_pts, points_per_checkpoint, checkpoints_per_snapshot, index_path_prefix, + points_to_delete_from_beginning, start_deletes_after, concurrent, label_file, universal_label); else if (data_type == std::string("float")) build_incremental_index(data_path, params, points_to_skip, max_points_to_insert, beginning_index_size, start_point_norm, num_start_pts, points_per_checkpoint, checkpoints_per_snapshot, index_path_prefix, points_to_delete_from_beginning, - start_deletes_after, concurrent); + start_deletes_after, concurrent, label_file, universal_label); else std::cout << "Unsupported type. Use float/int8/uint8" << std::endl; } diff --git a/apps/test_streaming_scenario.cpp b/apps/test_streaming_scenario.cpp index 55e4e61cf..5a43a69f3 100644 --- a/apps/test_streaming_scenario.cpp +++ b/apps/test_streaming_scenario.cpp @@ -13,6 +13,7 @@ #include #include "utils.h" +#include "filter_utils.h" #include "program_options_utils.hpp" #ifndef _WINDOWS @@ -84,9 +85,9 @@ std::string get_save_filename(const std::string &save_path, size_t active_window return final_path; } -template +template void insert_next_batch(diskann::AbstractIndex &index, size_t start, size_t end, size_t insert_threads, T *data, - size_t aligned_dim) + size_t aligned_dim, std::vector> &pts_to_labels) { try { @@ -97,7 +98,18 @@ void insert_next_batch(diskann::AbstractIndex &index, size_t start, size_t end, #pragma omp parallel for num_threads((int32_t)insert_threads) schedule(dynamic) reduction(+ : num_failed) for (int64_t j = start; j < (int64_t)end; j++) { - if (index.insert_point(&data[(j - start) * aligned_dim], 1 + static_cast(j)) != 0) + int insert_result = -1; + if (pts_to_labels.size() > 0) + { + insert_result = index.insert_point(&data[(j - start) * aligned_dim], 1 + static_cast(j), + pts_to_labels[j - start]); + } + else + { + insert_result = index.insert_point(&data[(j - start) * aligned_dim], 1 + static_cast(j)); + } + + if (insert_result != 0) { std::cerr << "Insert failed " << j << std::endl; num_failed++; @@ -113,6 +125,7 @@ void insert_next_batch(diskann::AbstractIndex &index, size_t start, size_t end, catch (std::system_error &e) { std::cout << "Exiting after catching exception in insertion task: " << e.what() << std::endl; + exit(-1); } } @@ -167,40 +180,54 @@ void delete_and_consolidate(diskann::AbstractIndex &index, diskann::IndexWritePa } } -template +template void build_incremental_index(const std::string &data_path, const uint32_t L, const uint32_t R, const float alpha, const uint32_t insert_threads, const uint32_t consolidate_threads, size_t max_points_to_insert, size_t active_window, size_t consolidate_interval, - const float start_point_norm, uint32_t num_start_pts, const std::string &save_path) + const float start_point_norm, uint32_t num_start_pts, const std::string &save_path, + const std::string &label_file, const std::string &universal_label, const uint32_t Lf) { const uint32_t C = 500; const bool saturate_graph = false; - using TagT = uint32_t; - using LabelT = uint32_t; + bool has_labels = label_file != ""; diskann::IndexWriteParameters params = diskann::IndexWriteParametersBuilder(L, R) .with_max_occlusion_size(C) .with_alpha(alpha) .with_saturate_graph(saturate_graph) .with_num_threads(insert_threads) - .with_num_frozen_points(num_start_pts) + .with_filter_list_size(Lf) .build(); + auto index_search_params = diskann::IndexSearchParams(L, insert_threads); diskann::IndexWriteParameters delete_params = diskann::IndexWriteParametersBuilder(L, R) .with_max_occlusion_size(C) .with_alpha(alpha) .with_saturate_graph(saturate_graph) .with_num_threads(consolidate_threads) + .with_filter_list_size(Lf) .build(); size_t dim, aligned_dim; size_t num_points; + std::vector> pts_to_labels; + + const auto save_path_inc = + get_save_filename(save_path + ".after-streaming-", active_window, consolidate_interval, max_points_to_insert); + std::string labels_file_to_use = save_path_inc + "_label_formatted.txt"; + std::string mem_labels_int_map_file = save_path_inc + "_labels_map.txt"; + if (has_labels) + { + convert_labels_string_to_int(label_file, labels_file_to_use, mem_labels_int_map_file, universal_label); + auto parse_result = diskann::parse_formatted_label_file(labels_file_to_use); + pts_to_labels = std::get<0>(parse_result); + } + diskann::get_bin_metadata(data_path, num_points, dim); diskann::cout << "metadata: file " << data_path << " has " << num_points << " points in " << dim << " dims" << std::endl; aligned_dim = ROUND_UP(dim, 8); - auto index_config = diskann::IndexConfigBuilder() .with_metric(diskann::L2) .with_dimension(dim) @@ -208,20 +235,28 @@ void build_incremental_index(const std::string &data_path, const uint32_t L, con .is_dynamic_index(true) .is_enable_tags(true) .is_use_opq(false) + .is_filtered(has_labels) .with_num_pq_chunks(0) .is_pq_dist_build(false) - .with_search_threads(insert_threads) - .with_initial_search_list_size(L) + .with_num_frozen_pts(num_start_pts) .with_tag_type(diskann_type_to_name()) .with_label_type(diskann_type_to_name()) .with_data_type(diskann_type_to_name()) .with_index_write_params(params) - .with_data_load_store_strategy(diskann::MEMORY) + .with_index_search_params(index_search_params) + .with_data_load_store_strategy(diskann::DataStoreStrategy::MEMORY) + .with_graph_load_store_strategy(diskann::GraphStoreStrategy::MEMORY) .build(); diskann::IndexFactory index_factory = diskann::IndexFactory(index_config); auto index = index_factory.create_instance(); + if (universal_label != "") + { + LabelT u_label = 0; + index->set_universal_label(u_label); + } + if (max_points_to_insert == 0) { max_points_to_insert = num_points; @@ -255,7 +290,8 @@ void build_incremental_index(const std::string &data_path, const uint32_t L, con auto insert_task = std::async(std::launch::async, [&]() { load_aligned_bin_part(data_path, data, 0, active_window); - insert_next_batch(*index, (size_t)0, active_window, params.num_threads, data, aligned_dim); + insert_next_batch(*index, (size_t)0, active_window, params.num_threads, data, aligned_dim, + pts_to_labels); }); insert_task.wait(); @@ -265,7 +301,8 @@ void build_incremental_index(const std::string &data_path, const uint32_t L, con auto end = std::min(start + consolidate_interval, max_points_to_insert); auto insert_task = std::async(std::launch::async, [&]() { load_aligned_bin_part(data_path, data, start, end - start); - insert_next_batch(*index, start, end, params.num_threads, data, aligned_dim); + insert_next_batch(*index, start, end, params.num_threads, data, aligned_dim, + pts_to_labels); }); insert_task.wait(); @@ -285,8 +322,7 @@ void build_incremental_index(const std::string &data_path, const uint32_t L, con delete_tasks[delete_tasks.size() - 1].wait(); std::cout << "Time Elapsed " << timer.elapsed() / 1000 << "ms\n"; - const auto save_path_inc = - get_save_filename(save_path + ".after-streaming-", active_window, consolidate_interval, max_points_to_insert); + index->save(save_path_inc.c_str(), true); diskann::aligned_free(data); @@ -294,9 +330,8 @@ void build_incremental_index(const std::string &data_path, const uint32_t L, con int main(int argc, char **argv) { - std::string data_type, dist_fn, data_path, index_path_prefix; - uint32_t insert_threads, consolidate_threads; - uint32_t R, L, num_start_pts; + std::string data_type, dist_fn, data_path, index_path_prefix, label_file, universal_label, label_type; + uint32_t insert_threads, consolidate_threads, R, L, num_start_pts, Lf, unique_labels_supported; float alpha, start_point_norm; size_t max_points_to_insert, active_window, consolidate_interval; @@ -352,6 +387,22 @@ int main(int argc, char **argv) "Set the number of random start (frozen) points to use when " "inserting and searching"); + optional_configs.add_options()("label_file", po::value(&label_file)->default_value(""), + "Input label file in txt format for Filtered Index search. " + "The file should contain comma separated filters for each node " + "with each line corresponding to a graph node"); + optional_configs.add_options()("universal_label", po::value(&universal_label)->default_value(""), + "Universal label, if using it, only in conjunction with labels_file"); + optional_configs.add_options()("FilteredLbuild,Lf", po::value(&Lf)->default_value(0), + "Build complexity for filtered points, higher value " + "results in better graphs"); + optional_configs.add_options()("label_type", po::value(&label_type)->default_value("uint"), + "Storage type of Labels , default value is uint which " + "will consume memory 4 bytes per filter"); + optional_configs.add_options()("unique_labels_supported", + po::value(&unique_labels_supported)->default_value(0), + "Number of unique labels supported by the dynamic index."); + // Merge required and optional parameters desc.add(required_configs).add(optional_configs); @@ -363,13 +414,6 @@ int main(int argc, char **argv) return 0; } po::notify(vm); - if (start_point_norm == 0) - { - std::cout << "When beginning_index_size is 0, use a start point with " - "appropriate norm" - << std::endl; - return -1; - } } catch (const std::exception &ex) { @@ -377,22 +421,92 @@ int main(int argc, char **argv) return -1; } + // Validate arguments + if (start_point_norm == 0) + { + std::cout << "When beginning_index_size is 0, use a start point with " + "appropriate norm" + << std::endl; + return -1; + } + + if (label_type != std::string("ushort") && label_type != std::string("uint")) + { + std::cerr << "Invalid label type. Supported types are uint and ushort" << std::endl; + return -1; + } + + if (data_type != std::string("int8") && data_type != std::string("uint8") && data_type != std::string("float")) + { + std::cerr << "Invalid data type. Supported types are int8, uint8 and float" << std::endl; + return -1; + } + + // TODO: Are additional distance functions supported? + if (dist_fn != std::string("l2") && dist_fn != std::string("mips")) + { + std::cerr << "Invalid distance function. Supported functions are l2 and mips" << std::endl; + return -1; + } + + if (num_start_pts < unique_labels_supported) + { + num_start_pts = unique_labels_supported; + } + try { - if (data_type == std::string("int8")) - build_incremental_index(data_path, L, R, alpha, insert_threads, consolidate_threads, - max_points_to_insert, active_window, consolidate_interval, start_point_norm, - num_start_pts, index_path_prefix); - else if (data_type == std::string("uint8")) - build_incremental_index(data_path, L, R, alpha, insert_threads, consolidate_threads, - max_points_to_insert, active_window, consolidate_interval, - start_point_norm, num_start_pts, index_path_prefix); + if (data_type == std::string("uint8")) + { + if (label_type == std::string("ushort")) + { + build_incremental_index( + data_path, L, R, alpha, insert_threads, consolidate_threads, max_points_to_insert, active_window, + consolidate_interval, start_point_norm, num_start_pts, index_path_prefix, label_file, + universal_label, Lf); + } + else if (label_type == std::string("uint")) + { + build_incremental_index( + data_path, L, R, alpha, insert_threads, consolidate_threads, max_points_to_insert, active_window, + consolidate_interval, start_point_norm, num_start_pts, index_path_prefix, label_file, + universal_label, Lf); + } + } + else if (data_type == std::string("int8")) + { + if (label_type == std::string("ushort")) + { + build_incremental_index( + data_path, L, R, alpha, insert_threads, consolidate_threads, max_points_to_insert, active_window, + consolidate_interval, start_point_norm, num_start_pts, index_path_prefix, label_file, + universal_label, Lf); + } + else if (label_type == std::string("uint")) + { + build_incremental_index( + data_path, L, R, alpha, insert_threads, consolidate_threads, max_points_to_insert, active_window, + consolidate_interval, start_point_norm, num_start_pts, index_path_prefix, label_file, + universal_label, Lf); + } + } else if (data_type == std::string("float")) - build_incremental_index(data_path, L, R, alpha, insert_threads, consolidate_threads, - max_points_to_insert, active_window, consolidate_interval, start_point_norm, - num_start_pts, index_path_prefix); - else - std::cout << "Unsupported type. Use float/int8/uint8" << std::endl; + { + if (label_type == std::string("ushort")) + { + build_incremental_index( + data_path, L, R, alpha, insert_threads, consolidate_threads, max_points_to_insert, active_window, + consolidate_interval, start_point_norm, num_start_pts, index_path_prefix, label_file, + universal_label, Lf); + } + else if (label_type == std::string("uint")) + { + build_incremental_index( + data_path, L, R, alpha, insert_threads, consolidate_threads, max_points_to_insert, active_window, + consolidate_interval, start_point_norm, num_start_pts, index_path_prefix, label_file, + universal_label, Lf); + } + } } catch (const std::exception &e) { diff --git a/apps/utils/compute_groundtruth.cpp b/apps/utils/compute_groundtruth.cpp index f33a26b84..da32fd7c6 100644 --- a/apps/utils/compute_groundtruth.cpp +++ b/apps/utils/compute_groundtruth.cpp @@ -499,7 +499,8 @@ int main(int argc, char **argv) desc.add_options()("help,h", "Print information on arguments"); desc.add_options()("data_type", po::value(&data_type)->required(), "data type "); - desc.add_options()("dist_fn", po::value(&dist_fn)->required(), "distance function "); + desc.add_options()("dist_fn", po::value(&dist_fn)->required(), + "distance function "); desc.add_options()("base_file", po::value(&base_file)->required(), "File containing the base vectors in binary format"); desc.add_options()("query_file", po::value(&query_file)->required(), diff --git a/apps/utils/compute_groundtruth_for_filters.cpp b/apps/utils/compute_groundtruth_for_filters.cpp index 5be7135e1..52e586475 100644 --- a/apps/utils/compute_groundtruth_for_filters.cpp +++ b/apps/utils/compute_groundtruth_for_filters.cpp @@ -415,11 +415,6 @@ inline void parse_label_file_into_vec(size_t &line_cnt, const std::string &map_f lbls.push_back(token); labels.insert(token); } - if (lbls.size() <= 0) - { - std::cout << "No label found"; - exit(-1); - } std::sort(lbls.begin(), lbls.end()); pts_to_labels.push_back(lbls); } diff --git a/apps/utils/count_bfs_levels.cpp b/apps/utils/count_bfs_levels.cpp index ddc4eaf0b..6dd2d6233 100644 --- a/apps/utils/count_bfs_levels.cpp +++ b/apps/utils/count_bfs_levels.cpp @@ -27,7 +27,8 @@ template void bfs_count(const std::string &index_path, uint32_t dat { using TagT = uint32_t; using LabelT = uint32_t; - diskann::Index index(diskann::Metric::L2, data_dims, 0, false, false); + diskann::Index index(diskann::Metric::L2, data_dims, 0, nullptr, nullptr, 0, false, false, false, + false, 0, false); std::cout << "Index class instantiated" << std::endl; index.load(index_path.c_str(), 1, 100); std::cout << "Index loaded" << std::endl; diff --git a/apps/utils/rand_data_gen.cpp b/apps/utils/rand_data_gen.cpp index a6f9305c8..e89ede800 100644 --- a/apps/utils/rand_data_gen.cpp +++ b/apps/utils/rand_data_gen.cpp @@ -11,23 +11,31 @@ namespace po = boost::program_options; -int block_write_float(std::ofstream &writer, size_t ndims, size_t npts, float norm) +int block_write_float(std::ofstream &writer, size_t ndims, size_t npts, bool normalization, float norm, + float rand_scale) { auto vec = new float[ndims]; std::random_device rd{}; std::mt19937 gen{rd()}; std::normal_distribution<> normal_rand{0, 1}; + std::uniform_real_distribution<> unif_dis(1.0, rand_scale); for (size_t i = 0; i < npts; i++) { float sum = 0; + float scale = 1.0f; + if (rand_scale > 1.0f) + scale = (float)unif_dis(gen); for (size_t d = 0; d < ndims; ++d) - vec[d] = (float)normal_rand(gen); - for (size_t d = 0; d < ndims; ++d) - sum += vec[d] * vec[d]; - for (size_t d = 0; d < ndims; ++d) - vec[d] = vec[d] * norm / std::sqrt(sum); + vec[d] = scale * (float)normal_rand(gen); + if (normalization) + { + for (size_t d = 0; d < ndims; ++d) + sum += vec[d] * vec[d]; + for (size_t d = 0; d < ndims; ++d) + vec[d] = vec[d] * norm / std::sqrt(sum); + } writer.write((char *)vec, ndims * sizeof(float)); } @@ -104,8 +112,8 @@ int main(int argc, char **argv) { std::string data_type, output_file; size_t ndims, npts; - float norm; - + float norm, rand_scaling; + bool normalization = false; try { po::options_description desc{"Arguments"}; @@ -117,7 +125,11 @@ int main(int argc, char **argv) "File name for saving the random vectors"); desc.add_options()("ndims,D", po::value(&ndims)->required(), "Dimensoinality of the vector"); desc.add_options()("npts,N", po::value(&npts)->required(), "Number of vectors"); - desc.add_options()("norm", po::value(&norm)->required(), "Norm of the vectors"); + desc.add_options()("norm", po::value(&norm)->default_value(-1.0f), + "Norm of the vectors (if not specified, vectors are not normalized)"); + desc.add_options()("rand_scaling", po::value(&rand_scaling)->default_value(1.0f), + "Each vector will be scaled (if not explicitly normalized) by a factor randomly chosen from " + "[1, rand_scale]. Only applicable for floating point data"); po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); if (vm.count("help")) @@ -139,9 +151,20 @@ int main(int argc, char **argv) return -1; } - if (norm <= 0.0) + if (norm > 0.0) + { + normalization = true; + } + + if (rand_scaling < 1.0) + { + std::cout << "We will only scale the vector norms randomly in [1, value], so value must be >= 1." << std::endl; + return -1; + } + + if ((rand_scaling > 1.0) && (normalization == true)) { - std::cerr << "Error: Norm must be a positive number" << std::endl; + std::cout << "Data cannot be normalized and randomly scaled at same time. Use one or the other." << std::endl; return -1; } @@ -155,6 +178,11 @@ int main(int argc, char **argv) << std::endl; return -1; } + if (rand_scaling > 1.0) + { + std::cout << "Data scaling only supported for floating point data." << std::endl; + return -1; + } } try @@ -177,7 +205,7 @@ int main(int argc, char **argv) size_t cblk_size = std::min(npts - i * blk_size, blk_size); if (data_type == std::string("float")) { - ret = block_write_float(writer, ndims, cblk_size, norm); + ret = block_write_float(writer, ndims, cblk_size, normalization, norm, rand_scaling); } else if (data_type == std::string("int8")) { diff --git a/include/abstract_data_store.h b/include/abstract_data_store.h index d858c8eef..165ada696 100644 --- a/include/abstract_data_store.h +++ b/include/abstract_data_store.h @@ -13,6 +13,8 @@ namespace diskann { +template class AbstractScratch; + template class AbstractDataStore { public: @@ -65,7 +67,7 @@ template class AbstractDataStore // streaming setting virtual void get_vector(const location_t i, data_t *dest) const = 0; virtual void set_vector(const location_t i, const data_t *const vector) = 0; - virtual void prefetch_vector(const location_t loc) = 0; + virtual void prefetch_vector(const location_t loc) const = 0; // internal shuffle operations to move around vectors // will bulk-move all the vectors in [old_start_loc, old_start_loc + @@ -78,11 +80,18 @@ template class AbstractDataStore // num_points) to zero virtual void copy_vectors(const location_t from_loc, const location_t to_loc, const location_t num_points) = 0; - // metric specific operations - + // With the PQ Data Store PR, we have also changed iterate_to_fixed_point to NOT take the query + // from the scratch object. Therefore every data store has to implement preprocess_query which + // at the least will be to copy the query into the scratch object. So making this pure virtual. + virtual void preprocess_query(const data_t *aligned_query, + AbstractScratch *query_scratch = nullptr) const = 0; + // distance functions. virtual float get_distance(const data_t *query, const location_t loc) const = 0; virtual void get_distance(const data_t *query, const location_t *locations, const uint32_t location_count, - float *distances) const = 0; + float *distances, AbstractScratch *scratch_space = nullptr) const = 0; + // Specific overload for index.cpp. + virtual void get_distance(const data_t *preprocessed_query, const std::vector &ids, + std::vector &distances, AbstractScratch *scratch_space) const = 0; virtual float get_distance(const location_t loc1, const location_t loc2) const = 0; // stats of the data stored in store @@ -90,7 +99,10 @@ template class AbstractDataStore // in the dataset virtual location_t calculate_medoid() const = 0; - virtual Distance *get_dist_fn() = 0; + // REFACTOR PQ TODO: Each data store knows about its distance function, so this is + // redundant. However, we don't have an OptmizedDataStore yet, and to preserve code + // compability, we are exposing this function. + virtual Distance *get_dist_fn() const = 0; // search helpers // if the base data is aligned per the request of the metric, this will tell diff --git a/include/abstract_graph_store.h b/include/abstract_graph_store.h index 387c8f675..4d6906ca4 100644 --- a/include/abstract_graph_store.h +++ b/include/abstract_graph_store.h @@ -5,7 +5,6 @@ #include #include - #include "types.h" namespace diskann @@ -14,20 +13,56 @@ namespace diskann class AbstractGraphStore { public: - AbstractGraphStore(const size_t max_pts) : _capacity(max_pts) + AbstractGraphStore(const size_t total_pts, const size_t reserve_graph_degree) + : _capacity(total_pts), _reserve_graph_degree(reserve_graph_degree) { } virtual ~AbstractGraphStore() = default; - virtual int load(const std::string &index_path_prefix) = 0; - virtual int store(const std::string &index_path_prefix) = 0; + // returns tuple of + virtual std::tuple load(const std::string &index_path_prefix, + const size_t num_points) = 0; + virtual int store(const std::string &index_path_prefix, const size_t num_points, const size_t num_fz_points, + const uint32_t start) = 0; + + // not synchronised, user should use lock when necvessary. + virtual const std::vector &get_neighbours(const location_t i) const = 0; + virtual void add_neighbour(const location_t i, location_t neighbour_id) = 0; + virtual void clear_neighbours(const location_t i) = 0; + virtual void swap_neighbours(const location_t a, location_t b) = 0; + + virtual void set_neighbours(const location_t i, std::vector &neighbours) = 0; + + virtual size_t resize_graph(const size_t new_size) = 0; + virtual void clear_graph() = 0; + + virtual uint32_t get_max_observed_degree() = 0; + + // set during load + virtual size_t get_max_range_of_graph() = 0; + + // Total internal points _max_points + _num_frozen_points + size_t get_total_points() + { + return _capacity; + } - virtual void get_adj_list(const location_t i, std::vector &neighbors) = 0; - virtual void set_adj_list(const location_t i, std::vector &neighbors) = 0; + protected: + // Internal function, changes total points when resize_graph is called. + void set_total_points(size_t new_capacity) + { + _capacity = new_capacity; + } + + size_t get_reserve_graph_degree() + { + return _reserve_graph_degree; + } private: size_t _capacity; + size_t _reserve_graph_degree; }; -} // namespace diskann +} // namespace diskann \ No newline at end of file diff --git a/include/abstract_index.h b/include/abstract_index.h index 1a32bf8da..7c84a8ec9 100644 --- a/include/abstract_index.h +++ b/include/abstract_index.h @@ -42,11 +42,10 @@ class AbstractIndex virtual ~AbstractIndex() = default; virtual void build(const std::string &data_file, const size_t num_points_to_load, - IndexBuildParams &build_params) = 0; + IndexFilterParams &build_params) = 0; template - void build(const data_type *data, const size_t num_points_to_load, const IndexWriteParameters ¶meters, - const std::vector &tags); + void build(const data_type *data, const size_t num_points_to_load, const std::vector &tags); virtual void save(const char *filename, bool compact_before_save = false) = 0; @@ -63,7 +62,8 @@ class AbstractIndex // Initialize space for res_vectors before calling. template size_t search_with_tags(const data_type *query, const uint64_t K, const uint32_t L, tag_type *tags, - float *distances, std::vector &res_vectors); + float *distances, std::vector &res_vectors, bool use_filters = false, + const std::string filter_label = ""); // Added search overload that takes L as parameter, so that we // can customize L on a per-query basis without tampering with "Parameters" @@ -79,10 +79,17 @@ class AbstractIndex const size_t K, const uint32_t L, IndexType *indices, float *distances); + // insert points with labels, labels should be present for filtered index + template + int insert_point(const data_type *point, const tag_type tag, const std::vector &labels); + + // insert point for unfiltered index build. do not use with filtered index template int insert_point(const data_type *point, const tag_type tag); + // delete point with tag, or return -1 if point can not be deleted template int lazy_delete(const tag_type &tag); + // batch delete tags and populates failed tags if unabke to delete given tags. template void lazy_delete(const std::vector &tags, std::vector &failed_tags); @@ -97,14 +104,19 @@ class AbstractIndex // memory should be allocated for vec before calling this function template int get_vector_by_tag(tag_type &tag, data_type *vec); + template void set_universal_label(const label_type universal_label); + + virtual bool is_label_valid(const std::string &raw_label) const = 0; + virtual bool is_set_universal_label() const = 0; + private: - virtual void _build(const DataType &data, const size_t num_points_to_load, const IndexWriteParameters ¶meters, - TagVector &tags) = 0; + virtual void _build(const DataType &data, const size_t num_points_to_load, TagVector &tags) = 0; virtual std::pair _search(const DataType &query, const size_t K, const uint32_t L, std::any &indices, float *distances = nullptr) = 0; virtual std::pair _search_with_filters(const DataType &query, const std::string &filter_label, const size_t K, const uint32_t L, std::any &indices, float *distances) = 0; + virtual int _insert_point(const DataType &data_point, const TagType tag, Labelvector &labels) = 0; virtual int _insert_point(const DataType &data_point, const TagType tag) = 0; virtual int _lazy_delete(const TagType &tag) = 0; virtual void _lazy_delete(TagVector &tags, TagVector &failed_tags) = 0; @@ -112,7 +124,9 @@ class AbstractIndex virtual void _set_start_points_at_random(DataType radius, uint32_t random_seed = 0) = 0; virtual int _get_vector_by_tag(TagType &tag, DataType &vec) = 0; virtual size_t _search_with_tags(const DataType &query, const uint64_t K, const uint32_t L, const TagType &tags, - float *distances, DataVector &res_vectors) = 0; + float *distances, DataVector &res_vectors, bool use_filters = false, + const std::string filter_label = "") = 0; virtual void _search_with_optimized_layout(const DataType &query, size_t K, size_t L, uint32_t *indices) = 0; + virtual void _set_universal_label(const LabelType universal_label) = 0; }; } // namespace diskann diff --git a/include/abstract_scratch.h b/include/abstract_scratch.h new file mode 100644 index 000000000..b42a836f6 --- /dev/null +++ b/include/abstract_scratch.h @@ -0,0 +1,35 @@ +#pragma once +namespace diskann +{ + +template class PQScratch; + +// By somewhat more than a coincidence, it seems that both InMemQueryScratch +// and SSDQueryScratch have the aligned query and PQScratch objects. So we +// can put them in a neat hierarchy and keep PQScratch as a standalone class. +template class AbstractScratch +{ + public: + AbstractScratch() = default; + // This class does not take any responsibilty for memory management of + // its members. It is the responsibility of the derived classes to do so. + virtual ~AbstractScratch() = default; + + // Scratch objects should not be copied + AbstractScratch(const AbstractScratch &) = delete; + AbstractScratch &operator=(const AbstractScratch &) = delete; + + data_t *aligned_query_T() + { + return _aligned_query_T; + } + PQScratch *pq_scratch() + { + return _pq_scratch; + } + + protected: + data_t *_aligned_query_T = nullptr; + PQScratch *_pq_scratch = nullptr; +}; +} // namespace diskann diff --git a/include/aligned_file_reader.h b/include/aligned_file_reader.h index f5e2af5c3..f39d5da39 100644 --- a/include/aligned_file_reader.h +++ b/include/aligned_file_reader.h @@ -117,4 +117,9 @@ class AlignedFileReader // process batch of aligned requests in parallel // NOTE :: blocking call virtual void read(std::vector &read_reqs, IOContext &ctx, bool async = false) = 0; + +#ifdef USE_BING_INFRA + // wait for completion of one request in a batch of requests + virtual void wait(IOContext &ctx, int &completedIndex) = 0; +#endif }; diff --git a/include/defaults.h b/include/defaults.h index 2f157cb25..ef1750fcf 100644 --- a/include/defaults.h +++ b/include/defaults.h @@ -11,9 +11,19 @@ namespace defaults const float ALPHA = 1.2f; const uint32_t NUM_THREADS = 0; const uint32_t MAX_OCCLUSION_SIZE = 750; +const bool HAS_LABELS = false; const uint32_t FILTER_LIST_SIZE = 0; const uint32_t NUM_FROZEN_POINTS_STATIC = 0; const uint32_t NUM_FROZEN_POINTS_DYNAMIC = 1; + +// In-mem index related limits +const float GRAPH_SLACK_FACTOR = 1.3f; + +// SSD Index related limits +const uint64_t MAX_GRAPH_DEGREE = 512; +const uint64_t SECTOR_LEN = 4096; +const uint64_t MAX_N_SECTOR_READS = 128; + // following constants should always be specified, but are useful as a // sensible default at cli / python boundaries const uint32_t MAX_DEGREE = 64; diff --git a/include/distance.h b/include/distance.h index 8b20e586b..f3b1de25a 100644 --- a/include/distance.h +++ b/include/distance.h @@ -64,7 +64,7 @@ template class Distance // Providing a default implementation for the virtual destructor because we // don't expect most metric implementations to need it. - DISKANN_DLLEXPORT virtual ~Distance(); + DISKANN_DLLEXPORT virtual ~Distance() = default; protected: diskann::Metric _distance_metric; diff --git a/include/filter_utils.h b/include/filter_utils.h index df1970be4..55f7aed28 100644 --- a/include/filter_utils.h +++ b/include/filter_utils.h @@ -57,6 +57,10 @@ DISKANN_DLLEXPORT void generate_label_indices(path input_data_path, path final_i DISKANN_DLLEXPORT load_label_index_return_values load_label_index(path label_index_path, uint32_t label_number_of_points); +template +DISKANN_DLLEXPORT std::tuple>, tsl::robin_set> parse_formatted_label_file( + path label_file); + DISKANN_DLLEXPORT parse_label_file_return_values parse_label_file(path label_data_path, std::string universal_label); template diff --git a/include/in_mem_data_store.h b/include/in_mem_data_store.h index 0509b3b82..eaa1562e0 100644 --- a/include/in_mem_data_store.h +++ b/include/in_mem_data_store.h @@ -21,7 +21,7 @@ namespace diskann template class InMemDataStore : public AbstractDataStore { public: - InMemDataStore(const location_t capacity, const size_t dim, std::shared_ptr> distance_fn); + InMemDataStore(const location_t capacity, const size_t dim, std::unique_ptr> distance_fn); virtual ~InMemDataStore(); virtual location_t load(const std::string &filename) override; @@ -38,20 +38,26 @@ template class InMemDataStore : public AbstractDataStore *query_scratch) const override; + + virtual float get_distance(const data_t *preprocessed_query, const location_t loc) const override; virtual float get_distance(const location_t loc1, const location_t loc2) const override; - virtual void get_distance(const data_t *query, const location_t *locations, const uint32_t location_count, - float *distances) const override; + + virtual void get_distance(const data_t *preprocessed_query, const location_t *locations, + const uint32_t location_count, float *distances, + AbstractScratch *scratch) const override; + virtual void get_distance(const data_t *preprocessed_query, const std::vector &ids, + std::vector &distances, AbstractScratch *scratch_space) const override; virtual location_t calculate_medoid() const override; - virtual Distance *get_dist_fn() override; + virtual Distance *get_dist_fn() const override; virtual size_t get_alignment_factor() const override; @@ -73,7 +79,7 @@ template class InMemDataStore : public AbstractDataStore> _distance_fn; + std::unique_ptr> _distance_fn; // in case we need to save vector norms for optimization std::shared_ptr _pre_computed_norms; diff --git a/include/in_mem_graph_store.h b/include/in_mem_graph_store.h index 98a9e4dc5..d0206a7d6 100644 --- a/include/in_mem_graph_store.h +++ b/include/in_mem_graph_store.h @@ -11,13 +11,41 @@ namespace diskann class InMemGraphStore : public AbstractGraphStore { public: - InMemGraphStore(const size_t max_pts); + InMemGraphStore(const size_t total_pts, const size_t reserve_graph_degree); - int load(const std::string &index_path_prefix); - int store(const std::string &index_path_prefix); + // returns tuple of + virtual std::tuple load(const std::string &index_path_prefix, + const size_t num_points) override; + virtual int store(const std::string &index_path_prefix, const size_t num_points, const size_t num_frozen_points, + const uint32_t start) override; - void get_adj_list(const location_t i, std::vector &neighbors); - void set_adj_list(const location_t i, std::vector &neighbors); + virtual const std::vector &get_neighbours(const location_t i) const override; + virtual void add_neighbour(const location_t i, location_t neighbour_id) override; + virtual void clear_neighbours(const location_t i) override; + virtual void swap_neighbours(const location_t a, location_t b) override; + + virtual void set_neighbours(const location_t i, std::vector &neighbors) override; + + virtual size_t resize_graph(const size_t new_size) override; + virtual void clear_graph() override; + + virtual size_t get_max_range_of_graph() override; + virtual uint32_t get_max_observed_degree() override; + + protected: + virtual std::tuple load_impl(const std::string &filename, size_t expected_num_points); +#ifdef EXEC_ENV_OLS + virtual std::tuple load_impl(AlignedFileReader &reader, size_t expected_num_points); +#endif + + int save_graph(const std::string &index_path_prefix, const size_t active_points, const size_t num_frozen_points, + const uint32_t start); + + private: + size_t _max_range_of_graph = 0; + uint32_t _max_observed_degree = 0; + + std::vector> _graph; }; } // namespace diskann diff --git a/include/index.h b/include/index.h index f341a3db2..320942013 100644 --- a/include/index.h +++ b/include/index.h @@ -19,9 +19,13 @@ #include "windows_customizations.h" #include "scratch.h" #include "in_mem_data_store.h" +#include "in_mem_graph_store.h" #include "abstract_index.h" #include +#include "quantized_distance.h" +#include "pq_data_store.h" + #define OVERHEAD_FACTOR 1.1 #define EXPAND_IF_FULL 0 #define DEFAULT_MAXC 750 @@ -32,7 +36,7 @@ namespace diskann inline double estimate_ram_usage(size_t size, uint32_t dim, uint32_t datasize, uint32_t degree) { double size_of_data = ((double)size) * ROUND_UP(dim, 8) * datasize; - double size_of_graph = ((double)size) * degree * sizeof(uint32_t) * GRAPH_SLACK_FACTOR; + double size_of_graph = ((double)size) * degree * sizeof(uint32_t) * defaults::GRAPH_SLACK_FACTOR; double size_of_locks = ((double)size) * sizeof(non_recursive_mutex); double size_of_outer_vector = ((double)size) * sizeof(ptrdiff_t); @@ -163,21 +167,18 @@ template clas public: // Constructor for Bulk operations and for creating the index object solely // for loading a prexisting index. - DISKANN_DLLEXPORT Index(Metric m, const size_t dim, const size_t max_points = 1, const bool dynamic_index = false, - const bool enable_tags = false, const bool concurrent_consolidate = false, - const bool pq_dist_build = false, const size_t num_pq_chunks = 0, - const bool use_opq = false, const size_t num_frozen_pts = 0, - const bool init_data_store = true); + DISKANN_DLLEXPORT Index(const IndexConfig &index_config, std::shared_ptr> data_store, + std::unique_ptr graph_store, + std::shared_ptr> pq_data_store = nullptr); // Constructor for incremental index - DISKANN_DLLEXPORT Index(Metric m, const size_t dim, const size_t max_points, const bool dynamic_index, - const IndexWriteParameters &indexParameters, const uint32_t initial_search_list_size, - const uint32_t search_threads, const bool enable_tags = false, - const bool concurrent_consolidate = false, const bool pq_dist_build = false, - const size_t num_pq_chunks = 0, const bool use_opq = false); - - DISKANN_DLLEXPORT Index(const IndexConfig &index_config, std::unique_ptr> data_store - /* std::unique_ptr graph_store*/); + DISKANN_DLLEXPORT Index(Metric m, const size_t dim, const size_t max_points, + const std::shared_ptr index_parameters, + const std::shared_ptr index_search_params, + const size_t num_frozen_pts = 0, const bool dynamic_index = false, + const bool enable_tags = false, const bool concurrent_consolidate = false, + const bool pq_dist_build = false, const size_t num_pq_chunks = 0, + const bool use_opq = false, const bool filtered_index = false); DISKANN_DLLEXPORT ~Index(); @@ -203,31 +204,31 @@ template clas // Batch build from a file. Optionally pass tags vector. DISKANN_DLLEXPORT void build(const char *filename, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const std::vector &tags = std::vector()); // Batch build from a file. Optionally pass tags file. - DISKANN_DLLEXPORT void build(const char *filename, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const char *tag_filename); + DISKANN_DLLEXPORT void build(const char *filename, const size_t num_points_to_load, const char *tag_filename); // Batch build from a data array, which must pad vectors to aligned_dim - DISKANN_DLLEXPORT void build(const T *data, const size_t num_points_to_load, const IndexWriteParameters ¶meters, - const std::vector &tags); + DISKANN_DLLEXPORT void build(const T *data, const size_t num_points_to_load, const std::vector &tags); + // Based on filter params builds a filtered or unfiltered index DISKANN_DLLEXPORT void build(const std::string &data_file, const size_t num_points_to_load, - IndexBuildParams &build_params); + IndexFilterParams &filter_params); // Filtered Support DISKANN_DLLEXPORT void build_filtered_index(const char *filename, const std::string &label_file, - const size_t num_points_to_load, IndexWriteParameters ¶meters, + const size_t num_points_to_load, const std::vector &tags = std::vector()); DISKANN_DLLEXPORT void set_universal_label(const LabelT &label); // Get converted integer label from string to int map (_label_map) - DISKANN_DLLEXPORT LabelT get_converted_label(const std::string &raw_label); + DISKANN_DLLEXPORT LabelT get_converted_label(const std::string &raw_label) const; + + DISKANN_DLLEXPORT bool is_label_valid(const std::string& raw_label) const override; - DISKANN_DLLEXPORT bool is_label_valid(const std::string& raw_label); + DISKANN_DLLEXPORT bool is_set_universal_label() const override; // Set starting point of an index before inserting any points incrementally. // The data count should be equal to _num_frozen_pts * _aligned_dim. @@ -251,7 +252,8 @@ template clas // Initialize space for res_vectors before calling. DISKANN_DLLEXPORT size_t search_with_tags(const T *query, const uint64_t K, const uint32_t L, TagT *tags, - float *distances, std::vector &res_vectors); + float *distances, std::vector &res_vectors, bool use_filters = false, + const std::string filter_label = ""); // Filter support search template @@ -262,6 +264,9 @@ template clas // Will fail if tag already in the index or if tag=0. DISKANN_DLLEXPORT int insert_point(const T *point, const TagT tag); + // Will fail if tag already in the index or if tag=0. + DISKANN_DLLEXPORT int insert_point(const T *point, const TagT tag, const std::vector &label); + // call this before issuing deletions to sets relevant flags DISKANN_DLLEXPORT int enable_delete(); @@ -313,8 +318,7 @@ template clas protected: // overload of abstract index virtual methods - virtual void _build(const DataType &data, const size_t num_points_to_load, const IndexWriteParameters ¶meters, - TagVector &tags) override; + virtual void _build(const DataType &data, const size_t num_points_to_load, TagVector &tags) override; virtual std::pair _search(const DataType &query, const size_t K, const uint32_t L, std::any &indices, float *distances = nullptr) override; @@ -324,6 +328,7 @@ template clas float *distances) override; virtual int _insert_point(const DataType &data_point, const TagType tag) override; + virtual int _insert_point(const DataType &data_point, const TagType tag, Labelvector &labels) override; virtual int _lazy_delete(const TagType &tag) override; @@ -338,7 +343,10 @@ template clas virtual void _search_with_optimized_layout(const DataType &query, size_t K, size_t L, uint32_t *indices) override; virtual size_t _search_with_tags(const DataType &query, const uint64_t K, const uint32_t L, const TagType &tags, - float *distances, DataVector &res_vectors) override; + float *distances, DataVector &res_vectors, bool use_filters = false, + const std::string filter_label = "") override; + + virtual void _set_universal_label(const LabelType universal_label) override; // No copy/assign. Index(const Index &) = delete; @@ -346,7 +354,7 @@ template clas // Use after _data and _nd have been populated // Acquire exclusive _update_lock before calling - void build_with_data_populated(const IndexWriteParameters ¶meters, const std::vector &tags); + void build_with_data_populated(const std::vector &tags); // generates 1 frozen point that will never be deleted from the graph // This is not visible to the user @@ -367,9 +375,9 @@ template clas // with iterate_to_fixed_point. std::vector get_init_ids(); - std::pair iterate_to_fixed_point(const T *node_coords, const uint32_t Lindex, - const std::vector &init_ids, - InMemQueryScratch *scratch, bool use_filter, + // The query to use is placed in scratch->aligned_query + std::pair iterate_to_fixed_point(InMemQueryScratch *scratch, const uint32_t Lindex, + const std::vector &init_ids, bool use_filter, const std::vector &filters, bool search_invocation); void search_for_point_and_prune(int location, uint32_t Lindex, std::vector &pruned_list, @@ -396,7 +404,7 @@ template clas void inter_insert(uint32_t n, std::vector &pruned_list, InMemQueryScratch *scratch); // Acquire exclusive _update_lock before calling - void link(const IndexWriteParameters ¶meters); + void link(); // Acquire exclusive _tag_lock and _delete_lock before calling int reserve_location(); @@ -449,16 +457,15 @@ template clas private: // Distance functions Metric _dist_metric = diskann::L2; - std::shared_ptr> _distance; // Data - std::unique_ptr> _data_store; - char *_opt_graph = nullptr; + std::shared_ptr> _data_store; // Graph related data structures - std::vector> _final_graph; + std::unique_ptr _graph_store; + + char *_opt_graph = nullptr; - T *_data = nullptr; // coordinates of all base points // Dimensions size_t _dim = 0; size_t _nd = 0; // number of active points i.e. existing in the graph @@ -470,15 +477,14 @@ template clas // needed for a dynamic index. The frozen points have consecutive locations. // See also _start below. size_t _num_frozen_pts = 0; - size_t _max_range_of_loaded_graph = 0; + size_t _frozen_pts_used = 0; size_t _node_size; size_t _data_len; size_t _neighbor_len; - uint32_t _max_observed_degree = 0; - // Start point of the search. When _num_frozen_pts is greater than zero, - // this is the location of the first frozen point. Otherwise, this is a - // location of one of the points in index. + // Start point of the search. When _num_frozen_pts is greater than zero, + // this is the location of the first frozen point. Otherwise, this is a + // location of one of the points in index. uint32_t _start = 0; bool _has_built = false; @@ -492,11 +498,14 @@ template clas // Filter Support bool _filtered_index = false; - std::vector> _pts_to_labels; + // Location to label is only updated during insert_point(), all other reads are protected by + // default as a location can only be released at end of consolidate deletes + std::vector> _location_to_labels; tsl::robin_set _labels; std::string _labels_file; - std::unordered_map _label_to_medoid_id; + std::unordered_map _label_to_start_id; std::unordered_map _medoid_counts; + bool _use_universal_label = false; LabelT _universal_label = 0; uint32_t _filterIndexingQueueSize; @@ -507,6 +516,7 @@ template clas uint32_t _indexingRange; uint32_t _indexingMaxC; float _indexingAlpha; + uint32_t _indexingThreads; // Query scratch data structures ConcurrentQueue *> _query_scratch; @@ -515,7 +525,10 @@ template clas bool _pq_dist = false; bool _use_opq = false; size_t _num_pq_chunks = 0; - uint8_t *_pq_data = nullptr; + // REFACTOR + // uint8_t *_pq_data = nullptr; + std::shared_ptr> _pq_distance_fn = nullptr; + std::shared_ptr> _pq_data_store = nullptr; bool _pq_generated = false; FixedChunkPQTable _pq_table; @@ -545,11 +558,11 @@ template clas std::shared_timed_mutex // Ensure only one consolidate or compact_data is _consolidate_lock; // ever active std::shared_timed_mutex // RW lock for _tag_to_location, - _tag_lock; // _location_to_tag, _empty_slots, _nd, _max_points + _tag_lock; // _location_to_tag, _empty_slots, _nd, _max_points, _label_to_start_id std::shared_timed_mutex // RW Lock on _delete_set and _data_compacted _delete_lock; // variable - // Per node lock, cardinality=_max_points + // Per node lock, cardinality=_max_points + _num_frozen_points std::vector _locks; simple_bitmask_buf _bitmask_buf; diff --git a/include/index_build_params.h b/include/index_build_params.h index ff68c5001..0233fcec4 100644 --- a/include/index_build_params.h +++ b/include/index_build_params.h @@ -3,31 +3,31 @@ namespace diskann { -struct IndexBuildParams +struct IndexFilterParams { public: - diskann::IndexWriteParameters index_write_params; std::string save_path_prefix; std::string label_file; + std::string tags_file; std::string universal_label; uint32_t filter_threshold = 0; private: - IndexBuildParams(const IndexWriteParameters &index_write_params, const std::string &save_path_prefix, - const std::string &label_file, const std::string &universal_label, uint32_t filter_threshold) - : index_write_params(index_write_params), save_path_prefix(save_path_prefix), label_file(label_file), - universal_label(universal_label), filter_threshold(filter_threshold) + IndexFilterParams(const std::string &save_path_prefix, const std::string &label_file, + const std::string &universal_label, uint32_t filter_threshold) + : save_path_prefix(save_path_prefix), label_file(label_file), universal_label(universal_label), + filter_threshold(filter_threshold) { } - friend class IndexBuildParamsBuilder; + friend class IndexFilterParamsBuilder; }; -class IndexBuildParamsBuilder +class IndexFilterParamsBuilder { public: - IndexBuildParamsBuilder(const diskann::IndexWriteParameters ¶s) : _index_write_params(paras){}; + IndexFilterParamsBuilder() = default; - IndexBuildParamsBuilder &with_save_path_prefix(const std::string &save_path_prefix) + IndexFilterParamsBuilder &with_save_path_prefix(const std::string &save_path_prefix) { if (save_path_prefix.empty() || save_path_prefix == "") throw ANNException("Error: save_path_prefix can't be empty", -1); @@ -35,37 +35,36 @@ class IndexBuildParamsBuilder return *this; } - IndexBuildParamsBuilder &with_label_file(const std::string &label_file) + IndexFilterParamsBuilder &with_label_file(const std::string &label_file) { this->_label_file = label_file; return *this; } - IndexBuildParamsBuilder &with_universal_label(const std::string &univeral_label) + IndexFilterParamsBuilder &with_universal_label(const std::string &univeral_label) { this->_universal_label = univeral_label; return *this; } - IndexBuildParamsBuilder &with_filter_threshold(const std::uint32_t &filter_threshold) + IndexFilterParamsBuilder &with_filter_threshold(const std::uint32_t &filter_threshold) { this->_filter_threshold = filter_threshold; return *this; } - IndexBuildParams build() + IndexFilterParams build() { - return IndexBuildParams(_index_write_params, _save_path_prefix, _label_file, _universal_label, - _filter_threshold); + return IndexFilterParams(_save_path_prefix, _label_file, _universal_label, _filter_threshold); } - IndexBuildParamsBuilder(const IndexBuildParamsBuilder &) = delete; - IndexBuildParamsBuilder &operator=(const IndexBuildParamsBuilder &) = delete; + IndexFilterParamsBuilder(const IndexFilterParamsBuilder &) = delete; + IndexFilterParamsBuilder &operator=(const IndexFilterParamsBuilder &) = delete; private: - diskann::IndexWriteParameters _index_write_params; std::string _save_path_prefix; std::string _label_file; + std::string _tags_file; std::string _universal_label; uint32_t _filter_threshold = 0; }; diff --git a/include/index_config.h b/include/index_config.h index b291c744d..452498b01 100644 --- a/include/index_config.h +++ b/include/index_config.h @@ -3,14 +3,16 @@ namespace diskann { -enum DataStoreStrategy +enum class DataStoreStrategy { MEMORY }; -enum GraphStoreStrategy +enum class GraphStoreStrategy { + MEMORY }; + struct IndexConfig { DataStoreStrategy data_strategy; @@ -25,6 +27,7 @@ struct IndexConfig bool pq_dist_build; bool concurrent_consolidate; bool use_opq; + bool filtered_index; size_t num_pq_chunks; size_t num_frozen_pts; @@ -33,24 +36,23 @@ struct IndexConfig std::string tag_type; std::string data_type; + // Params for building index std::shared_ptr index_write_params; - - uint32_t search_threads; - uint32_t initial_search_list_size; + // Params for searching index + std::shared_ptr index_search_params; private: IndexConfig(DataStoreStrategy data_strategy, GraphStoreStrategy graph_strategy, Metric metric, size_t dimension, size_t max_points, size_t num_pq_chunks, size_t num_frozen_points, bool dynamic_index, bool enable_tags, - bool pq_dist_build, bool concurrent_consolidate, bool use_opq, const std::string &data_type, - const std::string &tag_type, const std::string &label_type, - std::shared_ptr index_write_params, uint32_t search_threads, - uint32_t initial_search_list_size) + bool pq_dist_build, bool concurrent_consolidate, bool use_opq, bool filtered_index, + std::string &data_type, const std::string &tag_type, const std::string &label_type, + std::shared_ptr index_write_params, + std::shared_ptr index_search_params) : data_strategy(data_strategy), graph_strategy(graph_strategy), metric(metric), dimension(dimension), max_points(max_points), dynamic_index(dynamic_index), enable_tags(enable_tags), pq_dist_build(pq_dist_build), - concurrent_consolidate(concurrent_consolidate), use_opq(use_opq), num_pq_chunks(num_pq_chunks), - num_frozen_pts(num_frozen_points), label_type(label_type), tag_type(tag_type), data_type(data_type), - index_write_params(index_write_params), search_threads(search_threads), - initial_search_list_size(initial_search_list_size) + concurrent_consolidate(concurrent_consolidate), use_opq(use_opq), filtered_index(filtered_index), + num_pq_chunks(num_pq_chunks), num_frozen_pts(num_frozen_points), label_type(label_type), tag_type(tag_type), + data_type(data_type), index_write_params(index_write_params), index_search_params(index_search_params) { } @@ -60,9 +62,7 @@ struct IndexConfig class IndexConfigBuilder { public: - IndexConfigBuilder() - { - } + IndexConfigBuilder() = default; IndexConfigBuilder &with_metric(Metric m) { @@ -124,6 +124,12 @@ class IndexConfigBuilder return *this; } + IndexConfigBuilder &is_filtered(bool is_filtered) + { + this->_filtered_index = is_filtered; + return *this; + } + IndexConfigBuilder &with_num_pq_chunks(size_t num_pq_chunks) { this->_num_pq_chunks = num_pq_chunks; @@ -160,15 +166,31 @@ class IndexConfigBuilder return *this; } - IndexConfigBuilder &with_search_threads(uint32_t search_threads) + IndexConfigBuilder &with_index_write_params(std::shared_ptr index_write_params_ptr) { - this->_search_threads = search_threads; + if (index_write_params_ptr == nullptr) + { + diskann::cout << "Passed, empty build_params while creating index config" << std::endl; + return *this; + } + this->_index_write_params = index_write_params_ptr; return *this; } - IndexConfigBuilder &with_initial_search_list_size(uint32_t search_list_size) + IndexConfigBuilder &with_index_search_params(IndexSearchParams &search_params) { - this->_initial_search_list_size = search_list_size; + this->_index_search_params = std::make_shared(search_params); + return *this; + } + + IndexConfigBuilder &with_index_search_params(std::shared_ptr search_params_ptr) + { + if (search_params_ptr == nullptr) + { + diskann::cout << "Passed, empty search_params while creating index config" << std::endl; + return *this; + } + this->_index_search_params = search_params_ptr; return *this; } @@ -177,19 +199,28 @@ class IndexConfigBuilder if (_data_type == "" || _data_type.empty()) throw ANNException("Error: data_type can not be empty", -1); - if (_dynamic_index && _index_write_params != nullptr) + if (_dynamic_index && _num_frozen_pts == 0) { - if (_search_threads == 0) - throw ANNException("Error: please pass search_threads for building dynamic index.", -1); + _num_frozen_pts = 1; + } - if (_initial_search_list_size == 0) + if (_dynamic_index) + { + if (_index_search_params != nullptr && _index_search_params->initial_search_list_size == 0) throw ANNException("Error: please pass initial_search_list_size for building dynamic index.", -1); } + // sanity check + if (_dynamic_index && _num_frozen_pts == 0) + { + diskann::cout << "_num_frozen_pts passed as 0 for dynamic_index. Setting it to 1 for safety." << std::endl; + _num_frozen_pts = 1; + } + return IndexConfig(_data_strategy, _graph_strategy, _metric, _dimension, _max_points, _num_pq_chunks, _num_frozen_pts, _dynamic_index, _enable_tags, _pq_dist_build, _concurrent_consolidate, - _use_opq, _data_type, _tag_type, _label_type, _index_write_params, _search_threads, - _initial_search_list_size); + _use_opq, _filtered_index, _data_type, _tag_type, _label_type, _index_write_params, + _index_search_params); } IndexConfigBuilder(const IndexConfigBuilder &) = delete; @@ -208,17 +239,16 @@ class IndexConfigBuilder bool _pq_dist_build = false; bool _concurrent_consolidate = false; bool _use_opq = false; + bool _filtered_index{defaults::HAS_LABELS}; size_t _num_pq_chunks = 0; - size_t _num_frozen_pts = 0; + size_t _num_frozen_pts{defaults::NUM_FROZEN_POINTS_STATIC}; - std::string _label_type = "uint32"; - std::string _tag_type = "uint32"; + std::string _label_type{"uint32"}; + std::string _tag_type{"uint32"}; std::string _data_type; std::shared_ptr _index_write_params; - - uint32_t _search_threads; - uint32_t _initial_search_list_size; + std::shared_ptr _index_search_params; }; } // namespace diskann diff --git a/include/index_factory.h b/include/index_factory.h index 3d1eb7992..80bc40dba 100644 --- a/include/index_factory.h +++ b/include/index_factory.h @@ -1,6 +1,7 @@ #include "index.h" #include "abstract_graph_store.h" #include "in_mem_graph_store.h" +#include "pq_data_store.h" namespace diskann { @@ -10,14 +11,25 @@ class IndexFactory DISKANN_DLLEXPORT explicit IndexFactory(const IndexConfig &config); DISKANN_DLLEXPORT std::unique_ptr create_instance(); - private: - void check_config(); + DISKANN_DLLEXPORT static std::unique_ptr construct_graphstore( + const GraphStoreStrategy stratagy, const size_t size, const size_t reserve_graph_degree); template - std::unique_ptr> construct_datastore(DataStoreStrategy stratagy, size_t num_points, - size_t dimension); + DISKANN_DLLEXPORT static std::shared_ptr> construct_datastore(DataStoreStrategy stratagy, + size_t num_points, + size_t dimension, Metric m); + // For now PQDataStore incorporates within itself all variants of quantization that we support. In the + // future it may be necessary to introduce an AbstractPQDataStore class to spearate various quantization + // flavours. + template + DISKANN_DLLEXPORT static std::shared_ptr> construct_pq_datastore(DataStoreStrategy strategy, + size_t num_points, size_t dimension, + Metric m, size_t num_pq_chunks, + bool use_opq); + template static Distance *construct_inmem_distance_fn(Metric m); - std::unique_ptr construct_graphstore(GraphStoreStrategy stratagy, size_t size); + private: + void check_config(); template std::unique_ptr create_instance(); diff --git a/include/natural_number_map.h b/include/natural_number_map.h index 820ac3fdf..e846882a8 100644 --- a/include/natural_number_map.h +++ b/include/natural_number_map.h @@ -26,9 +26,6 @@ template class natural_number_map { public: static_assert(std::is_trivial::value, "Key must be a trivial type"); - // Some of the class member prototypes are done with this assumption to - // minimize verbosity since it's the only use case. - static_assert(std::is_trivial::value, "Value must be a trivial type"); // Represents a reference to a element in the map. Used while iterating // over map entries. diff --git a/include/parameters.h b/include/parameters.h index 81a336da7..0206814bd 100644 --- a/include/parameters.h +++ b/include/parameters.h @@ -23,21 +23,30 @@ class IndexWriteParameters const float alpha; const uint32_t num_threads; const uint32_t filter_list_size; // Lf - const uint32_t num_frozen_points; - private: IndexWriteParameters(const uint32_t search_list_size, const uint32_t max_degree, const bool saturate_graph, const uint32_t max_occlusion_size, const float alpha, const uint32_t num_threads, - const uint32_t filter_list_size, const uint32_t num_frozen_points) + const uint32_t filter_list_size) : search_list_size(search_list_size), max_degree(max_degree), saturate_graph(saturate_graph), max_occlusion_size(max_occlusion_size), alpha(alpha), num_threads(num_threads), - filter_list_size(filter_list_size), num_frozen_points(num_frozen_points) + filter_list_size(filter_list_size) { } friend class IndexWriteParametersBuilder; }; +class IndexSearchParams +{ + public: + IndexSearchParams(const uint32_t initial_search_list_size, const uint32_t num_search_threads) + : initial_search_list_size(initial_search_list_size), num_search_threads(num_search_threads) + { + } + const uint32_t initial_search_list_size; // search L + const uint32_t num_search_threads; // search threads +}; + class IndexWriteParametersBuilder { /** @@ -72,7 +81,7 @@ class IndexWriteParametersBuilder IndexWriteParametersBuilder &with_num_threads(const uint32_t num_threads) { - _num_threads = num_threads == 0 ? omp_get_num_threads() : num_threads; + _num_threads = num_threads == 0 ? omp_get_num_procs() : num_threads; return *this; } @@ -82,22 +91,16 @@ class IndexWriteParametersBuilder return *this; } - IndexWriteParametersBuilder &with_num_frozen_points(const uint32_t num_frozen_points) - { - _num_frozen_points = num_frozen_points; - return *this; - } - IndexWriteParameters build() const { return IndexWriteParameters(_search_list_size, _max_degree, _saturate_graph, _max_occlusion_size, _alpha, - _num_threads, _filter_list_size, _num_frozen_points); + _num_threads, _filter_list_size); } IndexWriteParametersBuilder(const IndexWriteParameters &wp) : _search_list_size(wp.search_list_size), _max_degree(wp.max_degree), _max_occlusion_size(wp.max_occlusion_size), _saturate_graph(wp.saturate_graph), _alpha(wp.alpha), - _filter_list_size(wp.filter_list_size), _num_frozen_points(wp.num_frozen_points) + _filter_list_size(wp.filter_list_size) { } IndexWriteParametersBuilder(const IndexWriteParametersBuilder &) = delete; @@ -111,7 +114,6 @@ class IndexWriteParametersBuilder float _alpha{defaults::ALPHA}; uint32_t _num_threads{defaults::NUM_THREADS}; uint32_t _filter_list_size{defaults::FILTER_LIST_SIZE}; - uint32_t _num_frozen_points{defaults::NUM_FROZEN_POINTS_STATIC}; }; } // namespace diskann diff --git a/include/pq.h b/include/pq.h index acfa1b30a..3e6119f22 100644 --- a/include/pq.h +++ b/include/pq.h @@ -4,13 +4,7 @@ #pragma once #include "utils.h" - -#define NUM_PQ_BITS 8 -#define NUM_PQ_CENTROIDS (1 << NUM_PQ_BITS) -#define MAX_OPQ_ITERS 20 -#define NUM_KMEANS_REPS_PQ 12 -#define MAX_PQ_TRAINING_SET_SIZE 256000 -#define MAX_PQ_CHUNKS 512 +#include "pq_common.h" namespace diskann { @@ -53,40 +47,6 @@ class FixedChunkPQTable void populate_chunk_inner_products(const float *query_vec, float *dist_vec); }; -template struct PQScratch -{ - float *aligned_pqtable_dist_scratch = nullptr; // MUST BE AT LEAST [256 * NCHUNKS] - float *aligned_dist_scratch = nullptr; // MUST BE AT LEAST diskann MAX_DEGREE - uint8_t *aligned_pq_coord_scratch = nullptr; // MUST BE AT LEAST [N_CHUNKS * MAX_DEGREE] - float *rotated_query = nullptr; - float *aligned_query_float = nullptr; - - PQScratch(size_t graph_degree, size_t aligned_dim) - { - diskann::alloc_aligned((void **)&aligned_pq_coord_scratch, - (size_t)graph_degree * (size_t)MAX_PQ_CHUNKS * sizeof(uint8_t), 256); - diskann::alloc_aligned((void **)&aligned_pqtable_dist_scratch, 256 * (size_t)MAX_PQ_CHUNKS * sizeof(float), - 256); - diskann::alloc_aligned((void **)&aligned_dist_scratch, (size_t)graph_degree * sizeof(float), 256); - diskann::alloc_aligned((void **)&aligned_query_float, aligned_dim * sizeof(float), 8 * sizeof(float)); - diskann::alloc_aligned((void **)&rotated_query, aligned_dim * sizeof(float), 8 * sizeof(float)); - - memset(aligned_query_float, 0, aligned_dim * sizeof(float)); - memset(rotated_query, 0, aligned_dim * sizeof(float)); - } - - void set(size_t dim, T *query, const float norm = 1.0f) - { - for (size_t d = 0; d < dim; ++d) - { - if (norm != 1.0f) - rotated_query[d] = aligned_query_float[d] = static_cast(query[d]) / norm; - else - rotated_query[d] = aligned_query_float[d] = static_cast(query[d]); - } - } -}; - void aggregate_coords(const std::vector &ids, const uint8_t *all_coords, const uint64_t ndims, uint8_t *out); void pq_dist_lookup(const uint8_t *pq_ids, const size_t n_pts, const size_t pq_nchunks, const float *pq_dists, @@ -107,11 +67,19 @@ DISKANN_DLLEXPORT int generate_opq_pivots(const float *train_data, size_t num_tr unsigned num_pq_chunks, std::string opq_pivots_path, bool make_zero_mean = false); +DISKANN_DLLEXPORT int generate_pq_pivots_simplified(const float *train_data, size_t num_train, size_t dim, + size_t num_pq_chunks, std::vector &pivot_data_vector); + template int generate_pq_data_from_pivots(const std::string &data_file, unsigned num_centers, unsigned num_pq_chunks, const std::string &pq_pivots_path, const std::string &pq_compressed_vectors_path, bool use_opq = false); +DISKANN_DLLEXPORT int generate_pq_data_from_pivots_simplified(const float *data, const size_t num, + const float *pivot_data, const size_t pivots_num, + const size_t dim, const size_t num_pq_chunks, + std::vector &pq); + template void generate_disk_quantized_data(const std::string &data_file_to_use, const std::string &disk_pq_pivots_path, const std::string &disk_pq_compressed_vectors_path, diff --git a/include/pq_common.h b/include/pq_common.h new file mode 100644 index 000000000..c6a3a5739 --- /dev/null +++ b/include/pq_common.h @@ -0,0 +1,30 @@ +#pragma once + +#include +#include + +#define NUM_PQ_BITS 8 +#define NUM_PQ_CENTROIDS (1 << NUM_PQ_BITS) +#define MAX_OPQ_ITERS 20 +#define NUM_KMEANS_REPS_PQ 12 +#define MAX_PQ_TRAINING_SET_SIZE 256000 +#define MAX_PQ_CHUNKS 512 + +namespace diskann +{ +inline std::string get_quantized_vectors_filename(const std::string &prefix, bool use_opq, uint32_t num_chunks) +{ + return prefix + (use_opq ? "_opq" : "pq") + std::to_string(num_chunks) + "_compressed.bin"; +} + +inline std::string get_pivot_data_filename(const std::string &prefix, bool use_opq, uint32_t num_chunks) +{ + return prefix + (use_opq ? "_opq" : "pq") + std::to_string(num_chunks) + "_pivots.bin"; +} + +inline std::string get_rotation_matrix_suffix(const std::string &pivot_data_filename) +{ + return pivot_data_filename + "_rotation_matrix.bin"; +} + +} // namespace diskann diff --git a/include/pq_data_store.h b/include/pq_data_store.h new file mode 100644 index 000000000..227b8a6af --- /dev/null +++ b/include/pq_data_store.h @@ -0,0 +1,97 @@ +#pragma once +#include +#include "distance.h" +#include "quantized_distance.h" +#include "pq.h" +#include "abstract_data_store.h" + +namespace diskann +{ +// REFACTOR TODO: By default, the PQDataStore is an in-memory datastore because both Vamana and +// DiskANN treat it the same way. But with DiskPQ, that may need to change. +template class PQDataStore : public AbstractDataStore +{ + + public: + PQDataStore(size_t dim, location_t num_points, size_t num_pq_chunks, std::unique_ptr> distance_fn, + std::unique_ptr> pq_distance_fn); + PQDataStore(const PQDataStore &) = delete; + PQDataStore &operator=(const PQDataStore &) = delete; + ~PQDataStore(); + + // Load quantized vectors from a set of files. Here filename is treated + // as a prefix and the files are assumed to be named with DiskANN + // conventions. + virtual location_t load(const std::string &file_prefix) override; + + // Save quantized vectors to a set of files whose names start with + // file_prefix. + // Currently, the plan is to save the quantized vectors to the quantized + // vectors file. + virtual size_t save(const std::string &file_prefix, const location_t num_points) override; + + // Since base class function is pure virtual, we need to declare it here, even though alignent concept is not needed + // for Quantized data stores. + virtual size_t get_aligned_dim() const override; + + // Populate quantized data from unaligned data using PQ functionality + virtual void populate_data(const data_t *vectors, const location_t num_pts) override; + virtual void populate_data(const std::string &filename, const size_t offset) override; + + virtual void extract_data_to_bin(const std::string &filename, const location_t num_pts) override; + + virtual void get_vector(const location_t i, data_t *target) const override; + virtual void set_vector(const location_t i, const data_t *const vector) override; + virtual void prefetch_vector(const location_t loc) const override; + + virtual void move_vectors(const location_t old_location_start, const location_t new_location_start, + const location_t num_points) override; + virtual void copy_vectors(const location_t from_loc, const location_t to_loc, const location_t num_points) override; + + virtual void preprocess_query(const data_t *query, AbstractScratch *scratch) const override; + + virtual float get_distance(const data_t *query, const location_t loc) const override; + virtual float get_distance(const location_t loc1, const location_t loc2) const override; + + // NOTE: Caller must invoke "PQDistance->preprocess_query" ONCE before calling + // this function. + virtual void get_distance(const data_t *preprocessed_query, const location_t *locations, + const uint32_t location_count, float *distances, + AbstractScratch *scratch_space) const override; + + // NOTE: Caller must invoke "PQDistance->preprocess_query" ONCE before calling + // this function. + virtual void get_distance(const data_t *preprocessed_query, const std::vector &ids, + std::vector &distances, AbstractScratch *scratch_space) const override; + + // We are returning the distance function that is used for full precision + // vectors here, not the PQ distance function. This is because the callers + // all are expecting a Distance not QuantizedDistance. + virtual Distance *get_dist_fn() const override; + + virtual location_t calculate_medoid() const override; + + virtual size_t get_alignment_factor() const override; + + protected: + virtual location_t expand(const location_t new_size) override; + virtual location_t shrink(const location_t new_size) override; + + virtual location_t load_impl(const std::string &filename); +#ifdef EXEC_ENV_OLS + virtual location_t load_impl(AlignedFileReader &reader); +#endif + + private: + uint8_t *_quantized_data = nullptr; + size_t _num_chunks = 0; + + // REFACTOR TODO: Doing this temporarily before refactoring OPQ into + // its own class. Remove later. + bool _use_opq = false; + + Metric _distance_metric; + std::unique_ptr> _distance_fn = nullptr; + std::unique_ptr> _pq_distance_fn = nullptr; +}; +} // namespace diskann diff --git a/include/pq_flash_index.h b/include/pq_flash_index.h index 6f210b20d..2b26f1177 100644 --- a/include/pq_flash_index.h +++ b/include/pq_flash_index.h @@ -37,14 +37,14 @@ template class PQFlashIndex #ifdef EXEC_ENV_OLS DISKANN_DLLEXPORT int load_from_separate_paths(diskann::MemoryMappedFiles &files, uint32_t num_threads, - const char *index_filepath, const char *pivots_filepath, - const char *compressed_filepath, const char* labels_filepath, const char* labels_to_medoids_filepath, - const char* labels_map_filepath, const char* unv_label_filepath); + const char* index_filepath, const char* pivots_filepath, + const char* compressed_filepath, const char* labels_filepath, const char* labels_to_medoids_filepath, + const char* labels_map_filepath, const char* unv_label_filepath); #else DISKANN_DLLEXPORT int load_from_separate_paths(uint32_t num_threads, const char *index_filepath, - const char *pivots_filepath, const char *compressed_filepath, - const char *labels_filepath, const char *labels_to_medoids_filepath, - const char *labels_map_filepath, const char* unv_label_filepath); + const char* pivots_filepath, const char* compressed_filepath, + const char* labels_filepath, const char* labels_to_medoids_filepath, + const char* labels_map_filepath, const char* unv_label_filepath); #endif DISKANN_DLLEXPORT void load_cache_list(std::vector &node_list); @@ -99,6 +99,20 @@ template class PQFlashIndex DISKANN_DLLEXPORT diskann::Metric get_metric(); + // + // node_ids: input list of node_ids to be read + // coord_buffers: pointers to pre-allocated buffers that coords need to copied to. If null, dont copy. + // nbr_buffers: pre-allocated buffers to copy neighbors into + // + // returns a vector of bool one for each node_id: true if read is success, else false + // + DISKANN_DLLEXPORT std::vector read_nodes(const std::vector &node_ids, + std::vector &coord_buffers, + std::vector> &nbr_buffers); + + DISKANN_DLLEXPORT std::vector get_pq_vector(std::uint64_t vid); + DISKANN_DLLEXPORT uint64_t get_num_points(); + protected: DISKANN_DLLEXPORT void use_medoids_data_as_centroids(); DISKANN_DLLEXPORT void setup_thread_data(uint64_t nthreads, uint64_t visited_reserve = 4096); @@ -106,100 +120,121 @@ template class PQFlashIndex DISKANN_DLLEXPORT void set_universal_label(const LabelT &label); private: - DISKANN_DLLEXPORT inline bool point_has_label(uint32_t point_id, uint32_t label_id); - std::unordered_map load_label_map(const std::string &map_file); - DISKANN_DLLEXPORT void parse_label_file(const std::string &map_file, size_t &num_pts_labels); + DISKANN_DLLEXPORT inline bool point_has_label(uint32_t point_id, LabelT label_id); + std::unordered_map load_label_map(std::basic_istream& infile); + DISKANN_DLLEXPORT void parse_label_file(std::basic_istream& infile, size_t &num_pts_labels); DISKANN_DLLEXPORT void get_label_file_metadata(const std::string &fileContent, uint32_t &num_pts, uint32_t &num_total_labels); - DISKANN_DLLEXPORT inline int32_t get_filter_number(const LabelT &filter_label); DISKANN_DLLEXPORT void generate_random_labels(std::vector &labels, const uint32_t num_labels, const uint32_t nthreads); + void reset_stream_for_reading(std::basic_istream &infile); + + // sector # on disk where node_id is present with in the graph part + DISKANN_DLLEXPORT uint64_t get_node_sector(uint64_t node_id); + + // ptr to start of the node + DISKANN_DLLEXPORT char *offset_to_node(char *sector_buf, uint64_t node_id); + + // returns region of `node_buf` containing [NNBRS][NBR_ID(uint32_t)] + DISKANN_DLLEXPORT uint32_t *offset_to_node_nhood(char *node_buf); + + // returns region of `node_buf` containing [COORD(T)] + DISKANN_DLLEXPORT T *offset_to_node_coords(char *node_buf); size_t search_string_range(const std::string& str, char ch, size_t start, size_t end); - // index info + + // index info for multi-node sectors // nhood of node `i` is in sector: [i / nnodes_per_sector] // offset in sector: [(i % nnodes_per_sector) * max_node_len] - // nnbrs of node `i`: *(unsigned*) (buf) - // nbrs of node `i`: ((unsigned*)buf) + 1 - - uint64_t max_node_len = 0, nnodes_per_sector = 0, max_degree = 0; + // + // index info for multi-sector nodes + // nhood of node `i` is in sector: [i * DIV_ROUND_UP(_max_node_len, SECTOR_LEN)] + // offset in sector: [0] + // + // Common info + // coords start at ofsset + // #nbrs of node `i`: *(unsigned*) (offset + disk_bytes_per_point) + // nbrs of node `i` : (unsigned*) (offset + disk_bytes_per_point + 1) + + uint64_t _max_node_len = 0; + uint64_t _nnodes_per_sector = 0; // 0 for multi-sector nodes, >0 for multi-node sectors + uint64_t _max_degree = 0; // Data used for searching with re-order vectors - uint64_t ndims_reorder_vecs = 0, reorder_data_start_sector = 0, nvecs_per_sector = 0; + uint64_t _ndims_reorder_vecs = 0; + uint64_t _reorder_data_start_sector = 0; + uint64_t _nvecs_per_sector = 0; diskann::Metric metric = diskann::Metric::L2; // used only for inner product search to re-scale the result value // (due to the pre-processing of base during index build) - float max_base_norm = 0.0f; + float _max_base_norm = 0.0f; // data info - uint64_t num_points = 0; - uint64_t num_frozen_points = 0; - uint64_t frozen_location = 0; - uint64_t data_dim = 0; - uint64_t disk_data_dim = 0; // will be different from data_dim only if we use - // PQ for disk data (very large dimensionality) - uint64_t aligned_dim = 0; - uint64_t disk_bytes_per_point = 0; - - std::string disk_index_file; - std::vector> node_visit_counter; + uint64_t _num_points = 0; + uint64_t _num_frozen_points = 0; + uint64_t _frozen_location = 0; + uint64_t _data_dim = 0; + uint64_t _aligned_dim = 0; + uint64_t _disk_bytes_per_point = 0; // Number of bytes + + std::string _disk_index_file; + std::vector> _node_visit_counter; // PQ data - // n_chunks = # of chunks ndims is split into - // data: char * n_chunks + // _n_chunks = # of chunks ndims is split into + // data: char * _n_chunks // chunk_size = chunk size of each dimension chunk - // pq_tables = float* [[2^8 * [chunk_size]] * n_chunks] + // pq_tables = float* [[2^8 * [chunk_size]] * _n_chunks] uint8_t *data = nullptr; - uint64_t n_chunks; - FixedChunkPQTable pq_table; + uint64_t _n_chunks; + FixedChunkPQTable _pq_table; // distance comparator - std::shared_ptr> dist_cmp; - std::shared_ptr> dist_cmp_float; + std::shared_ptr> _dist_cmp; + std::shared_ptr> _dist_cmp_float; // for very large datasets: we use PQ even for the disk resident index - bool use_disk_index_pq = false; - uint64_t disk_pq_n_chunks = 0; - FixedChunkPQTable disk_pq_table; + bool _use_disk_index_pq = false; + uint64_t _disk_pq_n_chunks = 0; + FixedChunkPQTable _disk_pq_table; // medoid/start info // graph has one entry point by default, // we can optionally have multiple starting points - uint32_t *medoids = nullptr; + uint32_t *_medoids = nullptr; // defaults to 1 - size_t num_medoids; + size_t _num_medoids; // by default, it is empty. If there are multiple // centroids, we pick the medoid corresponding to the // closest centroid as the starting point of search - float *centroid_data = nullptr; + float *_centroid_data = nullptr; - // nhood_cache - unsigned *nhood_cache_buf = nullptr; - tsl::robin_map> nhood_cache; + // nhood_cache; the uint32_t in nhood_Cache are offsets into nhood_cache_buf + unsigned *_nhood_cache_buf = nullptr; + tsl::robin_map> _nhood_cache; - // coord_cache - T *coord_cache_buf = nullptr; - tsl::robin_map coord_cache; + // coord_cache; The T* in coord_cache are offsets into coord_cache_buf + T *_coord_cache_buf = nullptr; + tsl::robin_map _coord_cache; // thread-specific scratch - ConcurrentQueue *> thread_data; - uint64_t max_nthreads; - bool load_flag = false; - bool count_visited_nodes = false; - bool reorder_data_exists = false; - uint64_t reoreder_data_offset = 0; + ConcurrentQueue *> _thread_data; + uint64_t _max_nthreads; + bool _load_flag = false; + bool _count_visited_nodes = false; + bool _reorder_data_exists = false; + uint64_t _reoreder_data_offset = 0; // filter support uint32_t *_pts_to_label_offsets = nullptr; - uint32_t *_pts_to_labels = nullptr; - tsl::robin_set _labels; + uint32_t *_pts_to_label_counts = nullptr; + LabelT *_pts_to_labels = nullptr; std::unordered_map> _filter_to_medoid_ids; bool _use_universal_label = false; - uint32_t _universal_filter_num; - std::vector _filter_list; + LabelT _universal_filter_label; tsl::robin_set _dummy_pts; tsl::robin_set _has_dummy_pts; tsl::robin_map _dummy_to_real_map; @@ -210,7 +245,7 @@ template class PQFlashIndex // Set to a larger value than the actual header to accommodate // any additions we make to the header. This is an outer limit // on how big the header can be. - static const int HEADER_SIZE = SECTOR_LEN; + static const int HEADER_SIZE = defaults::SECTOR_LEN; char *getHeaderBytes(); #endif }; diff --git a/include/pq_l2_distance.h b/include/pq_l2_distance.h new file mode 100644 index 000000000..e6fc6e41b --- /dev/null +++ b/include/pq_l2_distance.h @@ -0,0 +1,87 @@ +#pragma once +#include "quantized_distance.h" + +namespace diskann +{ +template class PQL2Distance : public QuantizedDistance +{ + public: + // REFACTOR TODO: We could take a file prefix here and load the + // PQ pivots file, so that the distance object is initialized + // immediately after construction. But this would not work well + // with our data store concept where the store is created first + // and data populated after. + // REFACTOR TODO: Ideally, we should only read the num_chunks from + // the pivots file. However, we read the pivots file only later, but + // clients can call functions like get__filename without calling + // load_pivot_data. Hence this. The TODO is whether we should check + // that the num_chunks from the file is the same as this one. + + PQL2Distance(uint32_t num_chunks, bool use_opq = false); + + virtual ~PQL2Distance() override; + + virtual bool is_opq() const override; + + virtual std::string get_quantized_vectors_filename(const std::string &prefix) const override; + virtual std::string get_pivot_data_filename(const std::string &prefix) const override; + virtual std::string get_rotation_matrix_suffix(const std::string &pq_pivots_filename) const override; + +#ifdef EXEC_ENV_OLS + virtual void load_pivot_data(MemoryMappedFiles &files, const std::string &pq_table_file, + size_t num_chunks) override; +#else + virtual void load_pivot_data(const std::string &pq_table_file, size_t num_chunks) override; +#endif + + // Number of chunks in the PQ table. Depends on the compression level used. + // Has to be < ndim + virtual uint32_t get_num_chunks() const override; + + // Preprocess the query by computing chunk distances from the query vector to + // various centroids. Since we don't want this class to do scratch management, + // we will take a PQScratch object which can come either from Index class or + // PQFlashIndex class. + virtual void preprocess_query(const data_t *aligned_query, uint32_t original_dim, + PQScratch &pq_scratch) override; + + // Distance function used for graph traversal. This function must be called + // after + // preprocess_query. The reason we do not call preprocess ourselves is because + // that function has to be called once per query, while this function is + // called at each iteration of the graph walk. NOTE: This function expects + // 1. the query to be preprocessed using preprocess_query() + // 2. the scratch object to contain the quantized vectors corresponding to ids + // in aligned_pq_coord_scratch. Done by calling aggregate_coords() + // + virtual void preprocessed_distance(PQScratch &pq_scratch, const uint32_t id_count, + float *dists_out) override; + + // Same as above, but returns the distances in a vector instead of an array. + // Convenience function for index.cpp. + virtual void preprocessed_distance(PQScratch &pq_scratch, const uint32_t n_ids, + std::vector &dists_out) override; + + // Currently this function is required for DiskPQ. However, it too can be + // subsumed under preprocessed_distance if we add the appropriate scratch + // variables to PQScratch and initialize them in + // pq_flash_index.cpp::disk_iterate_to_fixed_point() + virtual float brute_force_distance(const float *query_vec, uint8_t *base_vec) override; + + protected: + // assumes pre-processed query + virtual void prepopulate_chunkwise_distances(const float *query_vec, float *dist_vec); + + // assumes no rotation is involved + // virtual void inflate_vector(uint8_t *base_vec, float *out_vec); + + float *_tables = nullptr; // pq_tables = float array of size [256 * ndims] + uint64_t _ndims = 0; // ndims = true dimension of vectors + uint64_t _num_chunks = 0; + bool _is_opq = false; + uint32_t *_chunk_offsets = nullptr; + float *_centroid = nullptr; + float *_tables_tr = nullptr; // same as pq_tables, but col-major + float *_rotmat_tr = nullptr; +}; +} // namespace diskann diff --git a/include/pq_scratch.h b/include/pq_scratch.h new file mode 100644 index 000000000..95f1b1395 --- /dev/null +++ b/include/pq_scratch.h @@ -0,0 +1,23 @@ +#pragma once +#include +#include "pq_common.h" +#include "utils.h" + +namespace diskann +{ + +template class PQScratch +{ + public: + float *aligned_pqtable_dist_scratch = nullptr; // MUST BE AT LEAST [256 * NCHUNKS] + float *aligned_dist_scratch = nullptr; // MUST BE AT LEAST diskann MAX_DEGREE + uint8_t *aligned_pq_coord_scratch = nullptr; // AT LEAST [N_CHUNKS * MAX_DEGREE] + float *rotated_query = nullptr; + float *aligned_query_float = nullptr; + + PQScratch(size_t graph_degree, size_t aligned_dim); + void initialize(size_t dim, const T *query, const float norm = 1.0f); + virtual ~PQScratch(); +}; + +} // namespace diskann \ No newline at end of file diff --git a/include/program_options_utils.hpp b/include/program_options_utils.hpp index 71077b7b2..2be60595b 100644 --- a/include/program_options_utils.hpp +++ b/include/program_options_utils.hpp @@ -73,7 +73,9 @@ const char *LABEL_FILE = "Input label file in txt format for Filtered Index buil const char *UNIVERSAL_LABEL = "Universal label, Use only in conjunction with label file for filtered index build. If a " "graph node has all the labels against it, we can assign a special universal filter to the " - "point instead of comma separated filters for that point"; + "point instead of comma separated filters for that point. The universal label should be assigned to nodes " + "in the labels file instead of listing all labels for a node. DiskANN will not automatically assign a " + "universal label to a node."; const char *FILTERED_LBUILD = "Build complexity for filtered points, higher value results in better graphs"; } // namespace program_options_utils diff --git a/include/quantized_distance.h b/include/quantized_distance.h new file mode 100644 index 000000000..cc4aea929 --- /dev/null +++ b/include/quantized_distance.h @@ -0,0 +1,56 @@ +#pragma once +#include +#include +#include +#include "abstract_scratch.h" + +namespace diskann +{ +template class PQScratch; + +template class QuantizedDistance +{ + public: + QuantizedDistance() = default; + QuantizedDistance(const QuantizedDistance &) = delete; + QuantizedDistance &operator=(const QuantizedDistance &) = delete; + virtual ~QuantizedDistance() = default; + + virtual bool is_opq() const = 0; + virtual std::string get_quantized_vectors_filename(const std::string &prefix) const = 0; + virtual std::string get_pivot_data_filename(const std::string &prefix) const = 0; + virtual std::string get_rotation_matrix_suffix(const std::string &pq_pivots_filename) const = 0; + + // Loading the PQ centroid table need not be part of the abstract class. + // However, we want to indicate that this function will change once we have a + // file reader hierarchy, so leave it here as-is. +#ifdef EXEC_ENV_OLS + virtual void load_pivot_data(MemoryMappedFiles &files, const std::String &pq_table_file, size_t num_chunks) = 0; +#else + virtual void load_pivot_data(const std::string &pq_table_file, size_t num_chunks) = 0; +#endif + + // Number of chunks in the PQ table. Depends on the compression level used. + // Has to be < ndim + virtual uint32_t get_num_chunks() const = 0; + + // Preprocess the query by computing chunk distances from the query vector to + // various centroids. Since we don't want this class to do scratch management, + // we will take a PQScratch object which can come either from Index class or + // PQFlashIndex class. + virtual void preprocess_query(const data_t *query_vec, uint32_t query_dim, PQScratch &pq_scratch) = 0; + + // Workhorse + // This function must be called after preprocess_query + virtual void preprocessed_distance(PQScratch &pq_scratch, const uint32_t id_count, float *dists_out) = 0; + + // Same as above, but convenience function for index.cpp. + virtual void preprocessed_distance(PQScratch &pq_scratch, const uint32_t n_ids, + std::vector &dists_out) = 0; + + // Currently this function is required for DiskPQ. However, it too can be subsumed + // under preprocessed_distance if we add the appropriate scratch variables to + // PQScratch and initialize them in pq_flash_index.cpp::disk_iterate_to_fixed_point() + virtual float brute_force_distance(const float *query_vec, uint8_t *base_vec) = 0; +}; +} // namespace diskann diff --git a/include/scratch.h b/include/scratch.h index dd84c7f2f..bfb5e5a62 100644 --- a/include/scratch.h +++ b/include/scratch.h @@ -11,30 +11,23 @@ #include "tsl/robin_map.h" #include "tsl/sparse_map.h" +#include "aligned_file_reader.h" +#include "abstract_scratch.h" #include "neighbor.h" +#include "defaults.h" #include "concurrent_queue.h" -#include "pq.h" -#include "aligned_file_reader.h" - -// In-mem index related limits -#define GRAPH_SLACK_FACTOR 1.3 - -// SSD Index related limits -#define MAX_GRAPH_DEGREE 512 -#define SECTOR_LEN (size_t)4096 -#define MAX_N_SECTOR_READS 128 namespace diskann { +template class PQScratch; // -// Scratch space for in-memory index based search +// AbstractScratch space for in-memory index based search // -template class InMemQueryScratch +template class InMemQueryScratch : public AbstractScratch { public: ~InMemQueryScratch(); - // REFACTOR TODO: move all parameters to a new class. InMemQueryScratch(uint32_t search_l, uint32_t indexing_l, uint32_t r, uint32_t maxc, size_t dim, size_t aligned_dim, size_t alignment_factor, bool init_pq_scratch = false, size_t bitmask_size = 0); void resize_for_new_L(uint32_t new_search_l); @@ -54,11 +47,11 @@ template class InMemQueryScratch } inline T *aligned_query() { - return _aligned_query; + return this->_aligned_query_T; } inline PQScratch *pq_scratch() { - return _pq_scratch; + return this->_pq_scratch; } inline std::vector &pool() { @@ -111,10 +104,6 @@ template class InMemQueryScratch uint32_t _R; uint32_t _maxc; - T *_aligned_query = nullptr; - - PQScratch *_pq_scratch = nullptr; - // _pool stores all neighbors explored from best_L_nodes. // Usually around L+R, but could be higher. // Initialized to 3L+R for some slack, expands as needed. @@ -153,10 +142,10 @@ template class InMemQueryScratch }; // -// Scratch space for SSD index based search +// AbstractScratch space for SSD index based search // -template class SSDQueryScratch +template class SSDQueryScratch : public AbstractScratch { public: T *coord_scratch = nullptr; // MUST BE AT LEAST [sizeof(T) * data_dim] @@ -164,10 +153,6 @@ template class SSDQueryScratch char *sector_scratch = nullptr; // MUST BE AT LEAST [MAX_N_SECTOR_READS * SECTOR_LEN] size_t sector_idx = 0; // index of next [SECTOR_LEN] scratch to use - T *aligned_query_T = nullptr; - - PQScratch *_pq_scratch; - tsl::robin_set visited; NeighborPriorityQueue retset; std::vector full_retset; diff --git a/include/tag_uint128.h b/include/tag_uint128.h new file mode 100644 index 000000000..642de3159 --- /dev/null +++ b/include/tag_uint128.h @@ -0,0 +1,68 @@ +#pragma once +#include +#include + +namespace diskann +{ +#pragma pack(push, 1) + +struct tag_uint128 +{ + std::uint64_t _data1 = 0; + std::uint64_t _data2 = 0; + + bool operator==(const tag_uint128 &other) const + { + return _data1 == other._data1 && _data2 == other._data2; + } + + bool operator==(std::uint64_t other) const + { + return _data1 == other && _data2 == 0; + } + + tag_uint128 &operator=(const tag_uint128 &other) + { + _data1 = other._data1; + _data2 = other._data2; + + return *this; + } + + tag_uint128 &operator=(std::uint64_t other) + { + _data1 = other; + _data2 = 0; + + return *this; + } +}; + +#pragma pack(pop) +} // namespace diskann + +namespace std +{ +// Hash 128 input bits down to 64 bits of output. +// This is intended to be a reasonably good hash function. +inline std::uint64_t Hash128to64(const std::uint64_t &low, const std::uint64_t &high) +{ + // Murmur-inspired hashing. + const std::uint64_t kMul = 0x9ddfea08eb382d69ULL; + std::uint64_t a = (low ^ high) * kMul; + a ^= (a >> 47); + std::uint64_t b = (high ^ a) * kMul; + b ^= (b >> 47); + b *= kMul; + return b; +} + +template <> struct hash +{ + size_t operator()(const diskann::tag_uint128 &key) const noexcept + { + return Hash128to64(key._data1, key._data2); // map -0 to 0 + } +}; + +} // namespace std \ No newline at end of file diff --git a/include/types.h b/include/types.h index b95848869..953d59a5f 100644 --- a/include/types.h +++ b/include/types.h @@ -17,5 +17,6 @@ using TagType = std::any; using LabelType = std::any; using TagVector = AnyWrapper::AnyVector; using DataVector = AnyWrapper::AnyVector; +using Labelvector = AnyWrapper::AnyVector; using TagRobinSet = AnyWrapper::AnyRobinSet; } // namespace diskann diff --git a/include/utils.h b/include/utils.h index f81f6a68b..2f3b9f9e5 100644 --- a/include/utils.h +++ b/include/utils.h @@ -27,6 +27,7 @@ typedef int FileHandle; #include "windows_customizations.h" #include "tsl/robin_set.h" #include "types.h" +#include "tag_uint128.h" #include #ifdef EXEC_ENV_OLS @@ -57,7 +58,7 @@ typedef int FileHandle; #define PBSTR "||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||" #define PBWIDTH 60 -inline bool file_exists(const std::string &name, bool dirCheck = false) +inline bool file_exists_impl(const std::string &name, bool dirCheck = false) { int val; #ifndef _WINDOWS @@ -94,6 +95,29 @@ inline bool file_exists(const std::string &name, bool dirCheck = false) } } +inline bool file_exists(const std::string &name, bool dirCheck = false) +{ +#ifdef EXEC_ENV_OLS + bool exists = file_exists_impl(name, dirCheck); + if (exists) + { + return true; + } + if (!dirCheck) + { + // try with .enc extension + std::string enc_name = name + ENCRYPTED_EXTENSION; + return file_exists_impl(enc_name, dirCheck); + } + else + { + return exists; + } +#else + return file_exists_impl(name, dirCheck); +#endif +} + inline void open_file_to_write(std::ofstream &writer, const std::string &filename) { writer.exceptions(std::ofstream::failbit | std::ofstream::badbit); @@ -153,6 +177,7 @@ inline int delete_file(const std::string &fileName) } } +// generates formatted_label and _labels_map file. inline void convert_labels_string_to_int(const std::string &inFileName, const std::string &outFileName, const std::string &mapFileName, const std::string &unv_label, uint32_t& unv_label_id) @@ -174,7 +199,7 @@ inline void convert_labels_string_to_int(const std::string &inFileName, const st if (string_int_map.find(token) == string_int_map.end()) { uint32_t nextId = (uint32_t)string_int_map.size() + 1; - string_int_map[token] = nextId; + string_int_map[token] = nextId; // nextId can never be 0 } lbls.push_back(string_int_map[token]); } @@ -989,6 +1014,17 @@ void block_convert(std::ofstream &writr, std::ifstream &readr, float *read_buf, DISKANN_DLLEXPORT void normalize_data_file(const std::string &inFileName, const std::string &outFileName); +inline std::string get_tag_string(std::uint64_t tag) +{ + return std::to_string(tag); +} + +inline std::string get_tag_string(const tag_uint128 &tag) +{ + std::string str = std::to_string(tag._data2) + "_" + std::to_string(tag._data1); + return str; +} + }; // namespace diskann struct PivotContainer diff --git a/include/windows_slim_lock.h b/include/windows_slim_lock.h index 5d0d65508..9f8b0329a 100644 --- a/include/windows_slim_lock.h +++ b/include/windows_slim_lock.h @@ -34,6 +34,11 @@ class windows_exclusive_slim_lock return AcquireSRWLockExclusive(&_lock); } + void lock_shared() + { + return AcquireSRWLockShared(&_lock); + } + bool try_lock() { return TryAcquireSRWLockExclusive(&_lock) != FALSE; @@ -44,6 +49,11 @@ class windows_exclusive_slim_lock return ReleaseSRWLockExclusive(&_lock); } + void unlock_shared() + { + return ReleaseSRWLockShared(&_lock); + } + private: SRWLOCK _lock; }; diff --git a/pyproject.toml b/pyproject.toml index fb4349fab..f6a39cfe7 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -11,7 +11,7 @@ build-backend = "setuptools.build_meta" [project] name = "diskannpy" -version = "0.6.0" +version = "0.7.0" description = "DiskANN Python extension module" readme = "python/README.md" @@ -48,9 +48,10 @@ test-command = "python -m unittest discover {project}/python/tests" [tool.cibuildwheel.linux] before-build = [ "dnf makecache --refresh", + "dnf upgrade -y almalinux-release", "dnf install -y epel-release", "dnf config-manager -y --add-repo https://yum.repos.intel.com/mkl/setup/intel-mkl.repo", - "rpm --import https://yum.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS-2019.PUB", + "rpm --import https://yum.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB", "dnf makecache --refresh -y", "dnf install -y wget make cmake gcc-c++ libaio-devel gperftools-libs libunwind-devel clang-tools-extra boost-devel boost-program-options intel-mkl-2020.4-912" ] diff --git a/python/README.md b/python/README.md index 1365fb422..a0c94759e 100644 --- a/python/README.md +++ b/python/README.md @@ -49,7 +49,7 @@ Please cite this software in your work as: author = {Simhadri, Harsha Vardhan and Krishnaswamy, Ravishankar and Srinivasa, Gopal and Subramanya, Suhas Jayaram and Antonijevic, Andrija and Pryce, Dax and Kaczynski, David and Williams, Shane and Gollapudi, Siddarth and Sivashankar, Varun and Karia, Neel and Singh, Aditi and Jaiswal, Shikhar and Mahapatro, Neelam and Adams, Philip and Tower, Bryan and Patel, Yash}}, title = {{DiskANN: Graph-structured Indices for Scalable, Fast, Fresh and Filtered Approximate Nearest Neighbor Search}}, url = {https://github.com/Microsoft/DiskANN}, - version = {0.6.0}, + version = {0.6.1}, year = {2023} } ``` diff --git a/python/include/builder.h b/python/include/builder.h index fc12976e7..6b1a5b4f3 100644 --- a/python/include/builder.h +++ b/python/include/builder.h @@ -20,7 +20,8 @@ template void build_memory_index(diskann::Metric metric, const std::string &vector_bin_path, const std::string &index_output_path, uint32_t graph_degree, uint32_t complexity, float alpha, uint32_t num_threads, bool use_pq_build, - size_t num_pq_bytes, bool use_opq, uint32_t filter_complexity, - bool use_tags = false); + size_t num_pq_bytes, bool use_opq, bool use_tags = false, + const std::string& filter_labels_file = "", const std::string& universal_label = "", + uint32_t filter_complexity = 0); } diff --git a/python/include/static_disk_index.h b/python/include/static_disk_index.h index 71a1b5aff..4a399ab3e 100644 --- a/python/include/static_disk_index.h +++ b/python/include/static_disk_index.h @@ -6,7 +6,6 @@ #include #include - #include #include @@ -21,7 +20,8 @@ namespace py = pybind11; -namespace diskannpy { +namespace diskannpy +{ #ifdef _WINDOWS typedef WindowsAlignedFileReader PlatformSpecificAlignedFileReader; @@ -29,8 +29,7 @@ typedef WindowsAlignedFileReader PlatformSpecificAlignedFileReader; typedef LinuxAlignedFileReader PlatformSpecificAlignedFileReader; #endif -template -class StaticDiskIndex +template class StaticDiskIndex { public: StaticDiskIndex(diskann::Metric metric, const std::string &index_path_prefix, uint32_t num_threads, @@ -40,13 +39,15 @@ class StaticDiskIndex void cache_sample_paths(size_t num_nodes_to_cache, const std::string &warmup_query_file, uint32_t num_threads); - NeighborsAndDistances search(py::array_t &query, uint64_t knn, - uint64_t complexity, uint64_t beam_width); + NeighborsAndDistances search(py::array_t &query, + uint64_t knn, uint64_t complexity, uint64_t beam_width); + + NeighborsAndDistances batch_search( + py::array_t &queries, uint64_t num_queries, uint64_t knn, + uint64_t complexity, uint64_t beam_width, uint32_t num_threads); - NeighborsAndDistances batch_search(py::array_t &queries, uint64_t num_queries, - uint64_t knn, uint64_t complexity, uint64_t beam_width, uint32_t num_threads); private: std::shared_ptr _reader; diskann::PQFlashIndex
_index; }; -} +} // namespace diskannpy diff --git a/python/include/static_memory_index.h b/python/include/static_memory_index.h index 33f3187ae..6ed5a0822 100644 --- a/python/include/static_memory_index.h +++ b/python/include/static_memory_index.h @@ -14,21 +14,27 @@ namespace py = pybind11; -namespace diskannpy { +namespace diskannpy +{ -template -class StaticMemoryIndex +template class StaticMemoryIndex { public: - StaticMemoryIndex(diskann::Metric m, const std::string &index_prefix, size_t num_points, - size_t dimensions, uint32_t num_threads, uint32_t initial_search_complexity); + StaticMemoryIndex(diskann::Metric m, const std::string &index_prefix, size_t num_points, size_t dimensions, + uint32_t num_threads, uint32_t initial_search_complexity); + + NeighborsAndDistances search(py::array_t &query, + uint64_t knn, uint64_t complexity); + + NeighborsAndDistances search_with_filter( + py::array_t &query, uint64_t knn, uint64_t complexity, + filterT filter); - NeighborsAndDistances search(py::array_t &query, uint64_t knn, - uint64_t complexity); + NeighborsAndDistances batch_search( + py::array_t &queries, uint64_t num_queries, uint64_t knn, + uint64_t complexity, uint32_t num_threads); - NeighborsAndDistances batch_search(py::array_t &queries, - uint64_t num_queries, uint64_t knn, uint64_t complexity, uint32_t num_threads); private: diskann::Index _index; }; -} \ No newline at end of file +} // namespace diskannpy \ No newline at end of file diff --git a/python/src/_builder.py b/python/src/_builder.py index 18e9e9fa0..013b7f2c9 100644 --- a/python/src/_builder.py +++ b/python/src/_builder.py @@ -1,6 +1,7 @@ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT license. +import json import os import shutil from pathlib import Path @@ -70,6 +71,15 @@ def build_disk_index( in the format DiskANN's PQ Flash Index builder requires. This temp folder is deleted upon index creation completion or error. + ## Distance Metric and Vector Datatype Restrictions + | Metric \ Datatype | np.float32 | np.uint8 | np.int8 | + |-------------------|------------|----------|---------| + | L2 | ✅ | ✅ | ✅ | + | MIPS | ✅ | ❌ | ❌ | + | Cosine [^bug-in-disk-cosine] | ❌ | ❌ | ❌ | + + [^bug-in-disk-cosine]: For StaticDiskIndex, Cosine distances are not currently supported. + ### Parameters - **data**: Either a `str` representing a path to a DiskANN vector bin file, or a numpy.ndarray, of a supported dtype, in 2 dimensions. Note that `vector_dtype` must be provided if data is a `str` @@ -119,6 +129,12 @@ def build_disk_index( vector_bin_path, vector_dtype_actual = _valid_path_and_dtype( data, vector_dtype, index_directory, index_prefix ) + _assert(dap_metric != _native_dap.COSINE, "Cosine is currently not supported in StaticDiskIndex") + if dap_metric == _native_dap.INNER_PRODUCT: + _assert( + vector_dtype_actual == np.float32, + "Integral vector dtypes (np.uint8, np.int8) are not supported with distance metric mips" + ) num_points, dimensions = vectors_metadata_from_file(vector_bin_path) @@ -159,8 +175,10 @@ def build_memory_index( num_pq_bytes: int = defaults.NUM_PQ_BYTES, use_opq: bool = defaults.USE_OPQ, vector_dtype: Optional[VectorDType] = None, - filter_complexity: int = defaults.FILTER_COMPLEXITY, tags: Union[str, VectorIdentifierBatch] = "", + filter_labels: Optional[list[list[str]]] = None, + universal_label: str = "", + filter_complexity: int = defaults.FILTER_COMPLEXITY, index_prefix: str = "ann", ) -> None: """ @@ -176,6 +194,14 @@ def build_memory_index( `diskannpy.DynamicMemoryIndex`, you **must** supply a valid value for the `tags` parameter. **Do not supply tags if the index is intended to be `diskannpy.StaticMemoryIndex`**! + ## Distance Metric and Vector Datatype Restrictions + + | Metric \ Datatype | np.float32 | np.uint8 | np.int8 | + |-------------------|------------|----------|---------| + | L2 | ✅ | ✅ | ✅ | + | MIPS | ✅ | ❌ | ❌ | + | Cosine | ✅ | ✅ | ✅ | + ### Parameters - **data**: Either a `str` representing a path to an existing DiskANN vector bin file, or a numpy.ndarray of a @@ -200,10 +226,20 @@ def build_memory_index( Default is `0`. - **use_opq**: Use optimized product quantization during build. - **vector_dtype**: Required if the provided `data` is of type `str`, else we use the `data.dtype` if np array. - - **filter_complexity**: Complexity to use when using filters. Default is 0. - - **tags**: A `str` representing a path to a pre-built tags file on disk, or a `numpy.ndarray` of uint32 ids - corresponding to the ordinal position of the vectors provided to build the index. Defaults to "". **This value - must be provided if you want to build a memory index intended for use with `diskannpy.DynamicMemoryIndex`**. + - **tags**: Tags can be defined either as a path on disk to an existing .tags file, or provided as a np.array of + the same length as the number of vectors. Tags are used to identify vectors in the index via your *own* + numbering conventions, and is absolutely required for loading DynamicMemoryIndex indices `from_file`. + - **filter_labels**: An optional, but exhaustive list of categories for each vector. This is used to filter + search results by category. If provided, this must be a list of lists, where each inner list is a list of + categories for the corresponding vector. For example, if you have 3 vectors, and the first vector belongs to + categories "a" and "b", the second vector belongs to category "b", and the third vector belongs to no categories, + you would provide `filter_labels=[["a", "b"], ["b"], []]`. If you do not want to provide categories for a + particular vector, you can provide an empty list. If you do not want to provide categories for any vectors, + you can provide `None` for this parameter (which is the default) + - **universal_label**: An optional label that indicates that this vector should be included in *every* search + in which it also meets the knn search criteria. + - **filter_complexity**: Complexity to use when using filters. Default is 0. 0 is strictly invalid if you are + using filters. - **index_prefix**: The prefix of the index files. Defaults to "ann". """ _assert( @@ -222,6 +258,10 @@ def build_memory_index( _assert_is_nonnegative_uint32(num_pq_bytes, "num_pq_bytes") _assert_is_nonnegative_uint32(filter_complexity, "filter_complexity") _assert(index_prefix != "", "index_prefix cannot be an empty string") + _assert( + filter_labels is None or filter_complexity > 0, + "if filter_labels is provided, filter_complexity must not be 0" + ) index_path = Path(index_directory) _assert( @@ -232,8 +272,18 @@ def build_memory_index( vector_bin_path, vector_dtype_actual = _valid_path_and_dtype( data, vector_dtype, index_directory, index_prefix ) + if dap_metric == _native_dap.INNER_PRODUCT: + _assert( + vector_dtype_actual == np.float32, + "Integral vector dtypes (np.uint8, np.int8) are not supported with distance metric mips" + ) num_points, dimensions = vectors_metadata_from_file(vector_bin_path) + if filter_labels is not None: + _assert( + len(filter_labels) == num_points, + "filter_labels must be the same length as the number of points" + ) if vector_dtype_actual == np.uint8: _builder = _native_dap.build_memory_uint8_index @@ -244,6 +294,21 @@ def build_memory_index( index_prefix_path = os.path.join(index_directory, index_prefix) + filter_labels_file = "" + if filter_labels is not None: + label_counts = {} + filter_labels_file = f"{index_prefix_path}_pylabels.txt" + with open(filter_labels_file, "w") as labels_file: + for labels in filter_labels: + for label in labels: + label_counts[label] = 1 if label not in label_counts else label_counts[label] + 1 + if len(labels) == 0: + print("default", file=labels_file) + else: + print(",".join(labels), file=labels_file) + with open(f"{index_prefix_path}_label_metadata.json", "w") as label_metadata_file: + json.dump(label_counts, label_metadata_file, indent=True) + if isinstance(tags, str) and tags != "": use_tags = True shutil.copy(tags, index_prefix_path + ".tags") @@ -271,8 +336,10 @@ def build_memory_index( use_pq_build=use_pq_build, num_pq_bytes=num_pq_bytes, use_opq=use_opq, - filter_complexity=filter_complexity, use_tags=use_tags, + filter_labels_file=filter_labels_file, + universal_label=universal_label, + filter_complexity=filter_complexity, ) _write_index_metadata( diff --git a/python/src/_builder.pyi b/python/src/_builder.pyi index 5014880c6..223e6c923 100644 --- a/python/src/_builder.pyi +++ b/python/src/_builder.pyi @@ -47,11 +47,11 @@ def build_memory_index( use_pq_build: bool, num_pq_bytes: int, use_opq: bool, - label_file: str, + tags: Union[str, VectorIdentifierBatch], + filter_labels: Optional[list[list[str]]], universal_label: str, filter_complexity: int, - tags: Optional[VectorIdentifierBatch], - index_prefix: str, + index_prefix: str ) -> None: ... @overload def build_memory_index( @@ -66,9 +66,9 @@ def build_memory_index( num_pq_bytes: int, use_opq: bool, vector_dtype: VectorDType, - label_file: str, + tags: Union[str, VectorIdentifierBatch], + filter_labels_file: Optional[list[list[str]]], universal_label: str, filter_complexity: int, - tags: Optional[str], - index_prefix: str, + index_prefix: str ) -> None: ... diff --git a/python/src/_common.py b/python/src/_common.py index 53f1dbcab..2b28802ff 100644 --- a/python/src/_common.py +++ b/python/src/_common.py @@ -211,6 +211,7 @@ def _ensure_index_metadata( distance_metric: Optional[DistanceMetric], max_vectors: int, dimensions: Optional[int], + warn_size_exceeded: bool = False, ) -> Tuple[VectorDType, str, np.uint64, np.uint64]: possible_metadata = _read_index_metadata(index_path_and_prefix) if possible_metadata is None: @@ -226,16 +227,17 @@ def _ensure_index_metadata( return vector_dtype, distance_metric, max_vectors, dimensions # type: ignore else: vector_dtype, distance_metric, num_vectors, dimensions = possible_metadata - if max_vectors is not None and num_vectors > max_vectors: - warnings.warn( - "The number of vectors in the saved index exceeds the max_vectors parameter. " - "max_vectors is being adjusted to accommodate the dataset, but any insertions will fail." - ) - max_vectors = num_vectors - if num_vectors == max_vectors: - warnings.warn( - "The number of vectors in the saved index equals max_vectors parameter. Any insertions will fail." - ) + if warn_size_exceeded: + if max_vectors is not None and num_vectors > max_vectors: + warnings.warn( + "The number of vectors in the saved index exceeds the max_vectors parameter. " + "max_vectors is being adjusted to accommodate the dataset, but any insertions will fail." + ) + max_vectors = num_vectors + if num_vectors == max_vectors: + warnings.warn( + "The number of vectors in the saved index equals max_vectors parameter. Any insertions will fail." + ) return possible_metadata diff --git a/python/src/_dynamic_memory_index.py b/python/src/_dynamic_memory_index.py index 9570b8345..cdf643208 100644 --- a/python/src/_dynamic_memory_index.py +++ b/python/src/_dynamic_memory_index.py @@ -144,7 +144,7 @@ def from_file( f"The file {tags_file} does not exist in {index_directory}", ) vector_dtype, dap_metric, num_vectors, dimensions = _ensure_index_metadata( - index_prefix_path, vector_dtype, distance_metric, max_vectors, dimensions + index_prefix_path, vector_dtype, distance_metric, max_vectors, dimensions, warn_size_exceeded=True ) index = cls( @@ -309,7 +309,8 @@ def search( f"k_neighbors={k_neighbors} asked for, but list_size={complexity} was smaller. Increasing {complexity} to {k_neighbors}" ) complexity = k_neighbors - return self._index.search(query=_query, knn=k_neighbors, complexity=complexity) + neighbors, distances = self._index.search(query=_query, knn=k_neighbors, complexity=complexity) + return QueryResponse(identifiers=neighbors, distances=distances) def batch_search( self, @@ -351,13 +352,14 @@ def batch_search( complexity = k_neighbors num_queries, dim = queries.shape - return self._index.batch_search( + neighbors, distances = self._index.batch_search( queries=_queries, num_queries=num_queries, knn=k_neighbors, complexity=complexity, num_threads=num_threads, ) + return QueryResponseBatch(identifiers=neighbors, distances=distances) def save(self, save_path: str, index_prefix: str = "ann"): """ diff --git a/python/src/_static_disk_index.py b/python/src/_static_disk_index.py index 1ca93c0a4..bd532577e 100644 --- a/python/src/_static_disk_index.py +++ b/python/src/_static_disk_index.py @@ -79,9 +79,9 @@ def __init__( does not exist, you are required to provide it. - **index_prefix**: The prefix of the index files. Defaults to "ann". """ - index_prefix = _valid_index_prefix(index_directory, index_prefix) + index_prefix_path = _valid_index_prefix(index_directory, index_prefix) vector_dtype, metric, _, _ = _ensure_index_metadata( - index_prefix, + index_prefix_path, vector_dtype, distance_metric, 1, # it doesn't matter because we don't need it in this context anyway @@ -101,7 +101,7 @@ def __init__( _index = _native_dap.StaticDiskFloatIndex self._index = _index( distance_metric=dap_metric, - index_path_prefix=os.path.join(index_directory, index_prefix), + index_path_prefix=index_prefix_path, num_threads=num_threads, num_nodes_to_cache=num_nodes_to_cache, cache_mechanism=cache_mechanism, @@ -138,12 +138,13 @@ def search( ) complexity = k_neighbors - return self._index.search( + neighbors, distances = self._index.search( query=_query, knn=k_neighbors, complexity=complexity, beam_width=beam_width, ) + return QueryResponse(identifiers=neighbors, distances=distances) def batch_search( self, @@ -187,7 +188,7 @@ def batch_search( complexity = k_neighbors num_queries, dim = _queries.shape - return self._index.batch_search( + neighbors, distances = self._index.batch_search( queries=_queries, num_queries=num_queries, knn=k_neighbors, @@ -195,3 +196,4 @@ def batch_search( beam_width=beam_width, num_threads=num_threads, ) + return QueryResponseBatch(identifiers=neighbors, distances=distances) diff --git a/python/src/_static_memory_index.py b/python/src/_static_memory_index.py index 8b87cd561..e481403cf 100644 --- a/python/src/_static_memory_index.py +++ b/python/src/_static_memory_index.py @@ -1,6 +1,7 @@ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT license. +import json import os import warnings from typing import Optional @@ -43,6 +44,7 @@ def __init__( distance_metric: Optional[DistanceMetric] = None, vector_dtype: Optional[VectorDType] = None, dimensions: Optional[int] = None, + enable_filters: bool = False ): """ ### Parameters @@ -73,10 +75,24 @@ def __init__( - **dimensions**: The vector dimensionality of this index. All new vectors inserted must be the same dimensionality. **This value is only used if a `{index_prefix}_metadata.bin` file does not exist.** If it does not exist, you are required to provide it. + - **enable_filters**: Indexes built with filters can also be used for filtered search. """ - index_prefix = _valid_index_prefix(index_directory, index_prefix) + index_prefix_path = _valid_index_prefix(index_directory, index_prefix) + self._labels_map = {} + self._labels_metadata = {} + if enable_filters: + try: + with open(f"{index_prefix_path}_labels_map.txt", "r") as labels_map_if: + for line in labels_map_if: + (key, val) = line.split("\t") + self._labels_map[key] = int(val) + with open(f"{index_prefix_path}_label_metadata.json", "r") as labels_metadata_if: + self._labels_metadata = json.load(labels_metadata_if) + except: # noqa: E722 + # exceptions are basically presumed to be either file not found or file not formatted correctly + raise RuntimeException("Filter labels file was unable to be processed.") vector_dtype, metric, num_points, dims = _ensure_index_metadata( - index_prefix, + index_prefix_path, vector_dtype, distance_metric, 1, # it doesn't matter because we don't need it in this context anyway @@ -103,13 +119,13 @@ def __init__( distance_metric=dap_metric, num_points=num_points, dimensions=dims, - index_path=os.path.join(index_directory, index_prefix), + index_path=index_prefix_path, num_threads=num_threads, initial_search_complexity=initial_search_complexity, ) def search( - self, query: VectorLike, k_neighbors: int, complexity: int + self, query: VectorLike, k_neighbors: int, complexity: int, filter_label: str = "" ) -> QueryResponse: """ Searches the index by a single query vector. @@ -121,13 +137,25 @@ def search( - **complexity**: Size of distance ordered list of candidate neighbors to use while searching. List size increases accuracy at the cost of latency. Must be at least k_neighbors in size. """ + if filter_label != "": + if len(self._labels_map) == 0: + raise ValueError( + f"A filter label of {filter_label} was provided, but this class was not initialized with filters " + "enabled, e.g. StaticDiskMemory(..., enable_filters=True)" + ) + if filter_label not in self._labels_map: + raise ValueError( + f"A filter label of {filter_label} was provided, but the external(str)->internal(np.uint32) labels map " + f"does not include that label." + ) + k_neighbors = min(k_neighbors, self._labels_metadata[filter_label]) _query = _castable_dtype_or_raise(query, expected=self._vector_dtype) _assert(len(_query.shape) == 1, "query vector must be 1-d") _assert( _query.shape[0] == self._dimensions, f"query vector must have the same dimensionality as the index; index dimensionality: {self._dimensions}, " f"query dimensionality: {_query.shape[0]}", - ) + ) _assert_is_positive_uint32(k_neighbors, "k_neighbors") _assert_is_nonnegative_uint32(complexity, "complexity") @@ -136,7 +164,19 @@ def search( f"k_neighbors={k_neighbors} asked for, but list_size={complexity} was smaller. Increasing {complexity} to {k_neighbors}" ) complexity = k_neighbors - return self._index.search(query=_query, knn=k_neighbors, complexity=complexity) + + if filter_label == "": + neighbors, distances = self._index.search(query=_query, knn=k_neighbors, complexity=complexity) + else: + filter = self._labels_map[filter_label] + neighbors, distances = self._index.search_with_filter( + query=query, + knn=k_neighbors, + complexity=complexity, + filter=filter + ) + return QueryResponse(identifiers=neighbors, distances=distances) + def batch_search( self, @@ -178,10 +218,11 @@ def batch_search( complexity = k_neighbors num_queries, dim = _queries.shape - return self._index.batch_search( + neighbors, distances = self._index.batch_search( queries=_queries, num_queries=num_queries, knn=k_neighbors, complexity=complexity, num_threads=num_threads, ) + return QueryResponseBatch(identifiers=neighbors, distances=distances) diff --git a/python/src/builder.cpp b/python/src/builder.cpp index 4485d66e6..e02a86d6c 100644 --- a/python/src/builder.cpp +++ b/python/src/builder.cpp @@ -31,12 +31,37 @@ template void build_disk_index(diskann::Metric, const std::string &, co template void build_disk_index(diskann::Metric, const std::string &, const std::string &, uint32_t, uint32_t, double, double, uint32_t, uint32_t); +template +std::string prepare_filtered_label_map(diskann::Index &index, const std::string &index_output_path, + const std::string &filter_labels_file, const std::string &universal_label) +{ + std::string labels_file_to_use = index_output_path + "_label_formatted.txt"; + std::string mem_labels_int_map_file = index_output_path + "_labels_map.txt"; + convert_labels_string_to_int(filter_labels_file, labels_file_to_use, mem_labels_int_map_file, universal_label); + if (!universal_label.empty()) + { + uint32_t unv_label_as_num = 0; + index.set_universal_label(unv_label_as_num); + } + return labels_file_to_use; +} + +template std::string prepare_filtered_label_map(diskann::Index &, const std::string &, + const std::string &, const std::string &); + +template std::string prepare_filtered_label_map(diskann::Index &, + const std::string &, const std::string &, const std::string &); + +template std::string prepare_filtered_label_map(diskann::Index &, + const std::string &, const std::string &, const std::string &); + template void build_memory_index(const diskann::Metric metric, const std::string &vector_bin_path, const std::string &index_output_path, const uint32_t graph_degree, const uint32_t complexity, const float alpha, const uint32_t num_threads, const bool use_pq_build, - const size_t num_pq_bytes, const bool use_opq, const uint32_t filter_complexity, - const bool use_tags) + const size_t num_pq_bytes, const bool use_opq, const bool use_tags, + const std::string &filter_labels_file, const std::string &universal_label, + const uint32_t filter_complexity) { diskann::IndexWriteParameters index_build_params = diskann::IndexWriteParametersBuilder(complexity, graph_degree) .with_filter_list_size(filter_complexity) @@ -44,10 +69,15 @@ void build_memory_index(const diskann::Metric metric, const std::string &vector_ .with_saturate_graph(false) .with_num_threads(num_threads) .build(); + diskann::IndexSearchParams index_search_params = + diskann::IndexSearchParams(index_build_params.search_list_size, num_threads); size_t data_num, data_dim; diskann::get_bin_metadata(vector_bin_path, data_num, data_dim); - diskann::Index index(metric, data_dim, data_num, use_tags, use_tags, false, use_pq_build, - num_pq_bytes, use_opq); + + diskann::Index index(metric, data_dim, data_num, + std::make_shared(index_build_params), + std::make_shared(index_search_params), 0, + use_tags, use_tags, false, use_pq_build, num_pq_bytes, use_opq); if (use_tags) { @@ -60,23 +90,44 @@ void build_memory_index(const diskann::Metric metric, const std::string &vector_ size_t tag_dims = 1; diskann::load_bin(tags_file, tags_data, data_num, tag_dims); std::vector tags(tags_data, tags_data + data_num); - index.build(vector_bin_path.c_str(), data_num, index_build_params, tags); + if (filter_labels_file.empty()) + { + index.build(vector_bin_path.c_str(), data_num, tags); + } + else + { + auto labels_file = prepare_filtered_label_map(index, index_output_path, filter_labels_file, + universal_label); + index.build_filtered_index(vector_bin_path.c_str(), labels_file, data_num, tags); + } } else { - index.build(vector_bin_path.c_str(), data_num, index_build_params); + if (filter_labels_file.empty()) + { + index.build(vector_bin_path.c_str(), data_num); + } + else + { + auto labels_file = prepare_filtered_label_map(index, index_output_path, filter_labels_file, + universal_label); + index.build_filtered_index(vector_bin_path.c_str(), labels_file, data_num); + } } index.save(index_output_path.c_str()); } template void build_memory_index(diskann::Metric, const std::string &, const std::string &, uint32_t, uint32_t, - float, uint32_t, bool, size_t, bool, uint32_t, bool); + float, uint32_t, bool, size_t, bool, bool, const std::string &, + const std::string &, uint32_t); template void build_memory_index(diskann::Metric, const std::string &, const std::string &, uint32_t, uint32_t, - float, uint32_t, bool, size_t, bool, uint32_t, bool); + float, uint32_t, bool, size_t, bool, bool, const std::string &, + const std::string &, uint32_t); template void build_memory_index(diskann::Metric, const std::string &, const std::string &, uint32_t, uint32_t, - float, uint32_t, bool, size_t, bool, uint32_t, bool); + float, uint32_t, bool, size_t, bool, bool, const std::string &, + const std::string &, uint32_t); } // namespace diskannpy diff --git a/python/src/diskann_bindings.cpp b/python/src/diskann_bindings.cpp deleted file mode 100644 index 8b1378917..000000000 --- a/python/src/diskann_bindings.cpp +++ /dev/null @@ -1 +0,0 @@ - diff --git a/python/src/dynamic_memory_index.cpp b/python/src/dynamic_memory_index.cpp index af276b85f..d05e54d96 100644 --- a/python/src/dynamic_memory_index.cpp +++ b/python/src/dynamic_memory_index.cpp @@ -13,8 +13,7 @@ diskann::IndexWriteParameters dynamic_index_write_parameters(const uint32_t comp const bool saturate_graph, const uint32_t max_occlusion_size, const float alpha, const uint32_t num_threads, - const uint32_t filter_complexity, - const uint32_t num_frozen_points) + const uint32_t filter_complexity) { return diskann::IndexWriteParametersBuilder(complexity, graph_degree) .with_saturate_graph(saturate_graph) @@ -22,28 +21,25 @@ diskann::IndexWriteParameters dynamic_index_write_parameters(const uint32_t comp .with_alpha(alpha) .with_num_threads(num_threads) .with_filter_list_size(filter_complexity) - .with_num_frozen_points(num_frozen_points) .build(); } template -diskann::Index dynamic_index_builder(const diskann::Metric m, - const diskann::IndexWriteParameters &write_params, - const size_t dimensions, const size_t max_vectors, - const uint32_t initial_search_complexity, - const uint32_t initial_search_threads, - const bool concurrent_consolidation) +diskann::Index dynamic_index_builder( + const diskann::Metric m, const diskann::IndexWriteParameters &write_params, const size_t dimensions, + const size_t max_vectors, const uint32_t initial_search_complexity, const uint32_t initial_search_threads, + const bool concurrent_consolidation, const uint32_t num_frozen_points) { - const uint32_t _initial_search_threads = - initial_search_threads != 0 ? initial_search_threads : omp_get_num_threads(); + const uint32_t _initial_search_threads = initial_search_threads != 0 ? initial_search_threads : omp_get_num_procs(); + + auto index_search_params = diskann::IndexSearchParams(initial_search_complexity, _initial_search_threads); return diskann::Index( m, dimensions, max_vectors, - true, // dynamic_index - write_params, // used for insert - initial_search_complexity, // used to prepare the scratch space for searching. can / may - // be expanded if the search asks for a larger L. - _initial_search_threads, // also used for the scratch space - true, // enable_tags + std::make_shared(write_params), // index write params + std::make_shared(index_search_params), // index_search_params + num_frozen_points, // frozen_points + true, // dynamic_index + true, // enable_tags concurrent_consolidation, false, // pq_dist_build 0, // num_pq_chunks @@ -60,9 +56,9 @@ DynamicMemoryIndex
::DynamicMemoryIndex(const diskann::Metric m, const size_t const uint32_t initial_search_threads, const bool concurrent_consolidation) : _initial_search_complexity(initial_search_complexity != 0 ? initial_search_complexity : complexity), _write_parameters(dynamic_index_write_parameters(complexity, graph_degree, saturate_graph, max_occlusion_size, - alpha, num_threads, filter_complexity, num_frozen_points)), + alpha, num_threads, filter_complexity)), _index(dynamic_index_builder
(m, _write_parameters, dimensions, max_vectors, _initial_search_complexity, - initial_search_threads, concurrent_consolidation)) + initial_search_threads, concurrent_consolidation, num_frozen_points)) { } diff --git a/python/src/module.cpp b/python/src/module.cpp index 7aea9fc03..376515661 100644 --- a/python/src/module.cpp +++ b/python/src/module.cpp @@ -48,7 +48,8 @@ template inline void add_variant(py::module_ &m, const Variant &var m.def(variant.memory_builder_name.c_str(), &diskannpy::build_memory_index, "distance_metric"_a, "data_file_path"_a, "index_output_path"_a, "graph_degree"_a, "complexity"_a, "alpha"_a, "num_threads"_a, - "use_pq_build"_a, "num_pq_bytes"_a, "use_opq"_a, "filter_complexity"_a = 0, "use_tags"_a = false); + "use_pq_build"_a, "num_pq_bytes"_a, "use_opq"_a, "use_tags"_a = false, "filter_labels_file"_a = "", + "universal_label"_a = "", "filter_complexity"_a = 0); py::class_>(m, variant.static_memory_index_name.c_str()) .def(py::init inline void add_variant(py::module_ &m, const Variant &var "distance_metric"_a, "index_path"_a, "num_points"_a, "dimensions"_a, "num_threads"_a, "initial_search_complexity"_a) .def("search", &diskannpy::StaticMemoryIndex::search, "query"_a, "knn"_a, "complexity"_a) + .def("search_with_filter", &diskannpy::StaticMemoryIndex::search_with_filter, "query"_a, "knn"_a, + "complexity"_a, "filter"_a) .def("batch_search", &diskannpy::StaticMemoryIndex::batch_search, "queries"_a, "num_queries"_a, "knn"_a, "complexity"_a, "num_threads"_a); diff --git a/python/src/static_disk_index.cpp b/python/src/static_disk_index.cpp index 654f8ec30..9e86b0ad5 100644 --- a/python/src/static_disk_index.cpp +++ b/python/src/static_disk_index.cpp @@ -14,7 +14,8 @@ StaticDiskIndex
::StaticDiskIndex(const diskann::Metric metric, const std::st const uint32_t cache_mechanism) : _reader(std::make_shared()), _index(_reader, metric) { - int load_success = _index.load(num_threads, index_path_prefix.c_str()); + const uint32_t _num_threads = num_threads != 0 ? num_threads : omp_get_num_procs(); + int load_success = _index.load(_num_threads, index_path_prefix.c_str()); if (load_success != 0) { throw std::runtime_error("index load failed."); @@ -22,7 +23,7 @@ StaticDiskIndex
::StaticDiskIndex(const diskann::Metric metric, const std::st if (cache_mechanism == 1) { std::string sample_file = index_path_prefix + std::string("_sample_data.bin"); - cache_sample_paths(num_nodes_to_cache, sample_file, num_threads); + cache_sample_paths(num_nodes_to_cache, sample_file, _num_threads); } else if (cache_mechanism == 2) { diff --git a/python/src/static_memory_index.cpp b/python/src/static_memory_index.cpp index 3bd927174..d3ac079af 100644 --- a/python/src/static_memory_index.cpp +++ b/python/src/static_memory_index.cpp @@ -17,15 +17,17 @@ diskann::Index static_index_builder(const diskann::Me { throw std::runtime_error("initial_search_complexity must be a positive uint32_t"); } - + auto index_search_params = diskann::IndexSearchParams(initial_search_complexity, omp_get_num_procs()); return diskann::Index
(m, dimensions, num_points, - false, // not a dynamic_index - false, // no enable_tags/ids - false, // no concurrent_consolidate, - false, // pq_dist_build - 0, // num_pq_chunks - false, // use_opq = false - 0); // num_frozen_points + nullptr, // index write params + std::make_shared(index_search_params), // index search params + 0, // num frozen points + false, // not a dynamic_index + false, // no enable_tags/ids + false, // no concurrent_consolidate, + false, // pq_dist_build + 0, // num_pq_chunks + false); // use_opq = false } template @@ -34,7 +36,7 @@ StaticMemoryIndex
::StaticMemoryIndex(const diskann::Metric m, const std::str const uint32_t initial_search_complexity) : _index(static_index_builder
(m, num_points, dimensions, initial_search_complexity)) { - const uint32_t _num_threads = num_threads != 0 ? num_threads : omp_get_num_threads(); + const uint32_t _num_threads = num_threads != 0 ? num_threads : omp_get_num_procs(); _index.load(index_prefix.c_str(), _num_threads, initial_search_complexity); } @@ -49,12 +51,24 @@ NeighborsAndDistances StaticMemoryIndex
::search( return std::make_pair(ids, dists); } +template +NeighborsAndDistances StaticMemoryIndex
::search_with_filter( + py::array_t &query, const uint64_t knn, const uint64_t complexity, + const filterT filter) +{ + py::array_t ids(knn); + py::array_t dists(knn); + std::vector
empty_vector; + _index.search_with_filters(query.data(), filter, knn, complexity, ids.mutable_data(), dists.mutable_data()); + return std::make_pair(ids, dists); +} + template NeighborsAndDistances StaticMemoryIndex
::batch_search( py::array_t &queries, const uint64_t num_queries, const uint64_t knn, const uint64_t complexity, const uint32_t num_threads) { - const uint32_t _num_threads = num_threads != 0 ? num_threads : omp_get_num_threads(); + const uint32_t _num_threads = num_threads != 0 ? num_threads : omp_get_num_procs(); py::array_t ids({num_queries, knn}); py::array_t dists({num_queries, knn}); std::vector
empty_vector; diff --git a/python/tests/test_dynamic_memory_index.py b/python/tests/test_dynamic_memory_index.py index ff9c8981d..13d9b08db 100644 --- a/python/tests/test_dynamic_memory_index.py +++ b/python/tests/test_dynamic_memory_index.py @@ -40,6 +40,7 @@ def setUpClass(cls) -> None: build_random_vectors_and_memory_index(np.float32, "cosine", with_tags=True), build_random_vectors_and_memory_index(np.uint8, "cosine", with_tags=True), build_random_vectors_and_memory_index(np.int8, "cosine", with_tags=True), + build_random_vectors_and_memory_index(np.float32, "mips", with_tags=True), ] cls._example_ann_dir = cls._test_matrix[0][4] @@ -72,12 +73,15 @@ def test_recall_and_batch(self): ) k = 5 - diskann_neighbors, diskann_distances = index.batch_search( + batch_response = index.batch_search( query_vectors, k_neighbors=k, complexity=5, num_threads=16, ) + self.assertIsInstance(batch_response, dap.QueryResponseBatch) + + diskann_neighbors, diskann_distances = batch_response if metric == "l2" or metric == "cosine": knn = NearestNeighbors( n_neighbors=100, algorithm="auto", metric=metric @@ -115,7 +119,9 @@ def test_single(self): index.batch_insert(vectors=index_vectors, vector_ids=generated_tags) k = 5 - ids, dists = index.search(query_vectors[0], k_neighbors=k, complexity=5) + response = index.search(query_vectors[0], k_neighbors=k, complexity=5) + self.assertIsInstance(response, dap.QueryResponse) + ids, dists = response self.assertEqual(ids.shape[0], k) self.assertEqual(dists.shape[0], k) @@ -437,4 +443,27 @@ def _tiny_index(): warnings.simplefilter("error") # turns warnings into raised exceptions index.batch_insert(rng.random((2, 10), dtype=np.float32), np.array([15, 25], dtype=np.uint32)) + def test_zero_threads(self): + for ( + metric, + dtype, + query_vectors, + index_vectors, + ann_dir, + vector_bin_file, + generated_tags, + ) in self._test_matrix: + with self.subTest(msg=f"Testing dtype {dtype}"): + index = dap.DynamicMemoryIndex( + distance_metric="l2", + vector_dtype=dtype, + dimensions=10, + max_vectors=11_000, + complexity=64, + graph_degree=32, + num_threads=0, # explicitly asking it to use all available threads. + ) + index.batch_insert(vectors=index_vectors, vector_ids=generated_tags, num_threads=0) + k = 5 + ids, dists = index.batch_search(query_vectors, k_neighbors=k, complexity=5, num_threads=0) diff --git a/python/tests/test_static_disk_index.py b/python/tests/test_static_disk_index.py index 4ba544106..0397c321d 100644 --- a/python/tests/test_static_disk_index.py +++ b/python/tests/test_static_disk_index.py @@ -3,6 +3,7 @@ import shutil import unittest +from pathlib import Path from tempfile import mkdtemp import diskannpy as dap @@ -25,7 +26,7 @@ def _build_random_vectors_and_index(dtype, metric): complexity=32, search_memory_maximum=0.00003, build_memory_maximum=1, - num_threads=1, + num_threads=0, pq_disk_bytes=0, ) return metric, dtype, query_vectors, index_vectors, ann_dir @@ -38,6 +39,7 @@ def setUpClass(cls) -> None: _build_random_vectors_and_index(np.float32, "l2"), _build_random_vectors_and_index(np.uint8, "l2"), _build_random_vectors_and_index(np.int8, "l2"), + _build_random_vectors_and_index(np.float32, "mips"), ] cls._example_ann_dir = cls._test_matrix[0][4] @@ -62,13 +64,16 @@ def test_recall_and_batch(self): ) k = 5 - diskann_neighbors, diskann_distances = index.batch_search( + batch_response = index.batch_search( query_vectors, k_neighbors=k, complexity=5, beam_width=2, num_threads=16, ) + self.assertIsInstance(batch_response, dap.QueryResponseBatch) + + diskann_neighbors, diskann_distances = batch_response if metric == "l2": knn = NearestNeighbors( n_neighbors=100, algorithm="auto", metric="l2" @@ -93,9 +98,11 @@ def test_single(self): ) k = 5 - ids, dists = index.search( + response = index.search( query_vectors[0], k_neighbors=k, complexity=5, beam_width=2 ) + self.assertIsInstance(response, dap.QueryResponse) + ids, dists = response self.assertEqual(ids.shape[0], k) self.assertEqual(dists.shape[0], k) @@ -144,3 +151,48 @@ def test_value_ranges_batch_search(self): index.batch_search( queries=np.array([[]], dtype=np.single), **kwargs ) + + def test_zero_threads(self): + for metric, dtype, query_vectors, index_vectors, ann_dir in self._test_matrix: + with self.subTest(msg=f"Testing dtype {dtype}"): + index = dap.StaticDiskIndex( + distance_metric="l2", + vector_dtype=dtype, + index_directory=ann_dir, + num_threads=0, # Issue #432 + num_nodes_to_cache=10, + ) + + k = 5 + ids, dists = index.batch_search( + query_vectors, k_neighbors=k, complexity=5, beam_width=2, num_threads=0 + ) + + def test_relative_paths(self): + # Issue 483 and 491 both fixed errors that were somehow slipping past our unit tests + # os.path.join() acts as a semi-merge if you give it two paths that look absolute. + # since our unit tests are using absolute paths via tempfile.mkdtemp(), the double os.path.join() was never + # caught by our tests, but was very easy to trip when using relative paths + rel_dir = "tmp" + Path(rel_dir).mkdir(exist_ok=True) + try: + tiny_index_vecs = random_vectors(20, 10, dtype=np.float32, seed=12345) + dap.build_disk_index( + data=tiny_index_vecs, + distance_metric="l2", + index_directory=rel_dir, + graph_degree=16, + complexity=32, + search_memory_maximum=0.00003, + build_memory_maximum=1, + num_threads=0, + pq_disk_bytes=0, + ) + index = dap.StaticDiskIndex( + index_directory=rel_dir, + num_threads=16, + num_nodes_to_cache=10, + ) + + finally: + shutil.rmtree(rel_dir, ignore_errors=True) diff --git a/python/tests/test_static_memory_index.py b/python/tests/test_static_memory_index.py index cb7f0f01d..fe571be5d 100644 --- a/python/tests/test_static_memory_index.py +++ b/python/tests/test_static_memory_index.py @@ -1,12 +1,17 @@ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT license. +import os import shutil import unittest +from pathlib import Path +from tempfile import mkdtemp + import diskannpy as dap import numpy as np from fixtures import build_random_vectors_and_memory_index, calculate_recall +from fixtures import random_vectors from sklearn.neighbors import NearestNeighbors @@ -20,6 +25,7 @@ def setUpClass(cls) -> None: build_random_vectors_and_memory_index(np.float32, "cosine"), build_random_vectors_and_memory_index(np.uint8, "cosine"), build_random_vectors_and_memory_index(np.int8, "cosine"), + build_random_vectors_and_memory_index(np.float32, "mips"), ] cls._example_ann_dir = cls._test_matrix[0][4] @@ -50,12 +56,15 @@ def test_recall_and_batch(self): ) k = 5 - diskann_neighbors, diskann_distances = index.batch_search( + batch_response = index.batch_search( query_vectors, k_neighbors=k, complexity=5, num_threads=16, ) + self.assertIsInstance(batch_response, dap.QueryResponseBatch) + + diskann_neighbors, diskann_distances = batch_response if metric in ["l2", "cosine"]: knn = NearestNeighbors( n_neighbors=100, algorithm="auto", metric=metric @@ -86,7 +95,9 @@ def test_single(self): ) k = 5 - ids, dists = index.search(query_vectors[0], k_neighbors=k, complexity=5) + response = index.search(query_vectors[0], k_neighbors=k, complexity=5) + self.assertIsInstance(response, dap.QueryResponse) + ids, dists = response self.assertEqual(ids.shape[0], k) self.assertEqual(dists.shape[0], k) @@ -160,3 +171,152 @@ def test_value_ranges_batch_search(self): index.batch_search( queries=np.array([[]], dtype=np.single), **kwargs ) + + def test_zero_threads(self): + for ( + metric, + dtype, + query_vectors, + index_vectors, + ann_dir, + vector_bin_file, + _, + ) in self._test_matrix: + with self.subTest(msg=f"Testing dtype {dtype}"): + index = dap.StaticMemoryIndex( + index_directory=ann_dir, + num_threads=0, + initial_search_complexity=32, + ) + + k = 5 + ids, dists = index.batch_search(query_vectors, k_neighbors=k, complexity=5, num_threads=0) + + def test_relative_paths(self): + # Issue 483 and 491 both fixed errors that were somehow slipping past our unit tests + # os.path.join() acts as a semi-merge if you give it two paths that look absolute. + # since our unit tests are using absolute paths via tempfile.mkdtemp(), the double os.path.join() was never + # caught by our tests, but was very easy to trip when using relative paths + rel_dir = "tmp" + Path(rel_dir).mkdir(exist_ok=True) + try: + tiny_index_vecs = random_vectors(20, 10, dtype=np.float32, seed=12345) + dap.build_memory_index( + data=tiny_index_vecs, + distance_metric="l2", + index_directory=rel_dir, + graph_degree=16, + complexity=32, + num_threads=0, + ) + index = dap.StaticMemoryIndex( + index_directory=rel_dir, + num_threads=0, + initial_search_complexity=32, + ) + + finally: + shutil.rmtree(rel_dir, ignore_errors=True) + + + +class TestFilteredStaticMemoryIndex(unittest.TestCase): + def test_simple_scenario(self): + vectors: np.ndarray = random_vectors(10000, 10, dtype=np.float32, seed=54321) + query_vectors: np.ndarray = random_vectors(10, 10, dtype=np.float32) + temp = mkdtemp() + labels = [] + for idx in range(0, vectors.shape[0]): + label_list = [] + if idx % 3 == 0: + label_list.append("even_by_3") + if idx % 5 == 0: + label_list.append("even_by_5") + if len(label_list) == 0: + label_list = ["neither"] + labels.append(label_list) + try: + dap.build_memory_index( + data=vectors, + distance_metric="l2", + index_directory=temp, + complexity=64, + graph_degree=32, + num_threads=16, + filter_labels=labels, + universal_label="all", + filter_complexity=128, + ) + index = dap.StaticMemoryIndex( + index_directory=temp, + num_threads=16, + initial_search_complexity=64, + enable_filters=True + ) + + k = 50 + probable_superset, _ = index.search(query_vectors[0], k_neighbors=k*2, complexity=128) + ids_1, _ = index.search(query_vectors[0], k_neighbors=k, complexity=64, filter_label="even_by_3") + self.assertTrue(all(id % 3 == 0 for id in ids_1)) + ids_2, _ = index.search(query_vectors[0], k_neighbors=k, complexity=64, filter_label="even_by_5") + self.assertTrue(all(id % 5 == 0 for id in ids_2)) + + in_superset = np.intersect1d(probable_superset, np.append(ids_1, ids_2)).shape[0] + self.assertTrue(in_superset/k*2 > 0.98) + finally: + shutil.rmtree(temp, ignore_errors=True) + + + def test_exhaustive_validation(self): + vectors: np.ndarray = random_vectors(10000, 10, dtype=np.float32, seed=54321) + query_vectors: np.ndarray = random_vectors(10, 10, dtype=np.float32) + temp = mkdtemp() + labels = [] + for idx in range(0, vectors.shape[0]): + label_list = [] + label_list.append("all") + if idx % 2 == 0: + label_list.append("even") + else: + label_list.append("odd") + if idx % 3 == 0: + label_list.append("by_three") + labels.append(label_list) + try: + dap.build_memory_index( + data=vectors, + distance_metric="l2", + index_directory=temp, + complexity=64, + graph_degree=32, + num_threads=16, + filter_labels=labels, + universal_label="", + filter_complexity=128, + ) + index = dap.StaticMemoryIndex( + index_directory=temp, + num_threads=16, + initial_search_complexity=64, + enable_filters=True + ) + + k = 5_000 + without_filter, _ = index.search(query_vectors[0], k_neighbors=k*2, complexity=128) + with_filter_but_label_all, _ = index.search( + query_vectors[0], k_neighbors=k*2, complexity=128, filter_label="all" + ) + intersection = np.intersect1d(without_filter, with_filter_but_label_all) + intersect_count = intersection.shape[0] + self.assertEqual(intersect_count, k*2) + + ids_1, _ = index.search(query_vectors[0], k_neighbors=k*10, complexity=128, filter_label="even") + # we ask for more than 5000. prior to the addition of the `_label_metadata.json` file + # asking for more k than we had items with that label would result in nonsense results past the first + # 5000. + self.assertTrue(all(id % 2 == 0 for id in ids_1)) + ids_2, _ = index.search(query_vectors[0], k_neighbors=k, complexity=128, filter_label="odd") + self.assertTrue(all(id % 2 != 0 for id in ids_2)) + + finally: + shutil.rmtree(temp, ignore_errors=True) diff --git a/rust/Cargo.lock b/rust/Cargo.lock index 2e58e9322..3a8a25223 100644 --- a/rust/Cargo.lock +++ b/rust/Cargo.lock @@ -122,6 +122,12 @@ version = "1.3.2" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "bef38d45163c2f1dde094a7dfd33ccf595c92905c8f8f4fdc18d06fb1037718a" +[[package]] +name = "bitflags" +version = "2.4.1" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "327762f6e5a765692301e5bb513e0d9fef63be86bbc14528052b1cd3e6f03e07" + [[package]] name = "build_and_insert_delete_memory_index" version = "0.1.0" @@ -268,7 +274,7 @@ checksum = "9a78fbdd3cc2914ddf37ba444114bc7765bbdcb55ec9cbe6fa054f0137400717" dependencies = [ "anstream", "anstyle", - "bitflags", + "bitflags 1.3.2", "clap_lex", "strsim", ] @@ -870,11 +876,11 @@ dependencies = [ [[package]] name = "openssl" -version = "0.10.55" +version = "0.10.60" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "345df152bc43501c5eb9e4654ff05f794effb78d4efe3d53abc158baddc0703d" +checksum = "79a4c6c3a2b158f7f8f2a2fc5a969fa3a068df6fc9dbb4a43845436e3af7c800" dependencies = [ - "bitflags", + "bitflags 2.4.1", "cfg-if", "foreign-types", "libc", @@ -902,9 +908,9 @@ checksum = "ff011a302c396a5197692431fc1948019154afc178baf7d8e37367442a4601cf" [[package]] name = "openssl-sys" -version = "0.9.90" +version = "0.9.96" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "374533b0e45f3a7ced10fcaeccca020e66656bc03dac384f852e4e5a7a8104a6" +checksum = "3812c071ba60da8b5677cc12bcb1d42989a65553772897a7e0355545a819838f" dependencies = [ "cc", "libc", @@ -1116,7 +1122,7 @@ version = "0.2.16" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "fb5a58c1855b4b6819d59012155603f0b22ad30cad752600aadfcb695265519a" dependencies = [ - "bitflags", + "bitflags 1.3.2", ] [[package]] @@ -1125,7 +1131,7 @@ version = "0.3.5" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "567664f262709473930a4bf9e51bf2ebf3348f2e748ccc50dea20646858f8f29" dependencies = [ - "bitflags", + "bitflags 1.3.2", ] [[package]] @@ -1156,11 +1162,11 @@ checksum = "436b050e76ed2903236f032a59761c1eb99e1b0aead2c257922771dab1fc8c78" [[package]] name = "rustix" -version = "0.37.20" +version = "0.37.25" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "b96e891d04aa506a6d1f318d2771bcb1c7dfda84e126660ace067c9b474bb2c0" +checksum = "d4eb579851244c2c03e7c24f501c3432bed80b8f720af1d6e5b0e0f01555a035" dependencies = [ - "bitflags", + "bitflags 1.3.2", "errno", "io-lifetimes", "libc", @@ -1236,7 +1242,7 @@ version = "2.9.1" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "1fc758eb7bffce5b308734e9b0c1468893cae9ff70ebf13e7090be8dcbcc83a8" dependencies = [ - "bitflags", + "bitflags 1.3.2", "core-foundation", "core-foundation-sys", "libc", @@ -1613,7 +1619,7 @@ version = "0.1.2" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "e50d0fa665033a19ecefd281b4fb5481eba2972dedbb5ec129c9392a206d652f" dependencies = [ - "bitflags", + "bitflags 1.3.2", ] [[package]] @@ -1794,9 +1800,9 @@ dependencies = [ [[package]] name = "zerocopy" -version = "0.6.1" +version = "0.6.6" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "332f188cc1bcf1fe1064b8c58d150f497e697f49774aa846f2dc949d9a25f236" +checksum = "854e949ac82d619ee9a14c66a1b674ac730422372ccb759ce0c39cabcf2bf8e6" dependencies = [ "byteorder", "zerocopy-derive", @@ -1804,11 +1810,11 @@ dependencies = [ [[package]] name = "zerocopy-derive" -version = "0.3.2" +version = "0.6.6" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "6505e6815af7de1746a08f69c69606bb45695a17149517680f3b2149713b19a3" +checksum = "125139de3f6b9d625c39e2efdd73d41bdac468ccd556556440e322be0e1bbd91" dependencies = [ "proc-macro2", "quote", - "syn 1.0.109", + "syn 2.0.18", ] diff --git a/scripts/dev/install-dev-deps-ubuntu.bash b/scripts/dev/install-dev-deps-ubuntu.bash index 84f558ed6..09ad6ebb9 100755 --- a/scripts/dev/install-dev-deps-ubuntu.bash +++ b/scripts/dev/install-dev-deps-ubuntu.bash @@ -1,6 +1,6 @@ #!/bin/bash -apt install cmake \ +DEBIAN_FRONTEND=noninteractive apt install -y cmake \ g++ \ libaio-dev \ libgoogle-perftools-dev \ diff --git a/scripts/perf/Dockerfile b/scripts/perf/Dockerfile new file mode 100644 index 000000000..f900627ab --- /dev/null +++ b/scripts/perf/Dockerfile @@ -0,0 +1,31 @@ +#Copyright(c) Microsoft Corporation.All rights reserved. +#Licensed under the MIT license. + +FROM ubuntu:jammy + +# Can be provided at build to point to a specific commit-ish, by default builds from HEAD +ARG GIT_COMMIT_ISH=HEAD + +RUN apt update +RUN apt install -y software-properties-common +RUN add-apt-repository -y ppa:git-core/ppa +RUN apt update +RUN DEBIAN_FRONTEND=noninteractive apt install -y git time + +COPY dev/install-dev-deps-ubuntu.bash /app/fallback/install-dev-deps-ubuntu.bash +WORKDIR /app +RUN git clone https://github.com/microsoft/DiskANN.git +WORKDIR /app/DiskANN +RUN git checkout $GIT_COMMIT_ISH + +# we would prefer to use the deps requested at the same commit. if the script doesn't exist we'll use the current one. +RUN bash scripts/dev/install-dev-deps-ubuntu.bash || bash /app/fallback/install-dev-deps-ubuntu.bash + +RUN mkdir build +RUN cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DUNIT_TEST=True +RUN cmake --build build -- -j + +RUN mkdir /app/logs +COPY perf/perf_test.sh /app/DiskANN/perf_test.sh + +ENTRYPOINT bash perf_test.sh diff --git a/scripts/perf/README.md b/scripts/perf/README.md new file mode 100644 index 000000000..692eedca7 --- /dev/null +++ b/scripts/perf/README.md @@ -0,0 +1,20 @@ +#Performance Tests + +The bash scripts in this folder are responsible for running a suite of performance +tests. + +The timing and recall metrics reported by these tests when run periodically can then +be used to identify performance improvements or regressions as +development continues. + +## Usage + +`docker build` must be run with the context directory set to `scripts`, but the Dockerfile set to `scripts/perf/Dockerfile` as in: +```bash +docker build [--build-arg GIT_COMMIT_ISH=] -f scripts/perf/Dockerfile scripts +``` + +We prefer to install the dependencies from the commit-ish that we're building against, but as the deps were not stored +in a known file in all commits, we will fall back to the one currently in HEAD if one is not found already. + +The `--build-arg GIT_COMMIT_ISH=` is optional, with a default value of HEAD if not otherwise specified. diff --git a/scripts/perf/perf_test.sh b/scripts/perf/perf_test.sh new file mode 100644 index 000000000..a8d537f01 --- /dev/null +++ b/scripts/perf/perf_test.sh @@ -0,0 +1,40 @@ +#!/bin/bash + +function json_time { + command="$@" + echo "Executing $command" + /usr/bin/time --quiet -o /app/logs/time.log -a --format '{"command":"%C", "wallclock": %e, "user": %U, "sys": %S}' $command + ret=$? + if [ $ret -ne 0 ]; then + echo "{\"command\": \""$command"\", \"status_code\": $ret}" >> /app/logs/time.log + fi +} + +mkdir data +rm /app/logs/time.log +touch /app/logs/time.log +chmod 666 /app/logs/time.log + +if [ -d "build/apps" ]; then + export BASE_PATH="build/apps" +else + export BASE_PATH="build/tests" +fi + +json_time $BASE_PATH/utils/rand_data_gen --data_type float --output_file data/rand_float_768D_1M_norm1.0.bin -D 768 -N 1000000 --norm 1.0 +json_time $BASE_PATH/utils/rand_data_gen --data_type float --output_file data/rand_float_768D_10K_norm1.0.bin -D 768 -N 10000 --norm 1.0 + +json_time $BASE_PATH/utils/compute_groundtruth --data_type float --dist_fn l2 --base_file data/rand_float_768D_1M_norm1.0.bin --query_file data/rand_float_768D_10K_norm1.0.bin --gt_file data/l2_rand_float_768D_1M_norm1.0_768D_10K_norm1.0_gt100 --K 100 +json_time $BASE_PATH/utils/compute_groundtruth --data_type float --dist_fn mips --base_file data/rand_float_768D_1M_norm1.0.bin --query_file data/rand_float_768D_10K_norm1.0.bin --gt_file data/mips_rand_float_768D_1M_norm1.0_768D_10K_norm1.0_gt100 --K 100 +json_time $BASE_PATH/utils/compute_groundtruth --data_type float --dist_fn cosine --base_file data/rand_float_768D_1M_norm1.0.bin --query_file data/rand_float_768D_10K_norm1.0.bin --gt_file data/cosine_rand_float_768D_1M_norm1.0_768D_10K_norm1.0_gt100 --K 100 + +json_time $BASE_PATH/build_memory_index --data_type float --dist_fn l2 --data_path data/rand_float_768D_1M_norm1.0.bin --index_path_prefix data/index_l2_rand_float_768D_1M_norm1.0 +json_time $BASE_PATH/search_memory_index --data_type float --dist_fn l2 --index_path_prefix data/index_l2_rand_float_768D_1M_norm1.0 --query_file data/rand_float_768D_10K_norm1.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_float_768D_1M_norm1.0_768D_10K_norm1.0_gt100 -L 100 32 +json_time $BASE_PATH/search_memory_index --data_type float --dist_fn fast_l2 --index_path_prefix data/index_l2_rand_float_768D_1M_norm1.0 --query_file data/rand_float_768D_10K_norm1.0.bin --recall_at 10 --result_path temp --gt_file data/l2_rand_float_768D_1M_norm1.0_768D_10K_norm1.0_gt100 -L 100 32 + +json_time $BASE_PATH/build_memory_index --data_type float --dist_fn mips --data_path data/rand_float_768D_1M_norm1.0.bin --index_path_prefix data/index_mips_rand_float_768D_1M_norm1.0 +json_time $BASE_PATH/search_memory_index --data_type float --dist_fn mips --index_path_prefix data/index_l2_rand_float_768D_1M_norm1.0 --query_file data/rand_float_768D_10K_norm1.0.bin --recall_at 10 --result_path temp --gt_file data/mips_rand_float_768D_1M_norm1.0_768D_10K_norm1.0_gt100 -L 100 32 + +json_time $BASE_PATH/build_memory_index --data_type float --dist_fn cosine --data_path data/rand_float_768D_1M_norm1.0.bin --index_path_prefix data/index_cosine_rand_float_768D_1M_norm1.0 +json_time $BASE_PATH/search_memory_index --data_type float --dist_fn cosine --index_path_prefix data/index_l2_rand_float_768D_1M_norm1.0 --query_file data/rand_float_768D_10K_norm1.0.bin --recall_at 10 --result_path temp --gt_file data/cosine_rand_float_768D_1M_norm1.0_768D_10K_norm1.0_gt100 -L 100 32 + diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index 2206a01f7..cbca26440 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -13,7 +13,7 @@ else() linux_aligned_file_reader.cpp math_utils.cpp natural_number_map.cpp in_mem_data_store.cpp in_mem_graph_store.cpp natural_number_set.cpp memory_mapper.cpp partition.cpp pq.cpp - pq_flash_index.cpp scratch.cpp logger.cpp utils.cpp filter_utils.cpp index_factory.cpp abstract_index.cpp) + pq_flash_index.cpp scratch.cpp logger.cpp utils.cpp filter_utils.cpp index_factory.cpp abstract_index.cpp pq_l2_distance.cpp pq_data_store.cpp) if (RESTAPI) list(APPEND CPP_SOURCES restapi/search_wrapper.cpp restapi/server.cpp) endif() diff --git a/src/abstract_data_store.cpp b/src/abstract_data_store.cpp index a980bd545..0cff0152e 100644 --- a/src/abstract_data_store.cpp +++ b/src/abstract_data_store.cpp @@ -2,7 +2,6 @@ // Licensed under the MIT license. #include - #include "abstract_data_store.h" namespace diskann diff --git a/src/abstract_index.cpp b/src/abstract_index.cpp index 518f8b7dd..92665825f 100644 --- a/src/abstract_index.cpp +++ b/src/abstract_index.cpp @@ -6,12 +6,11 @@ namespace diskann { template -void AbstractIndex::build(const data_type *data, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const std::vector &tags) +void AbstractIndex::build(const data_type *data, const size_t num_points_to_load, const std::vector &tags) { auto any_data = std::any(data); auto any_tags_vec = TagVector(tags); - this->_build(any_data, num_points_to_load, parameters, any_tags_vec); + this->_build(any_data, num_points_to_load, any_tags_vec); } template @@ -25,12 +24,13 @@ std::pair AbstractIndex::search(const data_type *query, cons template size_t AbstractIndex::search_with_tags(const data_type *query, const uint64_t K, const uint32_t L, tag_type *tags, - float *distances, std::vector &res_vectors) + float *distances, std::vector &res_vectors, bool use_filters, + const std::string filter_label) { auto any_query = std::any(query); auto any_tags = std::any(tags); auto any_res_vectors = DataVector(res_vectors); - return this->_search_with_tags(any_query, K, L, any_tags, distances, any_res_vectors); + return this->_search_with_tags(any_query, K, L, any_tags, distances, any_res_vectors, use_filters, filter_label); } template @@ -57,6 +57,15 @@ int AbstractIndex::insert_point(const data_type *point, const tag_type tag) return this->_insert_point(any_point, any_tag); } +template +int AbstractIndex::insert_point(const data_type *point, const tag_type tag, const std::vector &labels) +{ + auto any_point = std::any(point); + auto any_tag = std::any(tag); + auto any_labels = Labelvector(labels); + return this->_insert_point(any_point, any_tag, any_labels); +} + template int AbstractIndex::lazy_delete(const tag_type &tag) { auto any_tag = std::any(tag); @@ -90,52 +99,46 @@ template int AbstractIndex::get_vector_b return this->_get_vector_by_tag(any_tag, any_data_ptr); } +template void AbstractIndex::set_universal_label(const label_type universal_label) +{ + auto any_label = std::any(universal_label); + this->_set_universal_label(any_label); +} + // exports template DISKANN_DLLEXPORT void AbstractIndex::build(const float *data, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const std::vector &tags); template DISKANN_DLLEXPORT void AbstractIndex::build(const int8_t *data, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const std::vector &tags); template DISKANN_DLLEXPORT void AbstractIndex::build(const uint8_t *data, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const std::vector &tags); template DISKANN_DLLEXPORT void AbstractIndex::build(const float *data, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const std::vector &tags); template DISKANN_DLLEXPORT void AbstractIndex::build(const int8_t *data, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const std::vector &tags); template DISKANN_DLLEXPORT void AbstractIndex::build(const uint8_t *data, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const std::vector &tags); template DISKANN_DLLEXPORT void AbstractIndex::build(const float *data, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const std::vector &tags); template DISKANN_DLLEXPORT void AbstractIndex::build(const int8_t *data, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const std::vector &tags); template DISKANN_DLLEXPORT void AbstractIndex::build(const uint8_t *data, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const std::vector &tags); template DISKANN_DLLEXPORT void AbstractIndex::build(const float *data, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const std::vector &tags); template DISKANN_DLLEXPORT void AbstractIndex::build(const int8_t *data, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const std::vector &tags); template DISKANN_DLLEXPORT void AbstractIndex::build(const uint8_t *data, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const std::vector &tags); template DISKANN_DLLEXPORT std::pair AbstractIndex::search( @@ -160,61 +163,53 @@ template DISKANN_DLLEXPORT std::pair AbstractIndex::search_w const DataType &query, const std::string &raw_label, const size_t K, const uint32_t L, uint64_t *indices, float *distances); -template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags(const float *query, const uint64_t K, - const uint32_t L, int32_t *tags, - float *distances, - std::vector &res_vectors); +template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags( + const float *query, const uint64_t K, const uint32_t L, int32_t *tags, float *distances, + std::vector &res_vectors, bool use_filters, const std::string filter_label); -template DISKANN_DLLEXPORT size_t -AbstractIndex::search_with_tags(const uint8_t *query, const uint64_t K, const uint32_t L, - int32_t *tags, float *distances, std::vector &res_vectors); +template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags( + const uint8_t *query, const uint64_t K, const uint32_t L, int32_t *tags, float *distances, + std::vector &res_vectors, bool use_filters, const std::string filter_label); -template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags(const int8_t *query, - const uint64_t K, const uint32_t L, - int32_t *tags, float *distances, - std::vector &res_vectors); +template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags( + const int8_t *query, const uint64_t K, const uint32_t L, int32_t *tags, float *distances, + std::vector &res_vectors, bool use_filters, const std::string filter_label); -template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags(const float *query, const uint64_t K, - const uint32_t L, uint32_t *tags, - float *distances, - std::vector &res_vectors); +template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags( + const float *query, const uint64_t K, const uint32_t L, uint32_t *tags, float *distances, + std::vector &res_vectors, bool use_filters, const std::string filter_label); template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags( const uint8_t *query, const uint64_t K, const uint32_t L, uint32_t *tags, float *distances, - std::vector &res_vectors); + std::vector &res_vectors, bool use_filters, const std::string filter_label); -template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags(const int8_t *query, - const uint64_t K, const uint32_t L, - uint32_t *tags, float *distances, - std::vector &res_vectors); +template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags( + const int8_t *query, const uint64_t K, const uint32_t L, uint32_t *tags, float *distances, + std::vector &res_vectors, bool use_filters, const std::string filter_label); -template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags(const float *query, const uint64_t K, - const uint32_t L, int64_t *tags, - float *distances, - std::vector &res_vectors); +template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags( + const float *query, const uint64_t K, const uint32_t L, int64_t *tags, float *distances, + std::vector &res_vectors, bool use_filters, const std::string filter_label); -template DISKANN_DLLEXPORT size_t -AbstractIndex::search_with_tags(const uint8_t *query, const uint64_t K, const uint32_t L, - int64_t *tags, float *distances, std::vector &res_vectors); +template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags( + const uint8_t *query, const uint64_t K, const uint32_t L, int64_t *tags, float *distances, + std::vector &res_vectors, bool use_filters, const std::string filter_label); -template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags(const int8_t *query, - const uint64_t K, const uint32_t L, - int64_t *tags, float *distances, - std::vector &res_vectors); +template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags( + const int8_t *query, const uint64_t K, const uint32_t L, int64_t *tags, float *distances, + std::vector &res_vectors, bool use_filters, const std::string filter_label); -template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags(const float *query, const uint64_t K, - const uint32_t L, uint64_t *tags, - float *distances, - std::vector &res_vectors); +template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags( + const float *query, const uint64_t K, const uint32_t L, uint64_t *tags, float *distances, + std::vector &res_vectors, bool use_filters, const std::string filter_label); template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags( const uint8_t *query, const uint64_t K, const uint32_t L, uint64_t *tags, float *distances, - std::vector &res_vectors); + std::vector &res_vectors, bool use_filters, const std::string filter_label); -template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags(const int8_t *query, - const uint64_t K, const uint32_t L, - uint64_t *tags, float *distances, - std::vector &res_vectors); +template DISKANN_DLLEXPORT size_t AbstractIndex::search_with_tags( + const int8_t *query, const uint64_t K, const uint32_t L, uint64_t *tags, float *distances, + std::vector &res_vectors, bool use_filters, const std::string filter_label); template DISKANN_DLLEXPORT void AbstractIndex::search_with_optimized_layout(const float *query, size_t K, size_t L, uint32_t *indices); @@ -239,6 +234,62 @@ template DISKANN_DLLEXPORT int AbstractIndex::insert_point(cons template DISKANN_DLLEXPORT int AbstractIndex::insert_point(const uint8_t *point, const uint64_t tag); template DISKANN_DLLEXPORT int AbstractIndex::insert_point(const int8_t *point, const uint64_t tag); +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const float *point, const int32_t tag, const std::vector &labels); +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const uint8_t *point, const int32_t tag, const std::vector &labels); +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const int8_t *point, const int32_t tag, const std::vector &labels); + +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const float *point, const uint32_t tag, const std::vector &labels); +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const uint8_t *point, const uint32_t tag, const std::vector &labels); +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const int8_t *point, const uint32_t tag, const std::vector &labels); + +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const float *point, const int64_t tag, const std::vector &labels); +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const uint8_t *point, const int64_t tag, const std::vector &labels); +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const int8_t *point, const int64_t tag, const std::vector &labels); + +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const float *point, const uint64_t tag, const std::vector &labels); +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const uint8_t *point, const uint64_t tag, const std::vector &labels); +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const int8_t *point, const uint64_t tag, const std::vector &labels); + +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const float *point, const int32_t tag, const std::vector &labels); +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const uint8_t *point, const int32_t tag, const std::vector &labels); +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const int8_t *point, const int32_t tag, const std::vector &labels); + +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const float *point, const uint32_t tag, const std::vector &labels); +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const uint8_t *point, const uint32_t tag, const std::vector &labels); +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const int8_t *point, const uint32_t tag, const std::vector &labels); + +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const float *point, const int64_t tag, const std::vector &labels); +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const uint8_t *point, const int64_t tag, const std::vector &labels); +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const int8_t *point, const int64_t tag, const std::vector &labels); + +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const float *point, const uint64_t tag, const std::vector &labels); +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const uint8_t *point, const uint64_t tag, const std::vector &labels); +template DISKANN_DLLEXPORT int AbstractIndex::insert_point( + const int8_t *point, const uint64_t tag, const std::vector &labels); + template DISKANN_DLLEXPORT int AbstractIndex::lazy_delete(const int32_t &tag); template DISKANN_DLLEXPORT int AbstractIndex::lazy_delete(const uint32_t &tag); template DISKANN_DLLEXPORT int AbstractIndex::lazy_delete(const int64_t &tag); @@ -277,4 +328,7 @@ template DISKANN_DLLEXPORT int AbstractIndex::get_vector_by_tag template DISKANN_DLLEXPORT int AbstractIndex::get_vector_by_tag(uint64_t &tag, uint8_t *vec); template DISKANN_DLLEXPORT int AbstractIndex::get_vector_by_tag(uint64_t &tag, int8_t *vec); +template DISKANN_DLLEXPORT void AbstractIndex::set_universal_label(const uint16_t label); +template DISKANN_DLLEXPORT void AbstractIndex::set_universal_label(const uint32_t label); + } // namespace diskann diff --git a/src/disk_utils.cpp b/src/disk_utils.cpp index 08adb186c..faa9e7623 100644 --- a/src/disk_utils.cpp +++ b/src/disk_utils.cpp @@ -3,7 +3,7 @@ #include "common_includes.h" -#if defined(RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS) && defined(DISKANN_BUILD) +#if defined(DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS) && defined(DISKANN_BUILD) #include "gperftools/malloc_extension.h" #endif @@ -559,7 +559,21 @@ void breakup_dense_points(const std::string data_file, const std::string labels_ if (dummy_pt_ids.size() != 0) { diskann::cout << dummy_pt_ids.size() << " is the number of dummy points created" << std::endl; - data = (T *)std::realloc((void *)data, labels_per_point.size() * ndims * sizeof(T)); + + T *ptr = (T *)std::realloc((void *)data, labels_per_point.size() * ndims * sizeof(T)); + if (ptr == nullptr) + { + diskann::cerr << "Realloc failed while creating dummy points" << std::endl; + free(data); + data = nullptr; + throw new diskann::ANNException("Realloc failed while expanding data.", -1, __FUNCTION__, __FILE__, + __LINE__); + } + else + { + data = ptr; + } + std::ofstream dummy_writer(out_metadata_file); assert(dummy_writer.is_open()); for (auto i = dummy_pt_ids.begin(); i != dummy_pt_ids.end(); i++) @@ -635,10 +649,12 @@ int build_merged_vamana_index(std::string base_file, diskann::Metric compareMetr .with_num_threads(num_threads) .build(); using TagT = uint32_t; - diskann::Index _index(compareMetric, base_dim, base_num, false, false, false, - build_pq_bytes > 0, build_pq_bytes, use_opq); + diskann::Index _index(compareMetric, base_dim, base_num, + std::make_shared(paras), nullptr, + defaults::NUM_FROZEN_POINTS_STATIC, false, false, false, + build_pq_bytes > 0, build_pq_bytes, use_opq, use_filters); if (!use_filters) - _index.build(base_file.c_str(), base_num, paras); + _index.build(base_file.c_str(), base_num); else { if (universal_label != "") @@ -646,7 +662,7 @@ int build_merged_vamana_index(std::string base_file, diskann::Metric compareMetr // LabelT unv_label_as_num = 0; _index.set_universal_label(universal_label_num); } - _index.build_filtered_index(base_file.c_str(), label_file, base_num, paras); + _index.build_filtered_index(base_file.c_str(), label_file, base_num); } _index.save(mem_index_path.c_str()); @@ -673,7 +689,7 @@ int build_merged_vamana_index(std::string base_file, diskann::Metric compareMetr Timer timer; int num_parts = partition_with_ram_budget(base_file, sampling_rate, ram_budget, 2 * R / 3, merged_index_prefix, 2); - diskann::cout << timer.elapsed_seconds_for_step("partitioning data") << std::endl; + diskann::cout << timer.elapsed_seconds_for_step("partitioning data ") << std::endl; std::string cur_centroid_filepath = merged_index_prefix + "_centroids.bin"; std::rename(cur_centroid_filepath.c_str(), centroids_file.c_str()); @@ -681,6 +697,10 @@ int build_merged_vamana_index(std::string base_file, diskann::Metric compareMetr timer.reset(); for (int p = 0; p < num_parts; p++) { +#if defined(DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS) && defined(DISKANN_BUILD) + MallocExtension::instance()->ReleaseFreeMemory(); +#endif + std::string shard_base_file = merged_index_prefix + "_subshard-" + std::to_string(p) + ".bin"; std::string shard_ids_file = merged_index_prefix + "_subshard-" + std::to_string(p) + "_ids_uint32.bin"; @@ -691,16 +711,22 @@ int build_merged_vamana_index(std::string base_file, diskann::Metric compareMetr std::string shard_index_file = merged_index_prefix + "_subshard-" + std::to_string(p) + "_mem.index"; - diskann::IndexWriteParameters paras = - diskann::IndexWriteParametersBuilder(L, (2 * R / 3)).with_filter_list_size(Lf).build(); + diskann::IndexWriteParameters low_degree_params = diskann::IndexWriteParametersBuilder(L, 2 * R / 3) + .with_filter_list_size(Lf) + .with_saturate_graph(false) + .with_num_threads(num_threads) + .build(); uint64_t shard_base_dim, shard_base_pts; get_bin_metadata(shard_base_file, shard_base_pts, shard_base_dim); - diskann::Index _index(compareMetric, shard_base_dim, shard_base_pts, false, false, false, build_pq_bytes > 0, + + diskann::Index _index(compareMetric, shard_base_dim, shard_base_pts, + std::make_shared(low_degree_params), nullptr, + defaults::NUM_FROZEN_POINTS_STATIC, false, false, false, build_pq_bytes > 0, build_pq_bytes, use_opq); if (!use_filters) { - _index.build(shard_base_file.c_str(), shard_base_pts, paras); + _index.build(shard_base_file.c_str(), shard_base_pts); } else { @@ -710,7 +736,7 @@ int build_merged_vamana_index(std::string base_file, diskann::Metric compareMetr // LabelT unv_label_as_num = 0; _index.set_universal_label(universal_label_num); } - _index.build_filtered_index(shard_base_file.c_str(), shard_labels_file, shard_base_pts, paras); + _index.build_filtered_index(shard_base_file.c_str(), shard_labels_file, shard_base_pts); } _index.save(shard_index_file.c_str()); // copy universal label file from first shard to the final destination @@ -895,29 +921,31 @@ void create_disk_layout(const std::string base_file, const std::string mem_index if (vamana_frozen_num == 1) vamana_frozen_loc = medoid; max_node_len = (((uint64_t)width_u32 + 1) * sizeof(uint32_t)) + (ndims_64 * sizeof(T)); - nnodes_per_sector = SECTOR_LEN / max_node_len; + nnodes_per_sector = defaults::SECTOR_LEN / max_node_len; // 0 if max_node_len > SECTOR_LEN diskann::cout << "medoid: " << medoid << "B" << std::endl; diskann::cout << "max_node_len: " << max_node_len << "B" << std::endl; diskann::cout << "nnodes_per_sector: " << nnodes_per_sector << "B" << std::endl; - // SECTOR_LEN buffer for each sector - std::unique_ptr sector_buf = std::make_unique(SECTOR_LEN); + // defaults::SECTOR_LEN buffer for each sector + std::unique_ptr sector_buf = std::make_unique(defaults::SECTOR_LEN); + std::unique_ptr multisector_buf = std::make_unique(ROUND_UP(max_node_len, defaults::SECTOR_LEN)); std::unique_ptr node_buf = std::make_unique(max_node_len); uint32_t &nnbrs = *(uint32_t *)(node_buf.get() + ndims_64 * sizeof(T)); uint32_t *nhood_buf = (uint32_t *)(node_buf.get() + (ndims_64 * sizeof(T)) + sizeof(uint32_t)); // number of sectors (1 for meta data) - uint64_t n_sectors = ROUND_UP(npts_64, nnodes_per_sector) / nnodes_per_sector; + uint64_t n_sectors = nnodes_per_sector > 0 ? ROUND_UP(npts_64, nnodes_per_sector) / nnodes_per_sector + : npts_64 * DIV_ROUND_UP(max_node_len, defaults::SECTOR_LEN); uint64_t n_reorder_sectors = 0; uint64_t n_data_nodes_per_sector = 0; if (append_reorder_data) { - n_data_nodes_per_sector = SECTOR_LEN / (ndims_reorder_file * sizeof(float)); + n_data_nodes_per_sector = defaults::SECTOR_LEN / (ndims_reorder_file * sizeof(float)); n_reorder_sectors = ROUND_UP(npts_64, n_data_nodes_per_sector) / n_data_nodes_per_sector; } - uint64_t disk_index_file_size = (n_sectors + n_reorder_sectors + 1) * SECTOR_LEN; + uint64_t disk_index_file_size = (n_sectors + n_reorder_sectors + 1) * defaults::SECTOR_LEN; std::vector output_file_meta; output_file_meta.push_back(npts_64); @@ -936,20 +964,73 @@ void create_disk_layout(const std::string base_file, const std::string mem_index } output_file_meta.push_back(disk_index_file_size); - diskann_writer.write(sector_buf.get(), SECTOR_LEN); + diskann_writer.write(sector_buf.get(), defaults::SECTOR_LEN); std::unique_ptr cur_node_coords = std::make_unique(ndims_64); diskann::cout << "# sectors: " << n_sectors << std::endl; uint64_t cur_node_id = 0; - for (uint64_t sector = 0; sector < n_sectors; sector++) - { - if (sector % 100000 == 0) + + if (nnodes_per_sector > 0) + { // Write multiple nodes per sector + for (uint64_t sector = 0; sector < n_sectors; sector++) { - diskann::cout << "Sector #" << sector << "written" << std::endl; + if (sector % 100000 == 0) + { + diskann::cout << "Sector #" << sector << "written" << std::endl; + } + memset(sector_buf.get(), 0, defaults::SECTOR_LEN); + for (uint64_t sector_node_id = 0; sector_node_id < nnodes_per_sector && cur_node_id < npts_64; + sector_node_id++) + { + memset(node_buf.get(), 0, max_node_len); + // read cur node's nnbrs + vamana_reader.read((char *)&nnbrs, sizeof(uint32_t)); + + // sanity checks on nnbrs + assert(nnbrs > 0); + assert(nnbrs <= width_u32); + + // read node's nhood + vamana_reader.read((char *)nhood_buf, (std::min)(nnbrs, width_u32) * sizeof(uint32_t)); + if (nnbrs > width_u32) + { + vamana_reader.seekg((nnbrs - width_u32) * sizeof(uint32_t), vamana_reader.cur); + } + + // write coords of node first + // T *node_coords = data + ((uint64_t) ndims_64 * cur_node_id); + base_reader.read((char *)cur_node_coords.get(), sizeof(T) * ndims_64); + memcpy(node_buf.get(), cur_node_coords.get(), ndims_64 * sizeof(T)); + + // write nnbrs + *(uint32_t *)(node_buf.get() + ndims_64 * sizeof(T)) = (std::min)(nnbrs, width_u32); + + // write nhood next + memcpy(node_buf.get() + ndims_64 * sizeof(T) + sizeof(uint32_t), nhood_buf, + (std::min)(nnbrs, width_u32) * sizeof(uint32_t)); + + // get offset into sector_buf + char *sector_node_buf = sector_buf.get() + (sector_node_id * max_node_len); + + // copy node buf into sector_node_buf + memcpy(sector_node_buf, node_buf.get(), max_node_len); + cur_node_id++; + } + // flush sector to disk + diskann_writer.write(sector_buf.get(), defaults::SECTOR_LEN); } - memset(sector_buf.get(), 0, SECTOR_LEN); - for (uint64_t sector_node_id = 0; sector_node_id < nnodes_per_sector && cur_node_id < npts_64; sector_node_id++) + } + else + { // Write multi-sector nodes + uint64_t nsectors_per_node = DIV_ROUND_UP(max_node_len, defaults::SECTOR_LEN); + for (uint64_t i = 0; i < npts_64; i++) { + if ((i * nsectors_per_node) % 100000 == 0) + { + diskann::cout << "Sector #" << i * nsectors_per_node << "written" << std::endl; + } + memset(multisector_buf.get(), 0, nsectors_per_node * defaults::SECTOR_LEN); + memset(node_buf.get(), 0, max_node_len); // read cur node's nnbrs vamana_reader.read((char *)&nnbrs, sizeof(uint32_t)); @@ -968,25 +1049,20 @@ void create_disk_layout(const std::string base_file, const std::string mem_index // write coords of node first // T *node_coords = data + ((uint64_t) ndims_64 * cur_node_id); base_reader.read((char *)cur_node_coords.get(), sizeof(T) * ndims_64); - memcpy(node_buf.get(), cur_node_coords.get(), ndims_64 * sizeof(T)); + memcpy(multisector_buf.get(), cur_node_coords.get(), ndims_64 * sizeof(T)); // write nnbrs - *(uint32_t *)(node_buf.get() + ndims_64 * sizeof(T)) = (std::min)(nnbrs, width_u32); + *(uint32_t *)(multisector_buf.get() + ndims_64 * sizeof(T)) = (std::min)(nnbrs, width_u32); // write nhood next - memcpy(node_buf.get() + ndims_64 * sizeof(T) + sizeof(uint32_t), nhood_buf, + memcpy(multisector_buf.get() + ndims_64 * sizeof(T) + sizeof(uint32_t), nhood_buf, (std::min)(nnbrs, width_u32) * sizeof(uint32_t)); - // get offset into sector_buf - char *sector_node_buf = sector_buf.get() + (sector_node_id * max_node_len); - - // copy node buf into sector_node_buf - memcpy(sector_node_buf, node_buf.get(), max_node_len); - cur_node_id++; + // flush sector to disk + diskann_writer.write(multisector_buf.get(), nsectors_per_node * defaults::SECTOR_LEN); } - // flush sector to disk - diskann_writer.write(sector_buf.get(), SECTOR_LEN); } + if (append_reorder_data) { diskann::cout << "Index written. Appending reorder data..." << std::endl; @@ -1001,7 +1077,7 @@ void create_disk_layout(const std::string base_file, const std::string mem_index diskann::cout << "Reorder data Sector #" << sector << "written" << std::endl; } - memset(sector_buf.get(), 0, SECTOR_LEN); + memset(sector_buf.get(), 0, defaults::SECTOR_LEN); for (uint64_t sector_node_id = 0; sector_node_id < n_data_nodes_per_sector && sector_node_id < npts_64; sector_node_id++) @@ -1013,7 +1089,7 @@ void create_disk_layout(const std::string base_file, const std::string mem_index memcpy(sector_buf.get() + (sector_node_id * vec_len), vec_buf.get(), vec_len); } // flush sector to disk - diskann_writer.write(sector_buf.get(), SECTOR_LEN); + diskann_writer.write(sector_buf.get(), defaults::SECTOR_LEN); } } diskann_writer.close(); @@ -1053,11 +1129,12 @@ int build_disk_index(const char *dataFilePath, const char *indexFilePath, const return -1; } - if (!std::is_same::value && compareMetric == diskann::Metric::INNER_PRODUCT) + if (!std::is_same::value && + (compareMetric == diskann::Metric::INNER_PRODUCT || compareMetric == diskann::Metric::COSINE)) { std::stringstream stream; - stream << "DiskANN currently only supports floating point data for Max " - "Inner Product Search. " + stream << "Disk-index build currently only supports floating point data for Max " + "Inner Product Search/ cosine similarity. " << std::endl; throw diskann::ANNException(stream.str(), -1); } @@ -1119,6 +1196,10 @@ int build_disk_index(const char *dataFilePath, const char *indexFilePath, const std::string disk_pq_pivots_path = index_prefix_path + "_disk.index_pq_pivots.bin"; // optional, used if disk index must store pq data std::string disk_pq_compressed_vectors_path = index_prefix_path + "_disk.index_pq_compressed.bin"; + std::string prepped_base = + index_prefix_path + + "_prepped_base.bin"; // temp file for storing pre-processed base file for cosine/ mips metrics + bool created_temp_file_for_processed_data = false; // output a new base file which contains extra dimension with sqrt(1 - // ||x||^2/M^2) for every x, M is max norm of all points. Extra space on @@ -1129,14 +1210,26 @@ int build_disk_index(const char *dataFilePath, const char *indexFilePath, const std::cout << "Using Inner Product search, so need to pre-process base " "data into temp file. Please ensure there is additional " "(n*(d+1)*4) bytes for storing pre-processed base vectors, " - "apart from the intermin indices and final index." + "apart from the interim indices created by DiskANN and the final index." << std::endl; - std::string prepped_base = index_prefix_path + "_prepped_base.bin"; data_file_to_use = prepped_base; float max_norm_of_base = diskann::prepare_base_for_inner_products(base_file, prepped_base); std::string norm_file = disk_index_path + "_max_base_norm.bin"; diskann::save_bin(norm_file, &max_norm_of_base, 1, 1); diskann::cout << timer.elapsed_seconds_for_step("preprocessing data for inner product") << std::endl; + created_temp_file_for_processed_data = true; + } + else if (compareMetric == diskann::Metric::COSINE) + { + Timer timer; + std::cout << "Normalizing data for cosine to temporary file, please ensure there is additional " + "(n*d*4) bytes for storing normalized base vectors, " + "apart from the interim indices created by DiskANN and the final index." + << std::endl; + data_file_to_use = prepped_base; + diskann::normalize_data_file(base_file, prepped_base); + diskann::cout << timer.elapsed_seconds_for_step("preprocessing data for cosine") << std::endl; + created_temp_file_for_processed_data = true; } uint32_t R = (uint32_t)atoi(param_list[0].c_str()); @@ -1226,10 +1319,10 @@ int build_disk_index(const char *dataFilePath, const char *indexFilePath, const // Gopal. Splitting diskann_dll into separate DLLs for search and build. // This code should only be available in the "build" DLL. -#if defined(RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS) && defined(DISKANN_BUILD) +#if defined(DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS) && defined(DISKANN_BUILD) MallocExtension::instance()->ReleaseFreeMemory(); #endif - + // Whether it is cosine or inner product, we still L2 metric due to the pre-processing. timer.reset(); diskann::build_merged_vamana_index(data_file_to_use.c_str(), diskann::Metric::L2, L, R, p_val, indexing_ram_budget, mem_index_path, medoids_path, centroids_path, @@ -1270,7 +1363,8 @@ int build_disk_index(const char *dataFilePath, const char *indexFilePath, const std::remove(augmented_labels_file.c_str()); std::remove(labels_file_to_use.c_str()); } - + if (created_temp_file_for_processed_data) + std::remove(prepped_base.c_str()); std::remove(mem_index_path.c_str()); if (use_disk_pq) std::remove(disk_pq_compressed_vectors_path.c_str()); diff --git a/src/distance.cpp b/src/distance.cpp index 31ab9d3ff..c2f88c85b 100644 --- a/src/distance.cpp +++ b/src/distance.cpp @@ -61,10 +61,6 @@ template size_t Distance::get_required_alignment() const return _alignment_factor; } -template Distance::~Distance() -{ -} - // // Cosine distance functions. // @@ -730,4 +726,8 @@ template DISKANN_DLLEXPORT class SlowDistanceL2; template DISKANN_DLLEXPORT class SlowDistanceL2; template DISKANN_DLLEXPORT class SlowDistanceL2; +template DISKANN_DLLEXPORT Distance *get_distance_function(Metric m); +template DISKANN_DLLEXPORT Distance *get_distance_function(Metric m); +template DISKANN_DLLEXPORT Distance *get_distance_function(Metric m); + } // namespace diskann diff --git a/src/dll/CMakeLists.txt b/src/dll/CMakeLists.txt index d00cfeb95..096d1b76e 100644 --- a/src/dll/CMakeLists.txt +++ b/src/dll/CMakeLists.txt @@ -2,14 +2,17 @@ #Licensed under the MIT license. add_library(${PROJECT_NAME} SHARED dllmain.cpp ../abstract_data_store.cpp ../partition.cpp ../pq.cpp ../pq_flash_index.cpp ../logger.cpp ../utils.cpp - ../windows_aligned_file_reader.cpp ../distance.cpp ../memory_mapper.cpp ../index.cpp - ../in_mem_data_store.cpp ../in_mem_graph_store.cpp ../math_utils.cpp ../disk_utils.cpp ../filter_utils.cpp + ../windows_aligned_file_reader.cpp ../distance.cpp ../pq_l2_distance.cpp ../memory_mapper.cpp ../index.cpp + ../in_mem_data_store.cpp ../pq_data_store.cpp ../in_mem_graph_store.cpp ../math_utils.cpp ../disk_utils.cpp ../filter_utils.cpp ../ann_exception.cpp ../natural_number_set.cpp ../natural_number_map.cpp ../scratch.cpp ../index_factory.cpp ../abstract_index.cpp) set(TARGET_DIR "$<$:${CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG}>$<$:${CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE}>") set(DISKANN_DLL_IMPLIB "${TARGET_DIR}/${PROJECT_NAME}.lib") +if (NOT PYBIND) + target_compile_definitions(${PROJECT_NAME} PRIVATE DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS DISKANN_BUILD) +endif() target_compile_definitions(${PROJECT_NAME} PRIVATE _USRDLL _WINDLL) target_compile_options(${PROJECT_NAME} PRIVATE /GL) target_include_directories(${PROJECT_NAME} PRIVATE ${DISKANN_MKL_INCLUDE_DIRECTORIES}) diff --git a/src/filter_utils.cpp b/src/filter_utils.cpp index 965762d1f..09d740e35 100644 --- a/src/filter_utils.cpp +++ b/src/filter_utils.cpp @@ -45,10 +45,13 @@ void generate_label_indices(path input_data_path, path final_index_path_prefix, size_t number_of_label_points, dimension; diskann::get_bin_metadata(curr_label_input_data_path, number_of_label_points, dimension); - diskann::Index index(diskann::Metric::L2, dimension, number_of_label_points, false, false); + + diskann::Index index(diskann::Metric::L2, dimension, number_of_label_points, + std::make_shared(label_index_build_parameters), nullptr, + 0, false, false, false, false, 0, false); auto index_build_timer = std::chrono::high_resolution_clock::now(); - index.build(curr_label_input_data_path.c_str(), number_of_label_points, label_index_build_parameters); + index.build(curr_label_input_data_path.c_str(), number_of_label_points); std::chrono::duration current_indexing_time = std::chrono::high_resolution_clock::now() - index_build_timer; @@ -258,6 +261,74 @@ parse_label_file_return_values parse_label_file(path label_data_path, std::strin return std::make_tuple(point_ids_to_labels, labels_to_number_of_points, all_labels); } +/* + * A templated function to parse a file of labels that are already represented + * as either uint16_t or uint32_t + * + * Returns two objects via std::tuple: + * 1. a vector of vectors of labels, where the outer vector is indexed by point id + * 2. a set of all labels + */ +template +std::tuple>, tsl::robin_set> parse_formatted_label_file(std::string label_file) +{ + std::vector> pts_to_labels; + tsl::robin_set labels; + + // Format of Label txt file: filters with comma separators + std::ifstream infile(label_file); + if (infile.fail()) + { + throw diskann::ANNException(std::string("Failed to open file ") + label_file, -1); + } + + std::string line, token; + uint32_t line_cnt = 0; + + while (std::getline(infile, line)) + { + line_cnt++; + } + pts_to_labels.resize(line_cnt, std::vector()); + + infile.clear(); + infile.seekg(0, std::ios::beg); + line_cnt = 0; + + while (std::getline(infile, line)) + { + std::istringstream iss(line); + std::vector lbls(0); + getline(iss, token, '\t'); + std::istringstream new_iss(token); + while (getline(new_iss, token, ',')) + { + token.erase(std::remove(token.begin(), token.end(), '\n'), token.end()); + token.erase(std::remove(token.begin(), token.end(), '\r'), token.end()); + LabelT token_as_num = static_cast(std::stoul(token)); + lbls.push_back(token_as_num); + labels.insert(token_as_num); + } + if (lbls.size() <= 0) + { + diskann::cout << "No label found"; + exit(-1); + } + std::sort(lbls.begin(), lbls.end()); + pts_to_labels[line_cnt] = lbls; + line_cnt++; + } + diskann::cout << "Identified " << labels.size() << " distinct label(s)" << std::endl; + + return std::make_tuple(pts_to_labels, labels); +} + +template DISKANN_DLLEXPORT std::tuple>, tsl::robin_set> +parse_formatted_label_file(path label_file); + +template DISKANN_DLLEXPORT std::tuple>, tsl::robin_set> +parse_formatted_label_file(path label_file); + template DISKANN_DLLEXPORT void generate_label_indices(path input_data_path, path final_index_path_prefix, label_set all_labels, uint32_t R, uint32_t L, float alpha, uint32_t num_threads); diff --git a/src/in_mem_data_store.cpp b/src/in_mem_data_store.cpp index f5f973917..28bb7ba4c 100644 --- a/src/in_mem_data_store.cpp +++ b/src/in_mem_data_store.cpp @@ -2,6 +2,7 @@ // Licensed under the MIT license. #include +#include "abstract_scratch.h" #include "in_mem_data_store.h" #include "utils.h" @@ -11,8 +12,8 @@ namespace diskann template InMemDataStore::InMemDataStore(const location_t num_points, const size_t dim, - std::shared_ptr> distance_fn) - : AbstractDataStore(num_points, dim), _distance_fn(distance_fn) + std::unique_ptr> distance_fn) + : AbstractDataStore(num_points, dim), _distance_fn(std::move(distance_fn)) { _aligned_dim = ROUND_UP(dim, _distance_fn->get_required_alignment()); alloc_aligned(((void **)&_data), this->_capacity * _aligned_dim * sizeof(data_t), 8 * sizeof(data_t)); @@ -157,6 +158,7 @@ void InMemDataStore::extract_data_to_bin(const std::string &filename, co template void InMemDataStore::get_vector(const location_t i, data_t *dest) const { + // REFACTOR TODO: Should we denormalize and return values? memcpy(dest, _data + i * _aligned_dim, this->_dim * sizeof(data_t)); } @@ -171,9 +173,26 @@ template void InMemDataStore::set_vector(const locatio } } -template void InMemDataStore::prefetch_vector(const location_t loc) +template void InMemDataStore::prefetch_vector(const location_t loc) const { - diskann::prefetch_vector((const char *)_data + _aligned_dim * (size_t)loc, sizeof(data_t) * _aligned_dim); + diskann::prefetch_vector((const char *)_data + _aligned_dim * (size_t)loc * sizeof(data_t), + sizeof(data_t) * _aligned_dim); +} + +template +void InMemDataStore::preprocess_query(const data_t *query, AbstractScratch *query_scratch) const +{ + if (query_scratch != nullptr) + { + memcpy(query_scratch->aligned_query_T(), query, sizeof(data_t) * this->get_dims()); + } + else + { + std::stringstream ss; + ss << "In InMemDataStore::preprocess_query: Query scratch is null"; + diskann::cerr << ss.str() << std::endl; + throw diskann::ANNException(ss.str(), -1); + } } template float InMemDataStore::get_distance(const data_t *query, const location_t loc) const @@ -183,10 +202,11 @@ template float InMemDataStore::get_distance(const data template void InMemDataStore::get_distance(const data_t *query, const location_t *locations, - const uint32_t location_count, float *distances) const + const uint32_t location_count, float *distances, + AbstractScratch *scratch_space) const { for (location_t i = 0; i < location_count; i++) - { + { distances[i] = _distance_fn->compare(query, _data + locations[i] * _aligned_dim, (uint32_t)this->_aligned_dim); } } @@ -198,6 +218,17 @@ float InMemDataStore::get_distance(const location_t loc1, const location (uint32_t)this->_aligned_dim); } +template +void InMemDataStore::get_distance(const data_t *preprocessed_query, const std::vector &ids, + std::vector &distances, AbstractScratch *scratch_space) const +{ + for (int i = 0; i < ids.size(); i++) + { + distances[i] = + _distance_fn->compare(preprocessed_query, _data + ids[i] * _aligned_dim, (uint32_t)this->_aligned_dim); + } +} + template location_t InMemDataStore::expand(const location_t new_size) { if (new_size == this->capacity()) @@ -358,7 +389,7 @@ template location_t InMemDataStore::calculate_medoid() return min_idx; } -template Distance *InMemDataStore::get_dist_fn() +template Distance *InMemDataStore::get_dist_fn() const { return this->_distance_fn.get(); } diff --git a/src/in_mem_graph_store.cpp b/src/in_mem_graph_store.cpp index e9bfd4e9e..c12b2514e 100644 --- a/src/in_mem_graph_store.cpp +++ b/src/in_mem_graph_store.cpp @@ -6,26 +6,237 @@ namespace diskann { +InMemGraphStore::InMemGraphStore(const size_t total_pts, const size_t reserve_graph_degree) + : AbstractGraphStore(total_pts, reserve_graph_degree) +{ + this->resize_graph(total_pts); + for (size_t i = 0; i < total_pts; i++) + { + _graph[i].reserve(reserve_graph_degree); + } +} + +std::tuple InMemGraphStore::load(const std::string &index_path_prefix, + const size_t num_points) +{ + return load_impl(index_path_prefix, num_points); +} +int InMemGraphStore::store(const std::string &index_path_prefix, const size_t num_points, + const size_t num_frozen_points, const uint32_t start) +{ + return save_graph(index_path_prefix, num_points, num_frozen_points, start); +} +const std::vector &InMemGraphStore::get_neighbours(const location_t i) const +{ + return _graph.at(i); +} + +void InMemGraphStore::add_neighbour(const location_t i, location_t neighbour_id) +{ + _graph[i].emplace_back(neighbour_id); + if (_max_observed_degree < _graph[i].size()) + { + _max_observed_degree = (uint32_t)(_graph[i].size()); + } +} + +void InMemGraphStore::clear_neighbours(const location_t i) +{ + _graph[i].clear(); +}; +void InMemGraphStore::swap_neighbours(const location_t a, location_t b) +{ + _graph[a].swap(_graph[b]); +}; + +void InMemGraphStore::set_neighbours(const location_t i, std::vector &neighbours) +{ + _graph[i].assign(neighbours.begin(), neighbours.end()); + if (_max_observed_degree < neighbours.size()) + { + _max_observed_degree = (uint32_t)(neighbours.size()); + } +} + +size_t InMemGraphStore::resize_graph(const size_t new_size) +{ + _graph.resize(new_size); + set_total_points(new_size); + return _graph.size(); +} -InMemGraphStore::InMemGraphStore(const size_t max_pts) : AbstractGraphStore(max_pts) +void InMemGraphStore::clear_graph() { + _graph.clear(); } -int InMemGraphStore::load(const std::string &index_path_prefix) +#ifdef EXEC_ENV_OLS +std::tuple InMemGraphStore::load_impl(AlignedFileReader &reader, size_t expected_num_points) { - return 0; + size_t expected_file_size; + size_t file_frozen_pts; + uint32_t start; + + auto max_points = get_max_points(); + int header_size = 2 * sizeof(size_t) + 2 * sizeof(uint32_t); + std::unique_ptr header = std::make_unique(header_size); + read_array(reader, header.get(), header_size); + + expected_file_size = *((size_t *)header.get()); + _max_observed_degree = *((uint32_t *)(header.get() + sizeof(size_t))); + start = *((uint32_t *)(header.get() + sizeof(size_t) + sizeof(uint32_t))); + file_frozen_pts = *((size_t *)(header.get() + sizeof(size_t) + sizeof(uint32_t) + sizeof(uint32_t))); + + diskann::cout << "From graph header, expected_file_size: " << expected_file_size + << ", _max_observed_degree: " << _max_observed_degree << ", _start: " << start + << ", file_frozen_pts: " << file_frozen_pts << std::endl; + + diskann::cout << "Loading vamana graph from reader..." << std::flush; + + // If user provides more points than max_points + // resize the _graph to the larger size. + if (get_total_points() < expected_num_points) + { + diskann::cout << "resizing graph to " << expected_num_points << std::endl; + this->resize_graph(expected_num_points); + } + + uint32_t nodes_read = 0; + size_t cc = 0; + size_t graph_offset = header_size; + while (nodes_read < expected_num_points) + { + uint32_t k; + read_value(reader, k, graph_offset); + graph_offset += sizeof(uint32_t); + std::vector tmp(k); + tmp.reserve(k); + read_array(reader, tmp.data(), k, graph_offset); + graph_offset += k * sizeof(uint32_t); + cc += k; + _graph[nodes_read].swap(tmp); + nodes_read++; + if (nodes_read % 1000000 == 0) + { + diskann::cout << "." << std::flush; + } + if (k > _max_range_of_graph) + { + _max_range_of_graph = k; + } + } + + diskann::cout << "done. Index has " << nodes_read << " nodes and " << cc << " out-edges, _start is set to " << start + << std::endl; + return std::make_tuple(nodes_read, start, file_frozen_pts); } -int InMemGraphStore::store(const std::string &index_path_prefix) +#endif + +std::tuple InMemGraphStore::load_impl(const std::string &filename, + size_t expected_num_points) { - return 0; + size_t expected_file_size; + size_t file_frozen_pts; + uint32_t start; + size_t file_offset = 0; // will need this for single file format support + + std::ifstream in; + in.exceptions(std::ios::badbit | std::ios::failbit); + in.open(filename, std::ios::binary); + in.seekg(file_offset, in.beg); + in.read((char *)&expected_file_size, sizeof(size_t)); + in.read((char *)&_max_observed_degree, sizeof(uint32_t)); + in.read((char *)&start, sizeof(uint32_t)); + in.read((char *)&file_frozen_pts, sizeof(size_t)); + size_t vamana_metadata_size = sizeof(size_t) + sizeof(uint32_t) + sizeof(uint32_t) + sizeof(size_t); + + diskann::cout << "From graph header, expected_file_size: " << expected_file_size + << ", _max_observed_degree: " << _max_observed_degree << ", _start: " << start + << ", file_frozen_pts: " << file_frozen_pts << std::endl; + + diskann::cout << "Loading vamana graph " << filename << "..." << std::flush; + + // If user provides more points than max_points + // resize the _graph to the larger size. + if (get_total_points() < expected_num_points) + { + diskann::cout << "resizing graph to " << expected_num_points << std::endl; + this->resize_graph(expected_num_points); + } + + size_t bytes_read = vamana_metadata_size; + size_t cc = 0; + uint32_t nodes_read = 0; + while (bytes_read != expected_file_size) + { + uint32_t k; + in.read((char *)&k, sizeof(uint32_t)); + + if (k == 0) + { + diskann::cerr << "ERROR: Point found with no out-neighbours, point#" << nodes_read << std::endl; + } + + cc += k; + ++nodes_read; + std::vector tmp(k); + tmp.reserve(k); + in.read((char *)tmp.data(), k * sizeof(uint32_t)); + _graph[nodes_read - 1].swap(tmp); + bytes_read += sizeof(uint32_t) * ((size_t)k + 1); + if (nodes_read % 10000000 == 0) + diskann::cout << "." << std::flush; + if (k > _max_range_of_graph) + { + _max_range_of_graph = k; + } + } + + diskann::cout << "done. Index has " << nodes_read << " nodes and " << cc << " out-edges, _start is set to " << start + << std::endl; + return std::make_tuple(nodes_read, start, file_frozen_pts); +} + +int InMemGraphStore::save_graph(const std::string &index_path_prefix, const size_t num_points, + const size_t num_frozen_points, const uint32_t start) +{ + std::ofstream out; + open_file_to_write(out, index_path_prefix); + + size_t file_offset = 0; + out.seekp(file_offset, out.beg); + size_t index_size = 24; + uint32_t max_degree = 0; + out.write((char *)&index_size, sizeof(uint64_t)); + out.write((char *)&_max_observed_degree, sizeof(uint32_t)); + uint32_t ep_u32 = start; + out.write((char *)&ep_u32, sizeof(uint32_t)); + out.write((char *)&num_frozen_points, sizeof(size_t)); + + // Note: num_points = _nd + _num_frozen_points + for (uint32_t i = 0; i < num_points; i++) + { + uint32_t GK = (uint32_t)_graph[i].size(); + out.write((char *)&GK, sizeof(uint32_t)); + out.write((char *)_graph[i].data(), GK * sizeof(uint32_t)); + max_degree = _graph[i].size() > max_degree ? (uint32_t)_graph[i].size() : max_degree; + index_size += (size_t)(sizeof(uint32_t) * (GK + 1)); + } + out.seekp(file_offset, out.beg); + out.write((char *)&index_size, sizeof(uint64_t)); + out.write((char *)&max_degree, sizeof(uint32_t)); + out.close(); + return (int)index_size; } -void InMemGraphStore::get_adj_list(const location_t i, std::vector &neighbors) +size_t InMemGraphStore::get_max_range_of_graph() { + return _max_range_of_graph; } -void InMemGraphStore::set_adj_list(const location_t i, std::vector &neighbors) +uint32_t InMemGraphStore::get_max_observed_degree() { + return _max_observed_degree; } } // namespace diskann diff --git a/src/index.cpp b/src/index.cpp index d76690c1b..3d4ae2619 100644 --- a/src/index.cpp +++ b/src/index.cpp @@ -1,24 +1,27 @@ // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT license. -#include #include #include -#include "tsl/robin_set.h" -#include "tsl/robin_map.h" -#include "boost/dynamic_bitset.hpp" +#include +#include "boost/dynamic_bitset.hpp" +#include "index_factory.h" #include "memory_mapper.h" #include "timer.h" +#include "tsl/robin_map.h" +#include "tsl/robin_set.h" #include "windows_customizations.h" -#if defined(RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS) && defined(DISKANN_BUILD) +#include "tag_uint128.h" +#if defined(DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS) && defined(DISKANN_BUILD) #include "gperftools/malloc_extension.h" #endif #ifdef _WINDOWS #include #endif + #include "index.h" #include @@ -29,59 +32,35 @@ namespace diskann // Initialize an index with metric m, load the data of type T with filename // (bin), and initialize max_points template -Index::Index(Metric m, const size_t dim, const size_t max_points, const bool dynamic_index, - const IndexWriteParameters &indexParams, const uint32_t initial_search_list_size, - const uint32_t search_threads, const bool enable_tags, const bool concurrent_consolidate, - const bool pq_dist_build, const size_t num_pq_chunks, const bool use_opq) - : Index(m, dim, max_points, dynamic_index, enable_tags, concurrent_consolidate, pq_dist_build, num_pq_chunks, - use_opq, indexParams.num_frozen_points) -{ - if (dynamic_index) - { - this->enable_delete(); - } - _indexingQueueSize = indexParams.search_list_size; - _indexingRange = indexParams.max_degree; - _indexingMaxC = indexParams.max_occlusion_size; - _indexingAlpha = indexParams.alpha; - _filterIndexingQueueSize = indexParams.filter_list_size; - - uint32_t num_threads_indx = indexParams.num_threads; - uint32_t num_scratch_spaces = search_threads + num_threads_indx; - - initialize_query_scratch(num_scratch_spaces, initial_search_list_size, _indexingQueueSize, _indexingRange, - _indexingMaxC, dim); -} - -template -Index::Index(Metric m, const size_t dim, const size_t max_points, const bool dynamic_index, - const bool enable_tags, const bool concurrent_consolidate, const bool pq_dist_build, - const size_t num_pq_chunks, const bool use_opq, const size_t num_frozen_pts, - const bool init_data_store) - : _dist_metric(m), _dim(dim), _max_points(max_points), _num_frozen_pts(num_frozen_pts), - _dynamic_index(dynamic_index), _enable_tags(enable_tags), _indexingMaxC(DEFAULT_MAXC), _query_scratch(nullptr), - _pq_dist(pq_dist_build), _use_opq(use_opq), _num_pq_chunks(num_pq_chunks), - _delete_set(new tsl::robin_set), _conc_consolidate(concurrent_consolidate) -{ - if (dynamic_index && !enable_tags) +Index::Index(const IndexConfig &index_config, std::shared_ptr> data_store, + std::unique_ptr graph_store, + std::shared_ptr> pq_data_store) + : _dist_metric(index_config.metric), _dim(index_config.dimension), _max_points(index_config.max_points), + _num_frozen_pts(index_config.num_frozen_pts), _dynamic_index(index_config.dynamic_index), + _enable_tags(index_config.enable_tags), _indexingMaxC(DEFAULT_MAXC), _query_scratch(nullptr), + _pq_dist(index_config.pq_dist_build), _use_opq(index_config.use_opq), + _filtered_index(index_config.filtered_index), _num_pq_chunks(index_config.num_pq_chunks), + _delete_set(new tsl::robin_set), _conc_consolidate(index_config.concurrent_consolidate) +{ + if (_dynamic_index && !_enable_tags) { throw ANNException("ERROR: Dynamic Indexing must have tags enabled.", -1, __FUNCSIG__, __FILE__, __LINE__); } if (_pq_dist) { - if (dynamic_index) + if (_dynamic_index) throw ANNException("ERROR: Dynamic Indexing not supported with PQ distance based " "index construction", -1, __FUNCSIG__, __FILE__, __LINE__); - if (m == diskann::Metric::INNER_PRODUCT) + if (_dist_metric == diskann::Metric::INNER_PRODUCT) throw ANNException("ERROR: Inner product metrics not yet supported " "with PQ distance " "base index", -1, __FUNCSIG__, __FILE__, __LINE__); } - if (dynamic_index && _num_frozen_pts == 0) + if (_dynamic_index && _num_frozen_pts == 0) { _num_frozen_pts = 1; } @@ -93,77 +72,90 @@ Index::Index(Metric m, const size_t dim, const size_t max_point } const size_t total_internal_points = _max_points + _num_frozen_pts; - if (_pq_dist) - { - if (_num_pq_chunks > _dim) - throw diskann::ANNException("ERROR: num_pq_chunks > dim", -1, __FUNCSIG__, __FILE__, __LINE__); - alloc_aligned(((void **)&_pq_data), total_internal_points * _num_pq_chunks * sizeof(char), 8 * sizeof(char)); - std::memset(_pq_data, 0, total_internal_points * _num_pq_chunks * sizeof(char)); - } - _start = (uint32_t)_max_points; - _final_graph.resize(total_internal_points); - - if (init_data_store) - { - // Issue #374: data_store is injected from index factory. Keeping this for backward compatibility. - // distance is owned by data_store - if (m == diskann::Metric::COSINE && std::is_floating_point::value) - { - // This is safe because T is float inside the if block. - this->_distance.reset((Distance *)new AVXNormalizedCosineDistanceFloat()); - this->_normalize_vecs = true; - diskann::cout << "Normalizing vectors and using L2 for cosine " - "AVXNormalizedCosineDistanceFloat()." - << std::endl; - } - else - { - this->_distance.reset((Distance *)get_distance_function(m)); - } - // Note: moved this to factory, keeping this for backward compatibility. - _data_store = - std::make_unique>((location_t)total_internal_points, _dim, this->_distance); - } + _data_store = data_store; + _pq_data_store = pq_data_store; + _graph_store = std::move(graph_store); _locks = std::vector(total_internal_points); - - if (enable_tags) + if (_enable_tags) { _location_to_tag.reserve(total_internal_points); _tag_to_location.reserve(total_internal_points); } -} - -template -Index::Index(const IndexConfig &index_config, std::unique_ptr> data_store) - : Index(index_config.metric, index_config.dimension, index_config.max_points, index_config.dynamic_index, - index_config.enable_tags, index_config.concurrent_consolidate, index_config.pq_dist_build, - index_config.num_pq_chunks, index_config.use_opq, index_config.num_frozen_pts, false) -{ - _data_store = std::move(data_store); - _distance.reset(_data_store->get_dist_fn()); - - // enable delete by default for dynamic index if (_dynamic_index) { - this->enable_delete(); + this->enable_delete(); // enable delete by default for dynamic index + if (_filtered_index) + { + _location_to_labels.resize(total_internal_points); + } } - if (_dynamic_index && index_config.index_write_params != nullptr) + + if (index_config.index_write_params != nullptr) { _indexingQueueSize = index_config.index_write_params->search_list_size; _indexingRange = index_config.index_write_params->max_degree; _indexingMaxC = index_config.index_write_params->max_occlusion_size; _indexingAlpha = index_config.index_write_params->alpha; _filterIndexingQueueSize = index_config.index_write_params->filter_list_size; + _indexingThreads = index_config.index_write_params->num_threads; + _saturate_graph = index_config.index_write_params->saturate_graph; - uint32_t num_threads_indx = index_config.index_write_params->num_threads; - uint32_t num_scratch_spaces = index_config.search_threads + num_threads_indx; + if (index_config.index_search_params != nullptr) + { + std::uint32_t default_queue_size = (std::max)(_indexingQueueSize, _filterIndexingQueueSize); + uint32_t num_scratch_spaces = index_config.index_search_params->num_search_threads + _indexingThreads; + initialize_query_scratch(num_scratch_spaces, index_config.index_search_params->initial_search_list_size, + default_queue_size, _indexingRange, _indexingMaxC, _data_store->get_dims()); + } + } +} - initialize_query_scratch(num_scratch_spaces, index_config.initial_search_list_size, _indexingQueueSize, - _indexingRange, _indexingMaxC, _data_store->get_dims()); +template +Index::Index(Metric m, const size_t dim, const size_t max_points, + const std::shared_ptr index_parameters, + const std::shared_ptr index_search_params, const size_t num_frozen_pts, + const bool dynamic_index, const bool enable_tags, const bool concurrent_consolidate, + const bool pq_dist_build, const size_t num_pq_chunks, const bool use_opq, + const bool filtered_index) + : Index( + IndexConfigBuilder() + .with_metric(m) + .with_dimension(dim) + .with_max_points(max_points) + .with_index_write_params(index_parameters) + .with_index_search_params(index_search_params) + .with_num_frozen_pts(num_frozen_pts) + .is_dynamic_index(dynamic_index) + .is_enable_tags(enable_tags) + .is_concurrent_consolidate(concurrent_consolidate) + .is_pq_dist_build(pq_dist_build) + .with_num_pq_chunks(num_pq_chunks) + .is_use_opq(use_opq) + .is_filtered(filtered_index) + .with_data_type(diskann_type_to_name()) + .build(), + IndexFactory::construct_datastore(DataStoreStrategy::MEMORY, + (max_points == 0 ? (size_t)1 : max_points) + + (dynamic_index && num_frozen_pts == 0 ? (size_t)1 : num_frozen_pts), + dim, m), + IndexFactory::construct_graphstore(GraphStoreStrategy::MEMORY, + (max_points == 0 ? (size_t)1 : max_points) + + (dynamic_index && num_frozen_pts == 0 ? (size_t)1 : num_frozen_pts), + (size_t)((index_parameters == nullptr ? 0 : index_parameters->max_degree) * + defaults::GRAPH_SLACK_FACTOR * 1.05))) +{ + if (_pq_dist) + { + _pq_data_store = IndexFactory::construct_pq_datastore(DataStoreStrategy::MEMORY, max_points + num_frozen_pts, + dim, m, num_pq_chunks, use_opq); + } + else + { + _pq_data_store = _data_store; } } @@ -180,13 +172,6 @@ template Index::~I LockGuard lg(lock); } - // if (this->_distance != nullptr) - //{ - // delete this->_distance; - // this->_distance = nullptr; - // } - // REFACTOR - if (_opt_graph != nullptr) { delete[] _opt_graph; @@ -218,6 +203,7 @@ template size_t Index size_t Index size_t Index::save_data(std::string data_file) { // Note: at this point, either _nd == _max_points or any frozen points have - // been temporarily moved to _nd, so _nd + _num_frozen_points is the valid + // been temporarily moved to _nd, so _nd + _num_frozen_pts is the valid // location limit. return _data_store->save(data_file, (location_t)(_nd + _num_frozen_pts)); } @@ -262,34 +248,7 @@ template size_t Index size_t Index::save_graph(std::string graph_file) { - std::ofstream out; - open_file_to_write(out, graph_file); - - size_t file_offset = 0; // we will use this if we want - out.seekp(file_offset, out.beg); - size_t index_size = 24; - uint32_t max_degree = 0; - out.write((char *)&index_size, sizeof(uint64_t)); - out.write((char *)&_max_observed_degree, sizeof(uint32_t)); - uint32_t ep_u32 = _start; - out.write((char *)&ep_u32, sizeof(uint32_t)); - out.write((char *)&_num_frozen_pts, sizeof(size_t)); - // Note: at this point, either _nd == _max_points or any frozen points have - // been temporarily moved to _nd, so _nd + _num_frozen_points is the valid - // location limit. - for (uint32_t i = 0; i < _nd + _num_frozen_pts; i++) - { - uint32_t GK = (uint32_t)_final_graph[i].size(); - out.write((char *)&GK, sizeof(uint32_t)); - out.write((char *)_final_graph[i].data(), GK * sizeof(uint32_t)); - max_degree = _final_graph[i].size() > max_degree ? (uint32_t)_final_graph[i].size() : max_degree; - index_size += (size_t)(sizeof(uint32_t) * (GK + 1)); - } - out.seekp(file_offset, out.beg); - out.write((char *)&index_size, sizeof(uint64_t)); - out.write((char *)&max_degree, sizeof(uint32_t)); - out.close(); - return index_size; // number of bytes written + return _graph_store->store(graph_file, _nd + _num_frozen_pts, _num_frozen_pts, _start); } template @@ -336,14 +295,14 @@ void Index::save(const char *filename, bool compact_before_save { if (_filtered_index) { - if (_label_to_medoid_id.size() > 0) + if (_label_to_start_id.size() > 0) { std::ofstream medoid_writer(std::string(filename) + "_labels_to_medoids.txt"); if (medoid_writer.fail()) { throw diskann::ANNException(std::string("Failed to open file ") + filename, -1); } - for (auto iter : _label_to_medoid_id) + for (auto iter : _label_to_start_id) { medoid_writer << iter.first << ", " << iter.second << std::endl; } @@ -358,21 +317,51 @@ void Index::save(const char *filename, bool compact_before_save universal_label_writer.close(); } - if (_pts_to_labels.size() > 0) + if (_location_to_labels.size() > 0) { std::ofstream label_writer(std::string(filename) + "_labels.txt"); assert(label_writer.is_open()); - for (uint32_t i = 0; i < _pts_to_labels.size(); i++) + for (uint32_t i = 0; i < _nd + _num_frozen_pts; i++) { - for (uint32_t j = 0; j < (_pts_to_labels[i].size() - 1); j++) + for (uint32_t j = 0; j + 1 < _location_to_labels[i].size(); j++) { - label_writer << _pts_to_labels[i][j] << ","; + label_writer << _location_to_labels[i][j] << ","; } - if (_pts_to_labels[i].size() != 0) - label_writer << _pts_to_labels[i][_pts_to_labels[i].size() - 1]; + if (_location_to_labels[i].size() != 0) + label_writer << _location_to_labels[i][_location_to_labels[i].size() - 1]; + label_writer << std::endl; } label_writer.close(); + + // write compacted raw_labels if data hence _location_to_labels was also compacted + if (compact_before_save && _dynamic_index) + { + _label_map = load_label_map(std::string(filename) + "_labels_map.txt"); + std::unordered_map mapped_to_raw_labels; + // invert label map + for (const auto &[key, value] : _label_map) + { + mapped_to_raw_labels.insert({value, key}); + } + + // write updated labels + std::ofstream raw_label_writer(std::string(filename) + "_raw_labels.txt"); + assert(raw_label_writer.is_open()); + for (uint32_t i = 0; i < _nd + _num_frozen_pts; i++) + { + for (uint32_t j = 0; j + 1 < _location_to_labels[i].size(); j++) + { + raw_label_writer << mapped_to_raw_labels[_location_to_labels[i][j]] << ","; + } + if (_location_to_labels[i].size() != 0) + raw_label_writer + << mapped_to_raw_labels[_location_to_labels[i][_location_to_labels[i].size() - 1]]; + + raw_label_writer << std::endl; + } + raw_label_writer.close(); + } } } @@ -505,7 +494,8 @@ size_t Index::load_data(std::string filename) } #ifdef EXEC_ENV_OLS - // REFACTOR TODO: Must figure out how to support aligned reader in a clean manner. + // REFACTOR TODO: Must figure out how to support aligned reader in a clean + // manner. copy_aligned_data_from_file(reader, _data, file_num_points, file_dim, _data_store->get_aligned_dim()); #else _data_store->load(filename); // offset == 0. @@ -556,12 +546,12 @@ void Index::load(const char *filename, uint32_t num_threads, ui _has_built = true; size_t tags_file_num_pts = 0, graph_num_pts = 0, data_file_num_pts = 0, label_num_pts = 0; -#ifndef EXEC_ENV_OLS + std::string mem_index_file(filename); std::string labels_file = mem_index_file + "_labels.txt"; std::string labels_to_medoids = mem_index_file + "_labels_to_medoids.txt"; std::string labels_map_file = mem_index_file + "_labels_map.txt"; -#endif + if (!_save_as_one_file) { // For DLVS Store, we will not support saving the index in multiple @@ -600,20 +590,19 @@ void Index::load(const char *filename, uint32_t num_threads, ui diskann::cerr << stream.str() << std::endl; throw diskann::ANNException(stream.str(), -1, __FUNCSIG__, __FILE__, __LINE__); } -#ifndef EXEC_ENV_OLS + if (file_exists(labels_file)) { _label_map = load_label_map(labels_map_file); parse_label_file_in_bitset(labels_file, label_num_pts, _label_map.size()); - - assert(label_num_pts == data_file_num_pts); + assert(label_num_pts == data_file_num_pts - _num_frozen_pts); if (file_exists(labels_to_medoids)) { std::ifstream medoid_stream(labels_to_medoids); std::string line, token; uint32_t line_cnt = 0; - _label_to_medoid_id.clear(); + _label_to_start_id.clear(); while (std::getline(medoid_stream, line)) { @@ -632,7 +621,7 @@ void Index::load(const char *filename, uint32_t num_threads, ui medoid = token_as_num; cnt++; } - _label_to_medoid_id[label] = medoid; + _label_to_start_id[label] = medoid; line_cnt++; } } @@ -647,7 +636,7 @@ void Index::load(const char *filename, uint32_t num_threads, ui universal_label_reader.close(); } } -#endif + _nd = data_file_num_pts - _num_frozen_pts; _empty_slots.clear(); _empty_slots.reserve(_max_points); @@ -668,7 +657,7 @@ void Index::load(const char *filename, uint32_t num_threads, ui // initialize_q_s(). if (_query_scratch.size() == 0) { - initialize_query_scratch(num_threads, search_l, search_l, (uint32_t)_max_range_of_loaded_graph, _indexingMaxC, + initialize_query_scratch(num_threads, search_l, search_l, (uint32_t)_graph_store->get_max_range_of_graph(), _indexingMaxC, _dim, _bitmask_buf._bitmask_size); } } @@ -704,131 +693,10 @@ template size_t Index::load_graph(std::string filename, size_t expected_num_points) { #endif - size_t expected_file_size; - size_t file_frozen_pts; - -#ifdef EXEC_ENV_OLS - int header_size = 2 * sizeof(size_t) + 2 * sizeof(uint32_t); - std::unique_ptr header = std::make_unique(header_size); - read_array(reader, header.get(), header_size); - - expected_file_size = *((size_t *)header.get()); - _max_observed_degree = *((uint32_t *)(header.get() + sizeof(size_t))); - _start = *((uint32_t *)(header.get() + sizeof(size_t) + sizeof(uint32_t))); - file_frozen_pts = *((size_t *)(header.get() + sizeof(size_t) + sizeof(uint32_t) + sizeof(uint32_t))); -#else - - size_t file_offset = 0; // will need this for single file format support - std::ifstream in; - in.exceptions(std::ios::badbit | std::ios::failbit); - in.open(filename, std::ios::binary); - in.seekg(file_offset, in.beg); - in.read((char *)&expected_file_size, sizeof(size_t)); - in.read((char *)&_max_observed_degree, sizeof(uint32_t)); - in.read((char *)&_start, sizeof(uint32_t)); - in.read((char *)&file_frozen_pts, sizeof(size_t)); - size_t vamana_metadata_size = sizeof(size_t) + sizeof(uint32_t) + sizeof(uint32_t) + sizeof(size_t); - -#endif - diskann::cout << "From graph header, expected_file_size: " << expected_file_size - << ", _max_observed_degree: " << _max_observed_degree << ", _start: " << _start - << ", file_frozen_pts: " << file_frozen_pts << std::endl; - - if (file_frozen_pts != _num_frozen_pts) - { - std::stringstream stream; - if (file_frozen_pts == 1) - { - stream << "ERROR: When loading index, detected dynamic index, but " - "constructor asks for static index. Exitting." - << std::endl; - } - else - { - stream << "ERROR: When loading index, detected static index, but " - "constructor asks for dynamic index. Exitting." - << std::endl; - } - diskann::cerr << stream.str() << std::endl; - throw diskann::ANNException(stream.str(), -1, __FUNCSIG__, __FILE__, __LINE__); - } - -#ifdef EXEC_ENV_OLS - diskann::cout << "Loading vamana graph from reader..." << std::flush; -#else - diskann::cout << "Loading vamana graph " << filename << "..." << std::flush; -#endif - - const size_t expected_max_points = expected_num_points - file_frozen_pts; - - // If user provides more points than max_points - // resize the _final_graph to the larger size. - if (_max_points < expected_max_points) - { - diskann::cout << "Number of points in data: " << expected_max_points - << " is greater than max_points: " << _max_points - << " Setting max points to: " << expected_max_points << std::endl; - _final_graph.resize(expected_max_points + _num_frozen_pts); - _max_points = expected_max_points; - } -#ifdef EXEC_ENV_OLS - uint32_t nodes_read = 0; - size_t cc = 0; - size_t graph_offset = header_size; - while (nodes_read < expected_num_points) - { - uint32_t k; - read_value(reader, k, graph_offset); - graph_offset += sizeof(uint32_t); - std::vector tmp(k); - tmp.reserve(k); - read_array(reader, tmp.data(), k, graph_offset); - graph_offset += k * sizeof(uint32_t); - cc += k; - _final_graph[nodes_read].swap(tmp); - nodes_read++; - if (nodes_read % 1000000 == 0) - { - diskann::cout << "." << std::flush; - } - if (k > _max_range_of_loaded_graph) - { - _max_range_of_loaded_graph = k; - } - } -#else - size_t bytes_read = vamana_metadata_size; - size_t cc = 0; - uint32_t nodes_read = 0; - while (bytes_read != expected_file_size) - { - uint32_t k; - in.read((char *)&k, sizeof(uint32_t)); - - if (k == 0) - { - diskann::cerr << "ERROR: Point found with no out-neighbors, point#" << nodes_read << std::endl; - } - - cc += k; - ++nodes_read; - std::vector tmp(k); - tmp.reserve(k); - in.read((char *)tmp.data(), k * sizeof(uint32_t)); - _final_graph[nodes_read - 1].swap(tmp); - bytes_read += sizeof(uint32_t) * ((size_t)k + 1); - if (nodes_read % 10000000 == 0) - diskann::cout << "." << std::flush; - if (k > _max_range_of_loaded_graph) - { - _max_range_of_loaded_graph = k; - } - } -#endif - - diskann::cout << "done. Index has " << nodes_read << " nodes and " << cc << " out-edges, _start is set to " - << _start << std::endl; - return nodes_read; + auto res = _graph_store->load(filename, expected_num_points); + _start = std::get<1>(res); + _num_frozen_pts = std::get<2>(res); + return std::get<0>(res); } template @@ -855,7 +723,7 @@ template int Index std::shared_lock lock(_tag_lock); if (_tag_to_location.find(tag) == _tag_to_location.end()) { - diskann::cout << "Tag " << tag << " does not exist" << std::endl; + diskann::cout << "Tag " << get_tag_string(tag) << " does not exist" << std::endl; return -1; } @@ -867,14 +735,7 @@ template int Index template uint32_t Index::calculate_entry_point() { - // TODO: need to compute medoid with PQ data too, for now sample at random - if (_pq_dist) - { - size_t r = (size_t)rand() * (size_t)RAND_MAX + (size_t)rand(); - return (uint32_t)(r % (size_t)_nd); - } - - // TODO: This function does not support multi-threaded calculation of medoid. + // REFACTOR TODO: This function does not support multi-threaded calculation of medoid. // Must revisit if perf is a concern. return _data_store->calculate_medoid(); } @@ -897,19 +758,20 @@ template std::vector Inde return init_ids; } -// Find common filter between a node's labels and a given set of labels, while taking into account universal label +// Find common filter between a node's labels and a given set of labels, while +// taking into account universal label template bool Index::detect_common_filters(uint32_t point_id, bool search_invocation, const std::vector &incoming_labels) { - auto &curr_node_labels = _pts_to_labels[point_id]; + auto &curr_node_labels = _location_to_labels[point_id]; std::vector common_filters; std::set_intersection(incoming_labels.begin(), incoming_labels.end(), curr_node_labels.begin(), curr_node_labels.end(), std::back_inserter(common_filters)); if (common_filters.size() > 0) { - // This is to reduce the repetitive calls. If common_filters size is > 0 , we dont need to check further for - // universal label + // This is to reduce the repetitive calls. If common_filters size is > 0 , + // we dont need to check further for universal label return true; } if (_use_universal_label) @@ -931,8 +793,8 @@ bool Index::detect_common_filters(uint32_t point_id, bool searc template std::pair Index::iterate_to_fixed_point( - const T *query, const uint32_t Lsize, const std::vector &init_ids, InMemQueryScratch *scratch, - bool use_filter, const std::vector &filter_label, bool search_invocation) + InMemQueryScratch *scratch, const uint32_t Lsize, const std::vector &init_ids, bool use_filter, + const std::vector &filter_labels, bool search_invocation) { std::vector &expanded_nodes = scratch->pool(); NeighborPriorityQueue &best_L_nodes = scratch->best_l_nodes(); @@ -943,42 +805,12 @@ std::pair Index::iterate_to_fixed_point( std::vector &dist_scratch = scratch->dist_scratch(); assert(id_scratch.size() == 0); - // REFACTOR - // T *aligned_query = scratch->aligned_query(); - // memcpy(aligned_query, query, _dim * sizeof(T)); - // if (_normalize_vecs) - //{ - // normalize((float *)aligned_query, _dim); - // } - T *aligned_query = scratch->aligned_query(); std::vector& query_bitmask_buf = scratch->query_label_bitmask(); - float *query_float = nullptr; - float *query_rotated = nullptr; - float *pq_dists = nullptr; - uint8_t *pq_coord_scratch = nullptr; - // Intialize PQ related scratch to use PQ based distances - if (_pq_dist) - { - // Get scratch spaces - PQScratch *pq_query_scratch = scratch->pq_scratch(); - query_float = pq_query_scratch->aligned_query_float; - query_rotated = pq_query_scratch->rotated_query; - pq_dists = pq_query_scratch->aligned_pqtable_dist_scratch; - - // Copy query vector to float and then to "rotated" query - for (size_t d = 0; d < _dim; d++) - { - query_float[d] = (float)aligned_query[d]; - } - pq_query_scratch->set(_dim, aligned_query); - // center the query and rotate if we have a rotation matrix - _pq_table.preprocess_query(query_rotated); - _pq_table.populate_chunk_distances(query_rotated, pq_dists); + float *pq_dists = nullptr; - pq_coord_scratch = pq_query_scratch->aligned_pq_coord_scratch; - } + _pq_data_store->preprocess_query(aligned_query, scratch); if (expanded_nodes.size() > 0 || id_scratch.size() > 0) { @@ -1007,10 +839,8 @@ std::pair Index::iterate_to_fixed_point( }; // Lambda to batch compute query<-> node distances in PQ space - auto compute_dists = [this, pq_coord_scratch, pq_dists](const std::vector &ids, - std::vector &dists_out) { - diskann::aggregate_coords(ids, this->_pq_data, this->_num_pq_chunks, pq_coord_scratch); - diskann::pq_dist_lookup(pq_coord_scratch, ids.size(), this->_num_pq_chunks, pq_dists, dists_out); + auto compute_dists = [this, scratch, pq_dists](const std::vector &ids, std::vector &dists_out) { + _pq_data_store->get_distance(scratch->aligned_query(), ids, dists_out, scratch); }; // only support one filter label @@ -1029,9 +859,9 @@ std::pair Index::iterate_to_fixed_point( bitmask_full_val._mask = query_bitmask_buf.data(); } - for (size_t i = 0; i < filter_label.size(); i++) + for (size_t i = 0; i < filter_labels.size(); i++) { - auto bitmask_val = simple_bitmask::get_bitmask_val(filter_label[i]); + auto bitmask_val = simple_bitmask::get_bitmask_val(filter_labels[i]); bitmask_full_val.merge_bitmask_val(bitmask_val); } @@ -1074,14 +904,11 @@ std::pair Index::iterate_to_fixed_point( } float distance; - if (_pq_dist) - { - pq_dist_lookup(pq_coord_scratch, 1, this->_num_pq_chunks, pq_dists, &distance); - } - else - { - distance = _data_store->get_distance(aligned_query, id); - } + uint32_t ids[] = {id}; + float distances[] = {std::numeric_limits::max()}; + _pq_data_store->get_distance(aligned_query, ids, 1, distances, scratch); + distance = distances[0]; + Neighbor nn = Neighbor(id, distance); best_L_nodes.insert(nn); } @@ -1090,6 +917,7 @@ std::pair Index::iterate_to_fixed_point( uint32_t hops = 0; uint32_t cmps = 0; cmps += static_cast(init_ids.size()); + std::vector tmp_neighbor_list; while (best_L_nodes.has_unexpanded_node()) { @@ -1117,10 +945,10 @@ std::pair Index::iterate_to_fixed_point( // Find which of the nodes in des have not been visited before id_scratch.clear(); dist_scratch.clear(); + if (_dynamic_index) { - if (_dynamic_index) - _locks[n].lock(); - for (auto id : _final_graph[n]) + LockGuard guard(_locks[n]); + for (auto id : _graph_store->get_neighbours(n)) { assert(id < _max_points + _num_frozen_pts); @@ -1141,10 +969,41 @@ std::pair Index::iterate_to_fixed_point( } id_scratch.push_back(id); + } + } + else + { + tmp_neighbor_list.clear(); + _locks[n].lock_shared(); + auto& nbrs = _graph_store->get_neighbours(n); + tmp_neighbor_list.resize(nbrs.size()); + memcpy(tmp_neighbor_list.data(), nbrs.data(), nbrs.size() * sizeof(location_t)); + _locks[n].unlock_shared(); + for (auto id : tmp_neighbor_list) + { + assert(id < _max_points + _num_frozen_pts); + + if (!is_not_visited(id)) + { + continue; + } + cmps++; + if (use_filter) + { + // NOTE: NEED TO CHECK IF THIS CORRECT WITH NEW LOCKS. + simple_bitmask bm(_bitmask_buf.get_bitmask(id), _bitmask_buf._bitmask_size); - if (_dynamic_index) - _locks[n].unlock(); + if (!bm.test_full_mask_val(bitmask_full_val)) + { + continue; + } + } + + + id_scratch.push_back(id); + + } } // Mark nodes visited @@ -1160,29 +1019,10 @@ std::pair Index::iterate_to_fixed_point( } } - // Compute distances to unvisited nodes in the expansion - if (_pq_dist) - { - assert(dist_scratch.capacity() >= id_scratch.size()); - compute_dists(id_scratch, dist_scratch); - } - else - { - assert(dist_scratch.size() == 0); - for (size_t m = 0; m < id_scratch.size(); ++m) - { - uint32_t id = id_scratch[m]; - - if (m + 1 < id_scratch.size()) - { - auto nextn = id_scratch[m + 1]; - _data_store->prefetch_vector(nextn); - } - - dist_scratch.push_back(_data_store->get_distance(aligned_query, id)); - } - } -// cmps += id_scratch.size(); + dist_scratch.resize(id_scratch.size()); + //assert(dist_scratch.capacity() >= id_scratch.size()); + compute_dists(id_scratch, dist_scratch); + cmps += (uint32_t)id_scratch.size(); // Insert pairs into the pool of candidates for (size_t m = 0; m < id_scratch.size(); ++m) @@ -1205,17 +1045,51 @@ void Index::search_for_point_and_prune(int location, uint32_t L if (!use_filter) { _data_store->get_vector(location, scratch->aligned_query()); - iterate_to_fixed_point(scratch->aligned_query(), Lindex, init_ids, scratch, false, unused_filter_label, false); + iterate_to_fixed_point(scratch, Lindex, init_ids, false, unused_filter_label, false); } else { + std::shared_lock tl(_tag_lock, std::defer_lock); + if (_dynamic_index) + tl.lock(); std::vector filter_specific_start_nodes; - for (auto &x : _pts_to_labels[location]) - filter_specific_start_nodes.emplace_back(_label_to_medoid_id[x]); + for (auto &x : _location_to_labels[location]) + filter_specific_start_nodes.emplace_back(_label_to_start_id[x]); + + if (_dynamic_index) + tl.unlock(); _data_store->get_vector(location, scratch->aligned_query()); - iterate_to_fixed_point(scratch->aligned_query(), filteredLindex, filter_specific_start_nodes, scratch, true, - _pts_to_labels[location], false); + iterate_to_fixed_point(scratch, filteredLindex, filter_specific_start_nodes, true, + _location_to_labels[location], false); + + if (Lindex > 0) + { + // combine candidate pools obtained with filter and unfiltered criteria. + std::set best_candidate_pool; + for (auto filtered_neighbor : scratch->pool()) + { + best_candidate_pool.insert(filtered_neighbor); + } + + // clear scratch for finding unfiltered candidates + scratch->clear(); + + _data_store->get_vector(location, scratch->aligned_query()); + iterate_to_fixed_point(scratch, Lindex, init_ids, false, unused_filter_label, false); + + for (auto unfiltered_neighbour : scratch->pool()) + { + // insert if this neighbour is not already in best_candidate_pool + if (best_candidate_pool.find(unfiltered_neighbour) == best_candidate_pool.end()) + { + best_candidate_pool.insert(unfiltered_neighbour); + } + } + + scratch->pool().clear(); + std::copy(best_candidate_pool.begin(), best_candidate_pool.end(), std::back_inserter(scratch->pool())); + } } auto &pool = scratch->pool(); @@ -1237,7 +1111,7 @@ void Index::search_for_point_and_prune(int location, uint32_t L prune_neighbors(location, pool, pruned_list, scratch); assert(!pruned_list.empty()); - assert(_final_graph.size() == _max_points + _num_frozen_pts); + assert(_graph_store->get_total_points() == _max_points + _num_frozen_pts); } template @@ -1348,9 +1222,8 @@ void Index::prune_neighbors(const uint32_t location, std::vecto return; } - _max_observed_degree = (std::max)(_max_observed_degree, range); - // If using _pq_build, over-write the PQ distances with actual distances + // REFACTOR PQ: TODO: How to get rid of this!? if (_pq_dist) { for (auto &ngh : pool) @@ -1386,27 +1259,40 @@ void Index::inter_insert(uint32_t n, std::vector &pru assert(!src_pool.empty()); + // des_pool contains the neighbors of the neighbors of n + std::vector copy_of_neighbors; + for (auto des : src_pool) { // des.loc is the loc of the neighbors of n assert(des < _max_points + _num_frozen_pts); - // des_pool contains the neighbors of the neighbors of n - std::vector copy_of_neighbors; + bool prune_needed = false; { - LockGuard guard(_locks[des]); - auto &des_pool = _final_graph[des]; - if (std::find(des_pool.begin(), des_pool.end(), n) == des_pool.end()) + copy_of_neighbors.clear(); + // LockGuard guard(_locks[des]); + _locks[des].lock_shared(); + auto &des_pool = _graph_store->get_neighbours(des); + copy_of_neighbors.reserve(des_pool.size() + 1); + for (auto& des_n : des_pool) { - if (des_pool.size() < (uint64_t)(GRAPH_SLACK_FACTOR * range)) + copy_of_neighbors.push_back(des_n); + } + _locks[des].unlock_shared(); + + if (std::find(copy_of_neighbors.begin(), copy_of_neighbors.end(), n) == copy_of_neighbors.end()) + { + if (copy_of_neighbors.size() < (uint64_t)(defaults::GRAPH_SLACK_FACTOR * range)) { - des_pool.emplace_back(n); + LockGuard guard(_locks[des]); + // des_pool.emplace_back(n); + _graph_store->add_neighbour(des, n); prune_needed = false; } else { - copy_of_neighbors.reserve(des_pool.size() + 1); - copy_of_neighbors = des_pool; + // copy_of_neighbors.reserve(des_pool.size() + 1); + // copy_of_neighbors = des_pool; copy_of_neighbors.push_back(n); prune_needed = true; } @@ -1418,7 +1304,7 @@ void Index::inter_insert(uint32_t n, std::vector &pru tsl::robin_set dummy_visited(0); std::vector dummy_pool(0); - size_t reserveSize = (size_t)(std::ceil(1.05 * GRAPH_SLACK_FACTOR * range)); + size_t reserveSize = (size_t)(std::ceil(1.05 * defaults::GRAPH_SLACK_FACTOR * range)); dummy_visited.reserve(reserveSize); dummy_pool.reserve(reserveSize); @@ -1436,7 +1322,7 @@ void Index::inter_insert(uint32_t n, std::vector &pru { LockGuard guard(_locks[des]); - _final_graph[des] = new_out_neighbors; + _graph_store->set_neighbours(des, new_out_neighbors); } } } @@ -1448,21 +1334,12 @@ void Index::inter_insert(uint32_t n, std::vector &pru inter_insert(n, pruned_list, _indexingRange, scratch); } -template -void Index::link(const IndexWriteParameters ¶meters) +template void Index::link() { - uint32_t num_threads = parameters.num_threads; + uint32_t num_threads = _indexingThreads; if (num_threads != 0) omp_set_num_threads(num_threads); - _saturate_graph = parameters.saturate_graph; - - _indexingQueueSize = parameters.search_list_size; - _filterIndexingQueueSize = parameters.filter_list_size; - _indexingRange = parameters.max_degree; - _indexingMaxC = parameters.max_occlusion_size; - _indexingAlpha = parameters.alpha; - /* visit_order is a vector that is initialized to the entire graph */ std::vector visit_order; std::vector pool, tmp; @@ -1485,11 +1362,6 @@ void Index::link(const IndexWriteParameters ¶meters) else _start = calculate_entry_point(); - for (size_t p = 0; p < _nd; p++) - { - _final_graph[p].reserve((size_t)(std::ceil(_indexingRange * GRAPH_SLACK_FACTOR * 1.05))); - } - diskann::Timer link_timer; #pragma omp parallel for schedule(dynamic, 2048) @@ -1497,24 +1369,25 @@ void Index::link(const IndexWriteParameters ¶meters) { auto node = visit_order[node_ctr]; + // Find and add appropriate graph edges ScratchStoreManager> manager(_query_scratch); auto scratch = manager.scratch_space(); - std::vector pruned_list; if (_filtered_index) { - search_for_point_and_prune(node, _indexingQueueSize, pruned_list, scratch, _filtered_index, - _filterIndexingQueueSize); + search_for_point_and_prune(node, _indexingQueueSize, pruned_list, scratch, true, _filterIndexingQueueSize); } else { search_for_point_and_prune(node, _indexingQueueSize, pruned_list, scratch); } + assert(pruned_list.size() > 0); + { LockGuard guard(_locks[node]); - _final_graph[node].reserve((size_t)(_indexingRange * GRAPH_SLACK_FACTOR * 1.05)); - _final_graph[node] = pruned_list; - assert(_final_graph[node].size() <= _indexingRange); + + _graph_store->set_neighbours(node, pruned_list); + assert(_graph_store->get_neighbours((location_t)node).size() <= _indexingRange); } inter_insert(node, pruned_list, scratch); @@ -1534,7 +1407,7 @@ void Index::link(const IndexWriteParameters ¶meters) for (int64_t node_ctr = 0; node_ctr < (int64_t)(visit_order.size()); node_ctr++) { auto node = visit_order[node_ctr]; - if (_final_graph[node].size() > _indexingRange) + if (_graph_store->get_neighbours((location_t)node).size() > _indexingRange) { ScratchStoreManager> manager(_query_scratch); auto scratch = manager.scratch_space(); @@ -1543,7 +1416,7 @@ void Index::link(const IndexWriteParameters ¶meters) std::vector dummy_pool(0); std::vector new_out_neighbors; - for (auto cur_nbr : _final_graph[node]) + for (auto cur_nbr : _graph_store->get_neighbours((location_t)node)) { if (dummy_visited.find(cur_nbr) == dummy_visited.end() && cur_nbr != node) { @@ -1554,9 +1427,8 @@ void Index::link(const IndexWriteParameters ¶meters) } prune_neighbors(node, dummy_pool, new_out_neighbors, scratch); - _final_graph[node].clear(); - for (auto id : new_out_neighbors) - _final_graph[node].emplace_back(id); + _graph_store->clear_neighbours((location_t)node); + _graph_store->set_neighbours((location_t)node, new_out_neighbors); } } if (_nd > 0) @@ -1580,7 +1452,7 @@ void Index::prune_all_neighbors(const uint32_t max_degree, cons { if ((size_t)node < _nd || (size_t)node >= _max_points) { - if (_final_graph[node].size() > range) + if (_graph_store->get_neighbours((location_t)node).size() > range) { tsl::robin_set dummy_visited(0); std::vector dummy_pool(0); @@ -1589,7 +1461,7 @@ void Index::prune_all_neighbors(const uint32_t max_degree, cons ScratchStoreManager> manager(_query_scratch); auto scratch = manager.scratch_space(); - for (auto cur_nbr : _final_graph[node]) + for (auto cur_nbr : _graph_store->get_neighbours((location_t)node)) { if (dummy_visited.find(cur_nbr) == dummy_visited.end() && cur_nbr != node) { @@ -1600,9 +1472,8 @@ void Index::prune_all_neighbors(const uint32_t max_degree, cons } prune_neighbors((uint32_t)node, dummy_pool, range, maxc, alpha, new_out_neighbors, scratch); - _final_graph[node].clear(); - for (auto id : new_out_neighbors) - _final_graph[node].emplace_back(id); + _graph_store->clear_neighbours((location_t)node); + _graph_store->set_neighbours((location_t)node, new_out_neighbors); } } } @@ -1613,7 +1484,7 @@ void Index::prune_all_neighbors(const uint32_t max_degree, cons { if (i < _nd || i >= _max_points) { - const std::vector &pool = _final_graph[i]; + const std::vector &pool = _graph_store->get_neighbours((location_t)i); max = (std::max)(max, pool.size()); min = (std::min)(min, pool.size()); total += pool.size(); @@ -1701,8 +1572,7 @@ void Index::set_start_points_at_random(T radius, uint32_t rando } template -void Index::build_with_data_populated(const IndexWriteParameters ¶meters, - const std::vector &tags) +void Index::build_with_data_populated(const std::vector &tags) { diskann::cout << "Starting index build with " << _nd << " points... " << std::endl; @@ -1726,24 +1596,25 @@ void Index::build_with_data_populated(const IndexWriteParameter } } - uint32_t index_R = parameters.max_degree; - uint32_t num_threads_index = parameters.num_threads; - uint32_t index_L = parameters.search_list_size; - uint32_t maxc = parameters.max_occlusion_size; + uint32_t index_R = _indexingRange; + uint32_t num_threads_index = _indexingThreads; + uint32_t index_L = _indexingQueueSize; + uint32_t maxc = _indexingMaxC; if (_query_scratch.size() == 0) { - initialize_query_scratch(5 + num_threads_index, index_L, index_L, index_R, maxc, + std::uint32_t default_queue_size = (std::max)(_indexingQueueSize, _filterIndexingQueueSize); + initialize_query_scratch(5 + num_threads_index, default_queue_size, default_queue_size, index_R, maxc, _data_store->get_aligned_dim()); } generate_frozen_point(); - link(parameters); + link(); size_t max = 0, min = SIZE_MAX, total = 0, cnt = 0; for (size_t i = 0; i < _nd; i++) { - auto &pool = _final_graph[i]; + auto &pool = _graph_store->get_neighbours((location_t)i); max = std::max(max, pool.size()); min = std::min(min, pool.size()); total += pool.size(); @@ -1753,17 +1624,14 @@ void Index::build_with_data_populated(const IndexWriteParameter diskann::cout << "Index built with degree: max:" << max << " avg:" << (float)total / (float)(_nd + _num_frozen_pts) << " min:" << min << " count(deg<2):" << cnt << std::endl; - _max_observed_degree = std::max((uint32_t)max, _max_observed_degree); _has_built = true; } template -void Index::_build(const DataType &data, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, TagVector &tags) +void Index::_build(const DataType &data, const size_t num_points_to_load, TagVector &tags) { try { - this->build(std::any_cast(data), num_points_to_load, parameters, - tags.get>()); + this->build(std::any_cast(data), num_points_to_load, tags.get>()); } catch (const std::bad_any_cast &e) { @@ -1775,8 +1643,7 @@ void Index::_build(const DataType &data, const size_t num_point } } template -void Index::build(const T *data, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const std::vector &tags) +void Index::build(const T *data, const size_t num_points_to_load, const std::vector &tags) { if (num_points_to_load == 0) { @@ -1795,24 +1662,13 @@ void Index::build(const T *data, const size_t num_points_to_loa _nd = num_points_to_load; _data_store->populate_data(data, (location_t)num_points_to_load); - - // REFACTOR - // memcpy((char *)_data, (char *)data, _aligned_dim * _nd * sizeof(T)); - // if (_normalize_vecs) - //{ - // for (size_t i = 0; i < num_points_to_load; i++) - // { - // normalize(_data + _aligned_dim * i, _aligned_dim); - // } - // } } - build_with_data_populated(parameters, tags); + build_with_data_populated(tags); } template -void Index::build(const char *filename, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const std::vector &tags) +void Index::build(const char *filename, const size_t num_points_to_load, const std::vector &tags) { // idealy this should call build_filtered_index based on params passed @@ -1844,8 +1700,6 @@ void Index::build(const char *filename, const size_t num_points << " points, but " << "index can support only " << _max_points << " points as specified in constructor." << std::endl; - if (_pq_dist) - aligned_free(_pq_data); throw diskann::ANNException(stream.str(), -1, __FUNCSIG__, __FILE__, __LINE__); } @@ -1855,8 +1709,6 @@ void Index::build(const char *filename, const size_t num_points stream << "ERROR: Driver requests loading " << num_points_to_load << " points and file has only " << file_num_points << " points." << std::endl; - if (_pq_dist) - aligned_free(_pq_data); throw diskann::ANNException(stream.str(), -1, __FUNCSIG__, __FILE__, __LINE__); } @@ -1867,30 +1719,27 @@ void Index::build(const char *filename, const size_t num_points << "but file has " << file_dim << " dimension." << std::endl; diskann::cerr << stream.str() << std::endl; - if (_pq_dist) - aligned_free(_pq_data); throw diskann::ANNException(stream.str(), -1, __FUNCSIG__, __FILE__, __LINE__); } + // REFACTOR PQ TODO: We can remove this if and add a check in the InMemDataStore + // to not populate_data if it has been called once. if (_pq_dist) { - double p_val = std::min(1.0, ((double)MAX_PQ_TRAINING_SET_SIZE / (double)file_num_points)); - - std::string suffix = _use_opq ? "_opq" : "_pq"; - suffix += std::to_string(_num_pq_chunks); - auto pq_pivots_file = std::string(filename) + suffix + "_pivots.bin"; - auto pq_compressed_file = std::string(filename) + suffix + "_compressed.bin"; - generate_quantized_data(std::string(filename), pq_pivots_file, pq_compressed_file, _dist_metric, p_val, - _num_pq_chunks, _use_opq); - - copy_aligned_data_from_file(pq_compressed_file.c_str(), _pq_data, file_num_points, _num_pq_chunks, - _num_pq_chunks); #ifdef EXEC_ENV_OLS - throw ANNException("load_pq_centroid_bin should not be called when " - "EXEC_ENV_OLS is defined.", - -1, __FUNCSIG__, __FILE__, __LINE__); + std::stringstream ss; + ss << "PQ Build is not supported in DLVS environment (i.e. if EXEC_ENV_OLS is defined)" << std::endl; + diskann::cerr << ss.str() << std::endl; + throw ANNException(ss.str(), -1, __FUNCSIG__, __FILE__, __LINE__); #else - _pq_table.load_pq_centroid_bin(pq_pivots_file.c_str(), _num_pq_chunks); + // REFACTOR TODO: Both in the previous code and in the current PQDataStore, + // we are writing the PQ files in the same path as the input file. Now we + // may not have write permissions to that folder, but we will always have + // write permissions to the output folder. So we should write the PQ files + // there. The problem is that the Index class gets the output folder prefix + // only at the time of save(), by which time we are too late. So leaving it + // as-is for now. + _pq_data_store->populate_data(filename, 0U); #endif } @@ -1901,12 +1750,11 @@ void Index::build(const char *filename, const size_t num_points std::unique_lock tl(_tag_lock); _nd = num_points_to_load; } - build_with_data_populated(parameters, tags); + build_with_data_populated(tags); } template -void Index::build(const char *filename, const size_t num_points_to_load, - const IndexWriteParameters ¶meters, const char *tag_filename) +void Index::build(const char *filename, const size_t num_points_to_load, const char *tag_filename) { std::vector tags; @@ -1945,44 +1793,37 @@ void Index::build(const char *filename, const size_t num_points } } } - build(filename, num_points_to_load, parameters, tags); + build(filename, num_points_to_load, tags); } template void Index::build(const std::string &data_file, const size_t num_points_to_load, - IndexBuildParams &build_params) + IndexFilterParams &filter_params) { - std::string labels_file_to_use = build_params.save_path_prefix + "_label_formatted.txt"; - std::string mem_labels_int_map_file = build_params.save_path_prefix + "_labels_map.txt"; - size_t points_to_load = num_points_to_load == 0 ? _max_points : num_points_to_load; auto s = std::chrono::high_resolution_clock::now(); - if (build_params.label_file == "") + if (filter_params.label_file == "") { - this->build(data_file.c_str(), points_to_load, build_params.index_write_params); + this->build(data_file.c_str(), points_to_load); } else { // TODO: this should ideally happen in save() uint32_t unv_label_as_num = 0; - convert_labels_string_to_int(build_params.label_file, labels_file_to_use, mem_labels_int_map_file, - build_params.universal_label, unv_label_as_num); - if (build_params.universal_label != "") + std::string labels_file_to_use = filter_params.save_path_prefix + "_label_formatted.txt"; + std::string mem_labels_int_map_file = filter_params.save_path_prefix + "_labels_map.txt"; + convert_labels_string_to_int(filter_params.label_file, labels_file_to_use, mem_labels_int_map_file, + filter_params.universal_label, unv_label_as_num); + if (filter_params.universal_label != "") { - LabelT unv_label_as_num = 0; +// LabelT unv_label_as_num = 0; this->set_universal_label(unv_label_as_num); } - this->build_filtered_index(data_file.c_str(), labels_file_to_use, points_to_load, - build_params.index_write_params); + this->build_filtered_index(data_file.c_str(), labels_file_to_use, points_to_load); } std::chrono::duration diff = std::chrono::high_resolution_clock::now() - s; std::cout << "Indexing time: " << diff.count() << "\n"; - // cleanup - if (build_params.label_file != "") - { - // clean_up_artifacts({labels_file_to_use, mem_labels_int_map_file}, {}); - } } template @@ -2006,11 +1847,12 @@ std::unordered_map Index::load_label_map(c } template -LabelT Index::get_converted_label(const std::string &raw_label) +LabelT Index::get_converted_label(const std::string &raw_label) const { - if (_label_map.find(raw_label) != _label_map.end()) + auto iter = _label_map.find(raw_label); + if (iter != _label_map.end()) { - return _label_map[raw_label]; + return iter->second; } else if (_use_universal_label) { @@ -2023,7 +1865,13 @@ LabelT Index::get_converted_label(const std::string &raw_label) } template -bool Index::is_label_valid(const std::string& raw_label) +bool Index::is_set_universal_label() const +{ + return _use_universal_label; +} + +template +bool Index::is_label_valid(const std::string& raw_label) const { if (_label_map.find(raw_label) != _label_map.end()) { @@ -2051,7 +1899,7 @@ void Index::parse_label_file(const std::string &label_file, siz { line_cnt++; } - _pts_to_labels.resize(line_cnt, std::vector()); + _location_to_labels.resize(line_cnt, std::vector()); infile.clear(); infile.seekg(0, std::ios::beg); @@ -2071,13 +1919,9 @@ void Index::parse_label_file(const std::string &label_file, siz lbls.push_back(token_as_num); _labels.insert(token_as_num); } - if (lbls.size() <= 0) - { - diskann::cout << "No label found"; - exit(-1); - } + std::sort(lbls.begin(), lbls.end()); - _pts_to_labels[line_cnt] = lbls; + _location_to_labels[line_cnt] = lbls; line_cnt++; } num_points = (size_t)line_cnt; @@ -2207,6 +2051,12 @@ void Index::parse_label_file_in_bitset(const std::string& label diskann::cout << "Identified " << _labels.size() << " distinct label(s)" << std::endl; } +template +void Index::_set_universal_label(const LabelType universal_label) +{ + this->set_universal_label(std::any_cast(universal_label)); +} + template void Index::set_universal_label(const LabelT &label) { @@ -2216,19 +2066,17 @@ void Index::set_universal_label(const LabelT &label) template void Index::build_filtered_index(const char *filename, const std::string &label_file, - const size_t num_points_to_load, IndexWriteParameters ¶meters, - const std::vector &tags) + const size_t num_points_to_load, const std::vector &tags) { - _labels_file = label_file; // original label file _filtered_index = true; - _label_to_medoid_id.clear(); + _label_to_start_id.clear(); size_t num_points_labels = 0; parse_label_file(label_file, num_points_labels); // determines medoid for each label and identifies // the points to label mapping - convert_pts_label_to_bitmask(_pts_to_labels, _bitmask_buf, _labels.size()); + convert_pts_label_to_bitmask(_location_to_labels, _bitmask_buf, _labels.size()); std::unordered_map> label_to_points; std::vector label_bitmask; @@ -2262,6 +2110,7 @@ void Index::build_filtered_index(const char *filename, const st labeled_points.emplace_back(point_id); } } + label_to_points[x] = labeled_points; } @@ -2291,11 +2140,11 @@ void Index::build_filtered_index(const char *filename, const st best_medoid = cur_cnd; } } - _label_to_medoid_id[curr_label] = best_medoid; + _label_to_start_id[curr_label] = best_medoid; _medoid_counts[best_medoid]++; } - this->build(filename, num_points_to_load, parameters, tags); + this->build(filename, num_points_to_load, tags); } template @@ -2356,9 +2205,9 @@ std::pair Index::search(const T *query, con std::shared_lock lock(_update_lock); - _distance->preprocess_query(query, _data_store->get_dims(), scratch->aligned_query()); - auto retval = - iterate_to_fixed_point(scratch->aligned_query(), L, init_ids, scratch, false, unused_filter_label, true); + _data_store->preprocess_query(query, scratch); + + auto retval = iterate_to_fixed_point(scratch, L, init_ids, false, unused_filter_label, true); NeighborPriorityQueue &best_L_nodes = scratch->best_l_nodes(); @@ -2403,12 +2252,12 @@ std::pair Index::_search_with_filters(const if (typeid(uint64_t *) == indices.type()) { auto ptr = std::any_cast(indices); - return this->search_with_filters(std::any_cast(query), converted_label, K, L, ptr, distances); + return this->search_with_filters(std::any_cast(query), converted_label, K, L, ptr, distances); } else if (typeid(uint32_t *) == indices.type()) { auto ptr = std::any_cast(indices); - return this->search_with_filters(std::any_cast(query), converted_label, K, L, ptr, distances); + return this->search_with_filters(std::any_cast(query), converted_label, K, L, ptr, distances); } else { @@ -2442,10 +2291,13 @@ std::pair Index::search_with_filters(const std::vector init_ids = get_init_ids(); std::shared_lock lock(_update_lock); + std::shared_lock tl(_tag_lock, std::defer_lock); + if (_dynamic_index) + tl.lock(); - if (_label_to_medoid_id.find(filter_label) != _label_to_medoid_id.end()) + if (_label_to_start_id.find(filter_label) != _label_to_start_id.end()) { - init_ids.emplace_back(_label_to_medoid_id[filter_label]); + init_ids.emplace_back(_label_to_start_id[filter_label]); } else { @@ -2453,13 +2305,13 @@ std::pair Index::search_with_filters(const << std::endl; // RKNOTE: If universal label found start there throw diskann::ANNException("No filtered medoid found. exitting ", -1); } + if (_dynamic_index) + tl.unlock(); + filter_vec.emplace_back(filter_label); - // REFACTOR - // T *aligned_query = scratch->aligned_query(); - // memcpy(aligned_query, query, _dim * sizeof(T)); - _distance->preprocess_query(query, _data_store->get_dims(), scratch->aligned_query()); - auto retval = iterate_to_fixed_point(scratch->aligned_query(), L, init_ids, scratch, true, filter_vec, true); + _data_store->preprocess_query(query, scratch); + auto retval = iterate_to_fixed_point(scratch, L, init_ids, true, filter_vec, true); auto best_L_nodes = scratch->best_l_nodes(); @@ -2468,9 +2320,8 @@ std::pair Index::search_with_filters(const { if (best_L_nodes[i].id < _max_points) { - // safe because Index uses uint32_t ids internally - // and IDType will be uint32_t or uint64_t indices[pos] = (IdType)best_L_nodes[i].id; + if (distances != nullptr) { #ifdef EXEC_ENV_OLS @@ -2496,12 +2347,13 @@ std::pair Index::search_with_filters(const template size_t Index::_search_with_tags(const DataType &query, const uint64_t K, const uint32_t L, - const TagType &tags, float *distances, DataVector &res_vectors) + const TagType &tags, float *distances, DataVector &res_vectors, + bool use_filters, const std::string filter_label) { try { return this->search_with_tags(std::any_cast(query), K, L, std::any_cast(tags), distances, - res_vectors.get>()); + res_vectors.get>(), use_filters, filter_label); } catch (const std::bad_any_cast &e) { @@ -2515,7 +2367,8 @@ size_t Index::_search_with_tags(const DataType &query, const ui template size_t Index::search_with_tags(const T *query, const uint64_t K, const uint32_t L, TagT *tags, - float *distances, std::vector &res_vectors) + float *distances, std::vector &res_vectors, bool use_filters, + const std::string filter_label) { if (K > (uint64_t)L) { @@ -2535,10 +2388,22 @@ size_t Index::search_with_tags(const T *query, const uint64_t K std::shared_lock ul(_update_lock); const std::vector init_ids = get_init_ids(); - const std::vector unused_filter_label; - _distance->preprocess_query(query, _data_store->get_dims(), scratch->aligned_query()); - iterate_to_fixed_point(scratch->aligned_query(), L, init_ids, scratch, false, unused_filter_label, true); + //_distance->preprocess_query(query, _data_store->get_dims(), + // scratch->aligned_query()); + _data_store->preprocess_query(query, scratch); + if (!use_filters) + { + const std::vector unused_filter_label; + iterate_to_fixed_point(scratch, L, init_ids, false, unused_filter_label, true); + } + else + { + std::vector filter_vec; + auto converted_label = this->get_converted_label(filter_label); + filter_vec.push_back(converted_label); + iterate_to_fixed_point(scratch, L, init_ids, true, filter_vec, true); + } NeighborPriorityQueue &best_L_nodes = scratch->best_l_nodes(); assert(best_L_nodes.size() <= L); @@ -2607,17 +2472,21 @@ template void Indexcopy_vectors((location_t)res, (location_t)_max_points, 1); } else { _data_store->copy_vectors((location_t)res, (location_t)_max_points, 1); } + _frozen_pts_used++; } template int Index::enable_delete() @@ -2667,7 +2536,7 @@ inline void Index::process_delete(const tsl::robin_set adj_list_lock; if (_conc_consolidate) adj_list_lock = std::unique_lock(_locks[loc]); - adj_list = _final_graph[loc]; + adj_list = _graph_store->get_neighbours((location_t)loc); } bool modify = false; @@ -2684,7 +2553,7 @@ inline void Index::process_delete(const tsl::robin_set ngh_lock; if (_conc_consolidate) ngh_lock = std::unique_lock(_locks[ngh]); - for (auto j : _final_graph[ngh]) + for (auto j : _graph_store->get_neighbours((location_t)ngh)) if (j != loc && old_delete_set.find(j) == old_delete_set.end()) expanded_nodes_set.insert(j); } @@ -2695,9 +2564,9 @@ inline void Index::process_delete(const tsl::robin_set adj_list_lock(_locks[loc]); - _final_graph[loc].clear(); + _graph_store->clear_neighbours((location_t)loc); for (auto &ngh : expanded_nodes_set) - _final_graph[loc].push_back(ngh); + _graph_store->add_neighbour((location_t)loc, ngh); } else { @@ -2712,7 +2581,7 @@ inline void Index::process_delete(const tsl::robin_set adj_list_lock(_locks[loc]); - _final_graph[loc] = occlude_list_output; + _graph_store->set_neighbours((location_t)loc, occlude_list_output); } } } @@ -2777,7 +2646,7 @@ consolidation_report Index::consolidate_deletes(const IndexWrit const uint32_t range = params.max_degree; const uint32_t maxc = params.max_occlusion_size; const float alpha = params.alpha; - const uint32_t num_threads = params.num_threads == 0 ? omp_get_num_threads() : params.num_threads; + const uint32_t num_threads = params.num_threads == 0 ? omp_get_num_procs() : params.num_threads; uint32_t num_calls_to_process_delete = 0; diskann::Timer timer; @@ -2827,6 +2696,17 @@ template void Index void Index new_adj_list; if ((new_location[old] < _max_points) // If point continues to exist || (old >= _max_points && old < _max_points + _num_frozen_pts)) { - new_adj_list.reserve(_final_graph[old].size()); - for (auto ngh_iter : _final_graph[old]) + new_adj_list.reserve(_graph_store->get_neighbours((location_t)old).size()); + for (auto ngh_iter : _graph_store->get_neighbours((location_t)old)) { if (empty_locations.find(ngh_iter) != empty_locations.end()) { @@ -2901,20 +2782,26 @@ template void Indexget_neighbours((location_t)old).swap(new_adj_list); + _graph_store->set_neighbours((location_t)old, new_adj_list); // Move the data and adj list to the correct position if (new_location[old] != old) { assert(new_location[old] < old); - _final_graph[new_location[old]].swap(_final_graph[old]); + _graph_store->swap_neighbours(new_location[old], (location_t)old); + + if (_filtered_index) + { + _location_to_labels[new_location[old]].swap(_location_to_labels[old]); + } _data_store->copy_vectors(old, new_location[old], 1); } } else { - _final_graph[old].clear(); + _graph_store->clear_neighbours((location_t)old); } } diskann::cerr << "#dangling references after data compaction: " << num_dangling << std::endl; @@ -2930,12 +2817,21 @@ template void Indexclear_neighbours((location_t)old); + } + if (_filtered_index) + { + for (size_t old = _nd; old < _max_points; old++) + { + _location_to_labels[old].clear(); + } } + _empty_slots.clear(); + // mark all slots after _nd as empty for (auto i = _nd; i < _max_points; i++) { _empty_slots.insert((uint32_t)i); @@ -2970,7 +2866,6 @@ template int Index location = _empty_slots.pop_any(); _delete_set->erase(location); } - ++_nd; return location; } @@ -3020,10 +2915,18 @@ void Index::reposition_points(uint32_t old_location_start, uint // integer arithmetic rules. const uint32_t location_delta = new_location_start - old_location_start; + std::vector updated_neighbours_location; for (uint32_t i = 0; i < _max_points + _num_frozen_pts; i++) - for (auto &loc : _final_graph[i]) + { + auto &i_neighbours = _graph_store->get_neighbours((location_t)i); + std::vector i_neighbours_copy(i_neighbours.begin(), i_neighbours.end()); + for (auto &loc : i_neighbours_copy) + { if (loc >= old_location_start && loc < old_location_start + num_locations) loc += location_delta; + } + _graph_store->set_neighbours(i, i_neighbours_copy); + } // The [start, end) interval which will contain obsolete points to be // cleared. @@ -3038,10 +2941,14 @@ void Index::reposition_points(uint32_t old_location_start, uint // to avoid modifying locations that are yet to be copied. for (uint32_t loc_offset = 0; loc_offset < num_locations; loc_offset++) { - assert(_final_graph[new_location_start + loc_offset].empty()); - _final_graph[new_location_start + loc_offset].swap(_final_graph[old_location_start + loc_offset]); + assert(_graph_store->get_neighbours(new_location_start + loc_offset).empty()); + _graph_store->swap_neighbours(new_location_start + loc_offset, old_location_start + loc_offset); + if (_dynamic_index && _filtered_index) + { + _location_to_labels[new_location_start + loc_offset].swap( + _location_to_labels[old_location_start + loc_offset]); + } } - // If ranges are overlapping, make sure not to clear the newly copied // data. if (mem_clear_loc_start < new_location_start + num_locations) @@ -3056,8 +2963,13 @@ void Index::reposition_points(uint32_t old_location_start, uint // to avoid modifying locations that are yet to be copied. for (uint32_t loc_offset = num_locations; loc_offset > 0; loc_offset--) { - assert(_final_graph[new_location_start + loc_offset - 1u].empty()); - _final_graph[new_location_start + loc_offset - 1u].swap(_final_graph[old_location_start + loc_offset - 1u]); + assert(_graph_store->get_neighbours(new_location_start + loc_offset - 1u).empty()); + _graph_store->swap_neighbours(new_location_start + loc_offset - 1u, old_location_start + loc_offset - 1u); + if (_dynamic_index && _filtered_index) + { + _location_to_labels[new_location_start + loc_offset - 1u].swap( + _location_to_labels[old_location_start + loc_offset - 1u]); + } } // If ranges are overlapping, make sure not to clear the newly copied @@ -3084,6 +2996,17 @@ template void Index void Index::resize(size_t new_max_points) @@ -3093,7 +3016,7 @@ template void Indexresize((location_t)new_internal_points); - _final_graph.resize(new_internal_points); + _graph_store->resize_graph(new_internal_points); _locks = std::vector(new_internal_points); if (_num_frozen_pts != 0) @@ -3130,11 +3053,37 @@ int Index::_insert_point(const DataType &point, const TagType t } } +template +int Index::_insert_point(const DataType &point, const TagType tag, Labelvector &labels) +{ + try + { + return this->insert_point(std::any_cast(point), std::any_cast(tag), + labels.get>()); + } + catch (const std::bad_any_cast &anycast_e) + { + throw new ANNException("Error:Trying to insert invalid data type" + std::string(anycast_e.what()), -1); + } + catch (const std::exception &e) + { + throw new ANNException("Error:" + std::string(e.what()), -1); + } +} + template int Index::insert_point(const T *point, const TagT tag) { + std::vector no_labels{0}; + return insert_point(point, tag, no_labels); +} + +template +int Index::insert_point(const T *point, const TagT tag, const std::vector &labels) +{ + assert(_has_built); - if (tag == static_cast(0)) + if (tag == 0) { throw diskann::ANNException("Do not insert point with tag 0. That is " "reserved for points hidden " @@ -3146,8 +3095,42 @@ int Index::insert_point(const T *point, const TagT tag) std::unique_lock tl(_tag_lock); std::unique_lock dl(_delete_lock); - // Find a vacant location in the data array to insert the new point auto location = reserve_location(); + if (_filtered_index) + { + if (labels.empty()) + { + release_location(location); + std::cerr << "Error: Can't insert point with tag " + get_tag_string(tag) + + " . there are no labels for the point." + << std::endl; + return -1; + } + + _location_to_labels[location] = labels; + + for (LabelT label : labels) + { + if (_labels.find(label) == _labels.end()) + { + if (_frozen_pts_used >= _num_frozen_pts) + { + throw ANNException( + "Error: For dynamic filtered index, the number of frozen points should be atleast equal " + "to number of unique labels.", + -1); + } + + auto fz_location = (int)(_max_points) + _frozen_pts_used; // as first _fz_point + _labels.insert(label); + _label_to_start_id[label] = (uint32_t)fz_location; + _location_to_labels[fz_location] = {label}; + _data_store->set_vector((location_t)fz_location, point); + _frozen_pts_used++; + } + } + } + if (location == -1) { #if EXPAND_IF_FULL @@ -3185,12 +3168,13 @@ int Index::insert_point(const T *point, const TagT tag) #else return -1; #endif - } + } // cant insert as active pts >= max_pts dl.unlock(); // Insert tag and mapping to location if (_enable_tags) { + // if tags are enabled and tag is already inserted. so we can't reuse that tag. if (_tag_to_location.find(tag) != _tag_to_location.end()) { release_location(location); @@ -3202,37 +3186,41 @@ int Index::insert_point(const T *point, const TagT tag) } tl.unlock(); - _data_store->set_vector(location, point); + _data_store->set_vector(location, point); // update datastore // Find and add appropriate graph edges ScratchStoreManager> manager(_query_scratch); auto scratch = manager.scratch_space(); - std::vector pruned_list; + std::vector pruned_list; // it is the set best candidates to connect to this point if (_filtered_index) { + // when filtered the best_candidates will share the same label ( label_present > distance) search_for_point_and_prune(location, _indexingQueueSize, pruned_list, scratch, true, _filterIndexingQueueSize); } else { search_for_point_and_prune(location, _indexingQueueSize, pruned_list, scratch); } + assert(pruned_list.size() > 0); // should find atleast one neighbour (i.e frozen point acting as medoid) + { std::shared_lock tlock(_tag_lock, std::defer_lock); if (_conc_consolidate) tlock.lock(); LockGuard guard(_locks[location]); - _final_graph[location].clear(); - _final_graph[location].reserve((size_t)(_indexingRange * GRAPH_SLACK_FACTOR * 1.05)); + _graph_store->clear_neighbours(location); + std::vector neighbor_links; for (auto link : pruned_list) { if (_conc_consolidate) if (!_location_to_tag.contains(link)) continue; - _final_graph[location].emplace_back(link); + neighbor_links.emplace_back(link); } - assert(_final_graph[location].size() <= _indexingRange); + _graph_store->set_neighbours(location, neighbor_links); + assert(_graph_store->get_neighbours(location).size() <= _indexingRange); if (_conc_consolidate) tlock.unlock(); @@ -3281,7 +3269,7 @@ template int Index if (_tag_to_location.find(tag) == _tag_to_location.end()) { - diskann::cerr << "Delete tag not found " << tag << std::endl; + diskann::cerr << "Delete tag not found " << get_tag_string(tag) << std::endl; return -1; } assert(_tag_to_location[tag] < _max_points); @@ -3290,7 +3278,6 @@ template int Index _delete_set->insert(location); _location_to_tag.erase(location); _tag_to_location.erase(tag); - return 0; } @@ -3364,7 +3351,7 @@ template void Indexget_total_points() << std::endl; diskann::cout << "Location to tag size: " << _location_to_tag.size() << std::endl; diskann::cout << "Tag to location size: " << _tag_to_location.size() << std::endl; diskann::cout << "Number of empty slots: " << _empty_slots.size() << std::endl; @@ -3402,7 +3389,7 @@ template void Indexget_neighbours((location_t)node)) { if (!visited.test(nghbr)) { @@ -3416,12 +3403,6 @@ template void Index void -// Index::optimize_index_layout() -//{ // use after build or load -//} - // REFACTOR: This should be an OptimizedDataStore class template void Index::optimize_index_layout() { // use after build or load @@ -3434,10 +3415,10 @@ template void Indexget_aligned_dim()]; std::memset(cur_vec, 0, _data_store->get_aligned_dim() * sizeof(float)); _data_len = (_data_store->get_aligned_dim() + 1) * sizeof(float); - _neighbor_len = (_max_observed_degree + 1) * sizeof(uint32_t); + _neighbor_len = (_graph_store->get_max_observed_degree() + 1) * sizeof(uint32_t); _node_size = _data_len + _neighbor_len; _opt_graph = new char[_node_size * _nd]; - DistanceFastL2 *dist_fast = (DistanceFastL2 *)_data_store->get_dist_fn(); + auto dist_fast = (DistanceFastL2 *)(_data_store->get_dist_fn()); for (uint32_t i = 0; i < _nd; i++) { char *cur_node_offset = _opt_graph + i * _node_size; @@ -3447,24 +3428,17 @@ template void Indexget_neighbours(i).size(); std::memcpy(cur_node_offset, &k, sizeof(uint32_t)); - std::memcpy(cur_node_offset + sizeof(uint32_t), _final_graph[i].data(), k * sizeof(uint32_t)); - std::vector().swap(_final_graph[i]); + std::memcpy(cur_node_offset + sizeof(uint32_t), _graph_store->get_neighbours(i).data(), k * sizeof(uint32_t)); + // std::vector().swap(_graph_store->get_neighbours(i)); + _graph_store->clear_neighbours(i); } - _final_graph.clear(); - _final_graph.shrink_to_fit(); + _graph_store->clear_graph(); + _graph_store->resize_graph(0); delete[] cur_vec; } -// REFACTOR: once optimized layout becomes its own Data+Graph store, we should -// just invoke regular search -// template -// void Index::search_with_optimized_layout(const T *query, -// size_t K, size_t L, uint32_t *indices) -//{ -//} - template void Index::_search_with_optimized_layout(const DataType &query, size_t K, size_t L, uint32_t *indices) { @@ -3474,8 +3448,10 @@ void Index::_search_with_optimized_layout(const DataType &query } catch (const std::bad_any_cast &e) { - throw ANNException( - "Error: bad any cast while performing _search_with_optimized_layout() " + std::string(e.what()), -1); + throw ANNException("Error: bad any cast while performing " + "_search_with_optimized_layout() " + + std::string(e.what()), + -1); } catch (const std::exception &e) { @@ -3486,7 +3462,7 @@ void Index::_search_with_optimized_layout(const DataType &query template void Index::search_with_optimized_layout(const T *query, size_t K, size_t L, uint32_t *indices) { - DistanceFastL2 *dist_fast = (DistanceFastL2 *)_data_store->get_dist_fn(); + DistanceFastL2 *dist_fast = (DistanceFastL2 *)(_data_store->get_dist_fn()); NeighborPriorityQueue retset(L); std::vector init_ids(L); @@ -3596,6 +3572,9 @@ template DISKANN_DLLEXPORT class Index; template DISKANN_DLLEXPORT class Index; template DISKANN_DLLEXPORT class Index; template DISKANN_DLLEXPORT class Index; +template DISKANN_DLLEXPORT class Index; +template DISKANN_DLLEXPORT class Index; +template DISKANN_DLLEXPORT class Index; // Label with short int 2 byte template DISKANN_DLLEXPORT class Index; template DISKANN_DLLEXPORT class Index; @@ -3609,6 +3588,9 @@ template DISKANN_DLLEXPORT class Index; template DISKANN_DLLEXPORT class Index; template DISKANN_DLLEXPORT class Index; template DISKANN_DLLEXPORT class Index; +template DISKANN_DLLEXPORT class Index; +template DISKANN_DLLEXPORT class Index; +template DISKANN_DLLEXPORT class Index; template DISKANN_DLLEXPORT std::pair Index::search( const float *query, const size_t K, const uint32_t L, uint64_t *indices, float *distances); diff --git a/src/index_factory.cpp b/src/index_factory.cpp index c5607f4a0..35790f8d6 100644 --- a/src/index_factory.cpp +++ b/src/index_factory.cpp @@ -1,4 +1,5 @@ #include "index_factory.h" +#include "pq_l2_distance.h" namespace diskann { @@ -49,45 +50,100 @@ void IndexFactory::check_config() } } +template Distance *IndexFactory::construct_inmem_distance_fn(Metric metric) +{ + if (metric == diskann::Metric::COSINE && std::is_same::value) + { + return (Distance *)new AVXNormalizedCosineDistanceFloat(); + } + else + { + return (Distance *)get_distance_function(metric); + } +} + template -std::unique_ptr> IndexFactory::construct_datastore(DataStoreStrategy strategy, size_t num_points, - size_t dimension) +std::shared_ptr> IndexFactory::construct_datastore(DataStoreStrategy strategy, + size_t total_internal_points, size_t dimension, + Metric metric) { - const size_t total_internal_points = num_points + _config->num_frozen_pts; - std::shared_ptr> distance; + std::unique_ptr> distance; switch (strategy) { - case MEMORY: - if (_config->metric == diskann::Metric::COSINE && std::is_same::value) - { - distance.reset((Distance *)new AVXNormalizedCosineDistanceFloat()); - return std::make_unique>((location_t)total_internal_points, dimension, distance); - } - else - { - distance.reset((Distance *)get_distance_function(_config->metric)); - return std::make_unique>((location_t)total_internal_points, dimension, distance); - } - break; + case DataStoreStrategy::MEMORY: + distance.reset(construct_inmem_distance_fn(metric)); + return std::make_shared>((location_t)total_internal_points, dimension, + std::move(distance)); default: break; } return nullptr; } -std::unique_ptr IndexFactory::construct_graphstore(GraphStoreStrategy, size_t size) +std::unique_ptr IndexFactory::construct_graphstore(const GraphStoreStrategy strategy, + const size_t size, + const size_t reserve_graph_degree) +{ + switch (strategy) + { + case GraphStoreStrategy::MEMORY: + return std::make_unique(size, reserve_graph_degree); + default: + throw ANNException("Error : Current GraphStoreStratagy is not supported.", -1); + } +} + +template +std::shared_ptr> IndexFactory::construct_pq_datastore(DataStoreStrategy strategy, size_t num_points, + size_t dimension, Metric m, size_t num_pq_chunks, + bool use_opq) { - return std::make_unique(size); + std::unique_ptr> distance_fn; + std::unique_ptr> quantized_distance_fn; + + quantized_distance_fn = std::move(std::make_unique>((uint32_t)num_pq_chunks, use_opq)); + switch (strategy) + { + case DataStoreStrategy::MEMORY: + distance_fn.reset(construct_inmem_distance_fn(m)); + return std::make_shared>(dimension, (location_t)(num_points), num_pq_chunks, + std::move(distance_fn), std::move(quantized_distance_fn)); + default: + // REFACTOR TODO: We do support diskPQ - so we may need to add a new class for SSDPQDataStore! + break; + } + return nullptr; } template std::unique_ptr IndexFactory::create_instance() { - size_t num_points = _config->max_points; + size_t num_points = _config->max_points + _config->num_frozen_pts; size_t dim = _config->dimension; // auto graph_store = construct_graphstore(_config->graph_strategy, num_points); - auto data_store = construct_datastore(_config->data_strategy, num_points, dim); - return std::make_unique>(*_config, std::move(data_store)); + auto data_store = construct_datastore(_config->data_strategy, num_points, dim, _config->metric); + std::shared_ptr> pq_data_store = nullptr; + + if (_config->data_strategy == DataStoreStrategy::MEMORY && _config->pq_dist_build) + { + pq_data_store = + construct_pq_datastore(_config->data_strategy, num_points + _config->num_frozen_pts, dim, + _config->metric, _config->num_pq_chunks, _config->use_opq); + } + else + { + pq_data_store = data_store; + } + size_t max_reserve_degree = + (size_t)(defaults::GRAPH_SLACK_FACTOR * 1.05 * + (_config->index_write_params == nullptr ? 0 : _config->index_write_params->max_degree)); + std::unique_ptr graph_store = + construct_graphstore(_config->graph_strategy, num_points + _config->num_frozen_pts, max_reserve_degree); + + // REFACTOR TODO: Must construct in-memory PQDatastore if strategy == ONDISK and must construct + // in-mem and on-disk PQDataStore if strategy == ONDISK and diskPQ is required. + return std::make_unique>(*_config, data_store, + std::move(graph_store), pq_data_store); } std::unique_ptr IndexFactory::create_instance(const std::string &data_type, const std::string &tag_type, @@ -147,4 +203,11 @@ std::unique_ptr IndexFactory::create_instance(const std::string & throw ANNException("Error: unsupported label_type please choose from [uint/ushort]", -1); } +// template DISKANN_DLLEXPORT std::shared_ptr> IndexFactory::construct_datastore( +// DataStoreStrategy stratagy, size_t num_points, size_t dimension, Metric m); +// template DISKANN_DLLEXPORT std::shared_ptr> IndexFactory::construct_datastore( +// DataStoreStrategy stratagy, size_t num_points, size_t dimension, Metric m); +// template DISKANN_DLLEXPORT std::shared_ptr> IndexFactory::construct_datastore( +// DataStoreStrategy stratagy, size_t num_points, size_t dimension, Metric m); + } // namespace diskann diff --git a/src/linux_aligned_file_reader.cpp b/src/linux_aligned_file_reader.cpp index 47c7cb1fb..31bf5f827 100644 --- a/src/linux_aligned_file_reader.cpp +++ b/src/linux_aligned_file_reader.cpp @@ -147,10 +147,14 @@ void LinuxAlignedFileReader::register_thread() if (ret != 0) { lk.unlock(); - assert(errno != EAGAIN); - assert(errno != ENOMEM); - std::cerr << "io_setup() failed; returned " << ret << ", errno=" << errno << ":" << ::strerror(errno) - << std::endl; + if (ret == -EAGAIN) + { + std::cerr << "io_setup() failed with EAGAIN: Consider increasing /proc/sys/fs/aio-max-nr" << std::endl; + } + else + { + std::cerr << "io_setup() failed; returned " << ret << ": " << ::strerror(-ret) << std::endl; + } } else { diff --git a/src/natural_number_map.cpp b/src/natural_number_map.cpp index 9050831a2..a996dcf75 100644 --- a/src/natural_number_map.cpp +++ b/src/natural_number_map.cpp @@ -5,6 +5,7 @@ #include #include "natural_number_map.h" +#include "tag_uint128.h" namespace diskann { @@ -111,4 +112,5 @@ template class natural_number_map; template class natural_number_map; template class natural_number_map; template class natural_number_map; +template class natural_number_map; } // namespace diskann diff --git a/src/partition.cpp b/src/partition.cpp index 2d46f9faf..570d45c7d 100644 --- a/src/partition.cpp +++ b/src/partition.cpp @@ -11,7 +11,7 @@ #include "tsl/robin_map.h" #include "tsl/robin_set.h" -#if defined(RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS) && defined(DISKANN_BUILD) +#if defined(DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS) && defined(DISKANN_BUILD) #include "gperftools/malloc_extension.h" #endif diff --git a/src/pq.cpp b/src/pq.cpp index 86c68ce0a..d2b545c79 100644 --- a/src/pq.cpp +++ b/src/pq.cpp @@ -2,7 +2,9 @@ // Licensed under the MIT license. #include "mkl.h" - +#if defined(DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS) && defined(DISKANN_BUILD) +#include "gperftools/malloc_extension.h" +#endif #include "pq.h" #include "partition.h" #include "math_utils.h" @@ -133,11 +135,13 @@ void FixedChunkPQTable::load_pq_centroid_bin(const char *pq_table_file, size_t n diskann::cout << "Loaded PQ Pivots: #ctrs: " << NUM_PQ_CENTROIDS << ", #dims: " << this->ndims << ", #chunks: " << this->n_chunks << std::endl; - if (file_exists(rotmat_file)) - { #ifdef EXEC_ENV_OLS + if (files.fileExists(rotmat_file)) + { diskann::load_bin(files, rotmat_file, (float *&)rotmat_tr, nr, nc); #else + if (file_exists(rotmat_file)) + { diskann::load_bin(rotmat_file, rotmat_tr, nr, nc); #endif if (nr != this->ndims || nc != this->ndims) @@ -340,6 +344,65 @@ void pq_dist_lookup(const uint8_t *pq_ids, const size_t n_pts, const size_t pq_n } } +// generate_pq_pivots_simplified is a simplified version of generate_pq_pivots. +// Input is provided in the in-memory buffer train_data. +// Output is stored in the in-memory buffer pivot_data_vector. +// Simplification is based on the following assumptions: +// dim % num_pq_chunks == 0 +// num_centers == 256 by default +// KMEANS_ITERS_FOR_PQ == 15 by default +// make_zero_mean is false by default. +// These assumptions allow to make the function much simpler and avoid storing +// array of chunk_offsets and centroids. +// The compiler pragma for multi-threading support is removed from this implementation +// for the purpose of integration into systems that strictly control resource allocation. +int generate_pq_pivots_simplified(const float *train_data, size_t num_train, size_t dim, size_t num_pq_chunks, + std::vector &pivot_data_vector) +{ + if (num_pq_chunks > dim || dim % num_pq_chunks != 0) + { + return -1; + } + + const size_t num_centers = 256; + const size_t cur_chunk_size = dim / num_pq_chunks; + const uint32_t KMEANS_ITERS_FOR_PQ = 15; + + pivot_data_vector.resize(num_centers * dim); + std::vector cur_pivot_data_vector(num_centers * cur_chunk_size); + std::vector cur_data_vector(num_train * cur_chunk_size); + std::vector closest_center_vector(num_train); + + float *pivot_data = &pivot_data_vector[0]; + float *cur_pivot_data = &cur_pivot_data_vector[0]; + float *cur_data = &cur_data_vector[0]; + uint32_t *closest_center = &closest_center_vector[0]; + + for (size_t i = 0; i < num_pq_chunks; i++) + { + size_t chunk_offset = cur_chunk_size * i; + + for (int32_t j = 0; j < num_train; j++) + { + std::memcpy(cur_data + j * cur_chunk_size, train_data + j * dim + chunk_offset, + cur_chunk_size * sizeof(float)); + } + + kmeans::kmeanspp_selecting_pivots(cur_data, num_train, cur_chunk_size, cur_pivot_data, num_centers); + + kmeans::run_lloyds(cur_data, num_train, cur_chunk_size, cur_pivot_data, num_centers, KMEANS_ITERS_FOR_PQ, NULL, + closest_center); + + for (uint64_t j = 0; j < num_centers; j++) + { + std::memcpy(pivot_data + j * dim + chunk_offset, cur_pivot_data + j * cur_chunk_size, + cur_chunk_size * sizeof(float)); + } + } + + return 0; +} + // given training data in train_data of dimensions num_train * dim, generate // PQ pivots using k-means algorithm to partition the co-ordinates into // num_pq_chunks (if it divides dimension, else rounded) chunks, and runs @@ -708,6 +771,75 @@ int generate_opq_pivots(const float *passed_train_data, size_t num_train, uint32 return 0; } +// generate_pq_data_from_pivots_simplified is a simplified version of generate_pq_data_from_pivots. +// Input is provided in the in-memory buffers data and pivot_data. +// Output is stored in the in-memory buffer pq. +// Simplification is based on the following assumptions: +// supporting only float data type +// dim % num_pq_chunks == 0, which results in a fixed chunk_size +// num_centers == 256 by default +// make_zero_mean is false by default. +// These assumptions allow to make the function much simpler and avoid using +// array of chunk_offsets and centroids. +// The compiler pragma for multi-threading support is removed from this implementation +// for the purpose of integration into systems that strictly control resource allocation. +int generate_pq_data_from_pivots_simplified(const float *data, const size_t num, const float *pivot_data, + const size_t pivots_num, const size_t dim, const size_t num_pq_chunks, + std::vector &pq) +{ + if (num_pq_chunks == 0 || num_pq_chunks > dim || dim % num_pq_chunks != 0) + { + return -1; + } + + const size_t num_centers = 256; + const size_t chunk_size = dim / num_pq_chunks; + + if (pivots_num != num_centers * dim) + { + return -1; + } + + pq.resize(num * num_pq_chunks); + + std::vector cur_pivot_vector(num_centers * chunk_size); + std::vector cur_data_vector(num * chunk_size); + std::vector closest_center_vector(num); + + float *cur_pivot_data = &cur_pivot_vector[0]; + float *cur_data = &cur_data_vector[0]; + uint32_t *closest_center = &closest_center_vector[0]; + + for (size_t i = 0; i < num_pq_chunks; i++) + { + const size_t chunk_offset = chunk_size * i; + + for (int j = 0; j < num_centers; j++) + { + std::memcpy(cur_pivot_data + j * chunk_size, pivot_data + j * dim + chunk_offset, + chunk_size * sizeof(float)); + } + + for (int j = 0; j < num; j++) + { + for (size_t k = 0; k < chunk_size; k++) + { + cur_data[j * chunk_size + k] = data[j * dim + chunk_offset + k]; + } + } + + math_utils::compute_closest_centers(cur_data, num, chunk_size, cur_pivot_data, num_centers, 1, closest_center); + + for (int j = 0; j < num; j++) + { + assert(closest_center[j] < num_centers); + pq[j * num_pq_chunks + i] = closest_center[j]; + } + } + + return 0; +} + // streams the base file (data_file), and computes the closest centers in each // chunk to generate the compressed data_file and stores it in // pq_compressed_vectors_path. @@ -921,7 +1053,7 @@ int generate_pq_data_from_pivots(const std::string &data_file, uint32_t num_cent } // Gopal. Splitting diskann_dll into separate DLLs for search and build. // This code should only be available in the "build" DLL. -#if defined(RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS) && defined(DISKANN_BUILD) +#if defined(DISKANN_RELEASE_UNUSED_TCMALLOC_MEMORY_AT_CHECKPOINTS) && defined(DISKANN_BUILD) MallocExtension::instance()->ReleaseFreeMemory(); #endif compressed_file_writer.close(); diff --git a/src/pq_data_store.cpp b/src/pq_data_store.cpp new file mode 100644 index 000000000..2136c71e2 --- /dev/null +++ b/src/pq_data_store.cpp @@ -0,0 +1,260 @@ +#include + +#include "pq_data_store.h" +#include "pq.h" +#include "pq_scratch.h" +#include "utils.h" +#include "distance.h" + +namespace diskann +{ + +// REFACTOR TODO: Assuming that num_pq_chunks is known already. Must verify if +// this is true. +template +PQDataStore::PQDataStore(size_t dim, location_t num_points, size_t num_pq_chunks, + std::unique_ptr> distance_fn, + std::unique_ptr> pq_distance_fn) + : AbstractDataStore(num_points, dim), _quantized_data(nullptr), _num_chunks(num_pq_chunks), + _distance_metric(distance_fn->get_metric()) +{ + if (num_pq_chunks > dim) + { + throw diskann::ANNException("ERROR: num_pq_chunks > dim", -1, __FUNCSIG__, __FILE__, __LINE__); + } + _distance_fn = std::move(distance_fn); + _pq_distance_fn = std::move(pq_distance_fn); +} + +template PQDataStore::~PQDataStore() +{ + if (_quantized_data != nullptr) + { + aligned_free(_quantized_data); + _quantized_data = nullptr; + } +} + +template location_t PQDataStore::load(const std::string &filename) +{ + return load_impl(filename); +} +template size_t PQDataStore::save(const std::string &filename, const location_t num_points) +{ + return diskann::save_bin(filename, _quantized_data, this->capacity(), _num_chunks, 0); +} + +template size_t PQDataStore::get_aligned_dim() const +{ + return this->get_dims(); +} + +// Populate quantized data from regular data. +template void PQDataStore::populate_data(const data_t *vectors, const location_t num_pts) +{ + throw std::logic_error("Not implemented yet"); +} + +template void PQDataStore::populate_data(const std::string &filename, const size_t offset) +{ + if (_quantized_data != nullptr) + { + aligned_free(_quantized_data); + } + + uint64_t file_num_points = 0, file_dim = 0; + get_bin_metadata(filename, file_num_points, file_dim, offset); + this->_capacity = (location_t)file_num_points; + this->_dim = file_dim; + + double p_val = std::min(1.0, ((double)MAX_PQ_TRAINING_SET_SIZE / (double)file_num_points)); + + auto pivots_file = _pq_distance_fn->get_pivot_data_filename(filename); + auto compressed_file = _pq_distance_fn->get_quantized_vectors_filename(filename); + + generate_quantized_data(filename, pivots_file, compressed_file, _distance_metric, p_val, _num_chunks, + _pq_distance_fn->is_opq()); + + // REFACTOR TODO: Not sure of the alignment. Just copying from index.cpp + alloc_aligned(((void **)&_quantized_data), file_num_points * _num_chunks * sizeof(uint8_t), 1); + copy_aligned_data_from_file(compressed_file.c_str(), _quantized_data, file_num_points, _num_chunks, + _num_chunks); +#ifdef EXEC_ENV_OLS + throw ANNException("load_pq_centroid_bin should not be called when " + "EXEC_ENV_OLS is defined.", + -1, __FUNCSIG__, __FILE__, __LINE__); +#else + _pq_distance_fn->load_pivot_data(pivots_file.c_str(), _num_chunks); +#endif +} + +template +void PQDataStore::extract_data_to_bin(const std::string &filename, const location_t num_pts) +{ + throw std::logic_error("Not implemented yet"); +} + +template void PQDataStore::get_vector(const location_t i, data_t *target) const +{ + // REFACTOR TODO: Should we inflate the compressed vector here? + if (i < this->capacity()) + { + throw std::logic_error("Not implemented yet."); + } + else + { + std::stringstream ss; + ss << "Requested vector " << i << " but only " << this->capacity() << " vectors are present"; + throw diskann::ANNException(ss.str(), -1); + } +} +template void PQDataStore::set_vector(const location_t i, const data_t *const vector) +{ + // REFACTOR TODO: Should we accept a normal vector and compress here? + // memcpy (_data + i * _num_chunks, vector, _num_chunks * sizeof(data_t)); + throw std::logic_error("Not implemented yet"); +} + +template void PQDataStore::prefetch_vector(const location_t loc) const +{ + const uint8_t *ptr = _quantized_data + ((size_t)loc) * _num_chunks * sizeof(data_t); + diskann::prefetch_vector((const char *)ptr, _num_chunks * sizeof(data_t)); +} + +template +void PQDataStore::move_vectors(const location_t old_location_start, const location_t new_location_start, + const location_t num_points) +{ + // REFACTOR TODO: Moving vectors is only for in-mem fresh. + throw std::logic_error("Not implemented yet"); +} + +template +void PQDataStore::copy_vectors(const location_t from_loc, const location_t to_loc, const location_t num_points) +{ + // REFACTOR TODO: Is the number of bytes correct? + memcpy(_quantized_data + to_loc * _num_chunks, _quantized_data + from_loc * _num_chunks, _num_chunks * num_points); +} + +// REFACTOR TODO: Currently, we take aligned_query as parameter, but this +// function should also do the alignment. +template +void PQDataStore::preprocess_query(const data_t *aligned_query, AbstractScratch *scratch) const +{ + if (scratch == nullptr) + { + throw diskann::ANNException("Scratch space is null", -1); + } + + PQScratch *pq_scratch = scratch->pq_scratch(); + + if (pq_scratch == nullptr) + { + throw diskann::ANNException("PQScratch space has not been set in the scratch object.", -1); + } + + _pq_distance_fn->preprocess_query(aligned_query, (location_t)this->get_dims(), *pq_scratch); +} + +template float PQDataStore::get_distance(const data_t *query, const location_t loc) const +{ + throw std::logic_error("Not implemented yet"); +} + +template float PQDataStore::get_distance(const location_t loc1, const location_t loc2) const +{ + throw std::logic_error("Not implemented yet"); +} + +template +void PQDataStore::get_distance(const data_t *preprocessed_query, const location_t *locations, + const uint32_t location_count, float *distances, + AbstractScratch *scratch_space) const +{ + if (scratch_space == nullptr) + { + throw diskann::ANNException("Scratch space is null", -1); + } + PQScratch *pq_scratch = scratch_space->pq_scratch(); + if (pq_scratch == nullptr) + { + throw diskann::ANNException("PQScratch not set in scratch space.", -1); + } + diskann::aggregate_coords(locations, location_count, _quantized_data, this->_num_chunks, + pq_scratch->aligned_pq_coord_scratch); + _pq_distance_fn->preprocessed_distance(*pq_scratch, location_count, distances); +} + +template +void PQDataStore::get_distance(const data_t *preprocessed_query, const std::vector &ids, + std::vector &distances, AbstractScratch *scratch_space) const +{ + if (scratch_space == nullptr) + { + throw diskann::ANNException("Scratch space is null", -1); + } + PQScratch *pq_scratch = scratch_space->pq_scratch(); + if (pq_scratch == nullptr) + { + throw diskann::ANNException("PQScratch not set in scratch space.", -1); + } + diskann::aggregate_coords(ids, _quantized_data, this->_num_chunks, pq_scratch->aligned_pq_coord_scratch); + _pq_distance_fn->preprocessed_distance(*pq_scratch, (location_t)ids.size(), distances); +} + +template location_t PQDataStore::calculate_medoid() const +{ + // REFACTOR TODO: Must calculate this just like we do with data store. + size_t r = (size_t)rand() * (size_t)RAND_MAX + (size_t)rand(); + return (uint32_t)(r % (size_t)this->capacity()); +} + +template size_t PQDataStore::get_alignment_factor() const +{ + return 1; +} + +template Distance *PQDataStore::get_dist_fn() const +{ + return _distance_fn.get(); +} + +template location_t PQDataStore::load_impl(const std::string &file_prefix) +{ + if (_quantized_data != nullptr) + { + aligned_free(_quantized_data); + } + auto quantized_vectors_file = _pq_distance_fn->get_quantized_vectors_filename(file_prefix); + + size_t num_points; + load_aligned_bin(quantized_vectors_file, _quantized_data, num_points, _num_chunks, _num_chunks); + this->_capacity = (location_t)num_points; + + auto pivots_file = _pq_distance_fn->get_pivot_data_filename(file_prefix); + _pq_distance_fn->load_pivot_data(pivots_file, _num_chunks); + + return this->_capacity; +} + +template location_t PQDataStore::expand(const location_t new_size) +{ + throw std::logic_error("Not implemented yet"); +} + +template location_t PQDataStore::shrink(const location_t new_size) +{ + throw std::logic_error("Not implemented yet"); +} + +#ifdef EXEC_ENV_OLS +template location_t PQDataStore::load_impl(AlignedFileReader &reader) +{ +} +#endif + +template DISKANN_DLLEXPORT class PQDataStore; +template DISKANN_DLLEXPORT class PQDataStore; +template DISKANN_DLLEXPORT class PQDataStore; + +} // namespace diskann \ No newline at end of file diff --git a/src/pq_flash_index.cpp b/src/pq_flash_index.cpp index 592f2d8b3..7e2bda4e2 100644 --- a/src/pq_flash_index.cpp +++ b/src/pq_flash_index.cpp @@ -4,6 +4,8 @@ #include "common_includes.h" #include "timer.h" +#include "pq.h" +#include "pq_scratch.h" #include "pq_flash_index.h" #include "cosine_similarity.h" #include @@ -18,40 +20,29 @@ #define READ_U32(stream, val) stream.read((char *)&val, sizeof(uint32_t)) #define READ_UNSIGNED(stream, val) stream.read((char *)&val, sizeof(unsigned)) -// sector # on disk where node_id is present with in the graph part -#define NODE_SECTOR_NO(node_id) (((uint64_t)(node_id)) / nnodes_per_sector + 1) - -// obtains region of sector containing node -#define OFFSET_TO_NODE(sector_buf, node_id) \ - ((char *)sector_buf + (((uint64_t)node_id) % nnodes_per_sector) * max_node_len) - -// returns region of `node_buf` containing [NNBRS][NBR_ID(uint32_t)] -#define OFFSET_TO_NODE_NHOOD(node_buf) (unsigned *)((char *)node_buf + disk_bytes_per_point) - -// returns region of `node_buf` containing [COORD(T)] -#define OFFSET_TO_NODE_COORDS(node_buf) (T *)(node_buf) - // sector # beyond the end of graph where data for id is present for reordering -#define VECTOR_SECTOR_NO(id) (((uint64_t)(id)) / nvecs_per_sector + reorder_data_start_sector) +#define VECTOR_SECTOR_NO(id) (((uint64_t)(id)) / _nvecs_per_sector + _reorder_data_start_sector) // sector # beyond the end of graph where data for id is present for reordering -#define VECTOR_SECTOR_OFFSET(id) ((((uint64_t)(id)) % nvecs_per_sector) * data_dim * sizeof(float)) +#define VECTOR_SECTOR_OFFSET(id) ((((uint64_t)(id)) % _nvecs_per_sector) * _data_dim * sizeof(float)) namespace diskann { template PQFlashIndex::PQFlashIndex(std::shared_ptr &fileReader, diskann::Metric m) - : reader(fileReader), metric(m), thread_data(nullptr) + : reader(fileReader), metric(m), _thread_data(nullptr) { + diskann::Metric metric_to_invoke = m; if (m == diskann::Metric::COSINE || m == diskann::Metric::INNER_PRODUCT) { if (std::is_floating_point::value) { - diskann::cout << "Cosine metric chosen for (normalized) float data." - "Changing distance to L2 to boost accuracy." + diskann::cout << "Since data is floating point, we assume that it has been appropriately pre-processed " + "(normalization for cosine, and convert-to-l2 by adding extra dimension for MIPS). So we " + "shall invoke an l2 distance function." << std::endl; - metric = diskann::Metric::L2; + metric_to_invoke = diskann::Metric::L2; } else { @@ -61,8 +52,8 @@ PQFlashIndex::PQFlashIndex(std::shared_ptr &fileRe } } - this->dist_cmp.reset(diskann::get_distance_function(metric)); - this->dist_cmp_float.reset(diskann::get_distance_function(metric)); + this->_dist_cmp.reset(diskann::get_distance_function(metric_to_invoke)); + this->_dist_cmp_float.reset(diskann::get_distance_function(metric_to_invoke)); } template PQFlashIndex::~PQFlashIndex() @@ -74,19 +65,19 @@ template PQFlashIndex::~PQFlashIndex() } #endif - if (centroid_data != nullptr) - aligned_free(centroid_data); + if (_centroid_data != nullptr) + aligned_free(_centroid_data); // delete backing bufs for nhood and coord cache - if (nhood_cache_buf != nullptr) + if (_nhood_cache_buf != nullptr) { - delete[] nhood_cache_buf; - diskann::aligned_free(coord_cache_buf); + delete[] _nhood_cache_buf; + diskann::aligned_free(_coord_cache_buf); } - if (load_flag) + if (_load_flag) { diskann::cout << "Clearing scratch" << std::endl; - ScratchStoreManager> manager(this->thread_data); + ScratchStoreManager> manager(this->_thread_data); manager.destroy(); this->reader->deregister_all_threads(); reader->close(); @@ -95,11 +86,40 @@ template PQFlashIndex::~PQFlashIndex() { delete[] _pts_to_label_offsets; } - + if (_pts_to_label_counts != nullptr) + { + delete[] _pts_to_label_counts; + } if (_pts_to_labels != nullptr) { delete[] _pts_to_labels; } + if (_medoids != nullptr) + { + delete[] _medoids; + } +} + +template inline uint64_t PQFlashIndex::get_node_sector(uint64_t node_id) +{ + return 1 + (_nnodes_per_sector > 0 ? node_id / _nnodes_per_sector + : node_id * DIV_ROUND_UP(_max_node_len, defaults::SECTOR_LEN)); +} + +template +inline char *PQFlashIndex::offset_to_node(char *sector_buf, uint64_t node_id) +{ + return sector_buf + (_nnodes_per_sector == 0 ? 0 : (node_id % _nnodes_per_sector) * _max_node_len); +} + +template inline uint32_t *PQFlashIndex::offset_to_node_nhood(char *node_buf) +{ + return (unsigned *)(node_buf + _disk_bytes_per_point); +} + +template inline T *PQFlashIndex::offset_to_node_coords(char *node_buf) +{ + return (T *)(node_buf); } template @@ -112,13 +132,77 @@ void PQFlashIndex::setup_thread_data(uint64_t nthreads, uint64_t visi { #pragma omp critical { - SSDThreadData *data = new SSDThreadData(this->aligned_dim, visited_reserve); + SSDThreadData *data = new SSDThreadData(this->_aligned_dim, visited_reserve); this->reader->register_thread(); data->ctx = this->reader->get_ctx(); - this->thread_data.push(data); + this->_thread_data.push(data); } } - load_flag = true; + _load_flag = true; +} + +template +std::vector PQFlashIndex::read_nodes(const std::vector &node_ids, + std::vector &coord_buffers, + std::vector> &nbr_buffers) +{ + std::vector read_reqs; + std::vector retval(node_ids.size(), true); + + char *buf = nullptr; + auto num_sectors = _nnodes_per_sector > 0 ? 1 : DIV_ROUND_UP(_max_node_len, defaults::SECTOR_LEN); + alloc_aligned((void **)&buf, node_ids.size() * num_sectors * defaults::SECTOR_LEN, defaults::SECTOR_LEN); + + // create read requests + for (size_t i = 0; i < node_ids.size(); ++i) + { + auto node_id = node_ids[i]; + + AlignedRead read; + read.len = num_sectors * defaults::SECTOR_LEN; + read.buf = buf + i * num_sectors * defaults::SECTOR_LEN; + read.offset = get_node_sector(node_id) * defaults::SECTOR_LEN; + read_reqs.push_back(read); + } + + // borrow thread data and issue reads + ScratchStoreManager> manager(this->_thread_data); + auto this_thread_data = manager.scratch_space(); + IOContext &ctx = this_thread_data->ctx; + reader->read(read_reqs, ctx); + + // copy reads into buffers + for (uint32_t i = 0; i < read_reqs.size(); i++) + { +#if defined(_WINDOWS) && defined(USE_BING_INFRA) // this block is to handle failed reads in + // production settings + if ((*ctx.m_pRequestsStatus)[i] != IOContext::READ_SUCCESS) + { + retval[i] = false; + continue; + } +#endif + + char *node_buf = offset_to_node((char *)read_reqs[i].buf, node_ids[i]); + + if (coord_buffers[i] != nullptr) + { + T *node_coords = offset_to_node_coords(node_buf); + memcpy(coord_buffers[i], node_coords, _disk_bytes_per_point); + } + + if (nbr_buffers[i].second != nullptr) + { + uint32_t *node_nhood = offset_to_node_nhood(node_buf); + auto num_nbrs = *node_nhood; + nbr_buffers[i].first = num_nbrs; + memcpy(nbr_buffers[i].second, node_nhood + 1, num_nbrs * sizeof(uint32_t)); + } + } + + aligned_free(buf); + + return retval; } template void PQFlashIndex::load_cache_list(std::vector &node_list) @@ -127,69 +211,48 @@ template void PQFlashIndex::load_cache_ size_t num_cached_nodes = node_list.size(); // borrow thread data - ScratchStoreManager> manager(this->thread_data); - auto this_thread_data = manager.scratch_space(); - IOContext &ctx = this_thread_data->ctx; + //ScratchStoreManager> manager(this->_thread_data); + //auto this_thread_data = manager.scratch_space(); + //IOContext &ctx = this_thread_data->ctx; - nhood_cache_buf = new uint32_t[num_cached_nodes * (max_degree + 1)]; - memset(nhood_cache_buf, 0, num_cached_nodes * (max_degree + 1)); + // Allocate space for neighborhood cache + _nhood_cache_buf = new uint32_t[num_cached_nodes * (_max_degree + 1)]; + memset(_nhood_cache_buf, 0, num_cached_nodes * (_max_degree + 1)); - size_t coord_cache_buf_len = num_cached_nodes * aligned_dim; - diskann::alloc_aligned((void **)&coord_cache_buf, coord_cache_buf_len * sizeof(T), 8 * sizeof(T)); - memset(coord_cache_buf, 0, coord_cache_buf_len * sizeof(T)); + // Allocate space for coordinate cache + size_t coord_cache_buf_len = num_cached_nodes * _aligned_dim; + diskann::alloc_aligned((void **)&_coord_cache_buf, coord_cache_buf_len * sizeof(T), 8 * sizeof(T)); + memset(_coord_cache_buf, 0, coord_cache_buf_len * sizeof(T)); size_t BLOCK_SIZE = 8; size_t num_blocks = DIV_ROUND_UP(num_cached_nodes, BLOCK_SIZE); - for (size_t block = 0; block < num_blocks; block++) { size_t start_idx = block * BLOCK_SIZE; size_t end_idx = (std::min)(num_cached_nodes, (block + 1) * BLOCK_SIZE); - std::vector read_reqs; - std::vector> nhoods; + + // Copy offset into buffers to read into + std::vector nodes_to_read; + std::vector coord_buffers; + std::vector> nbr_buffers; for (size_t node_idx = start_idx; node_idx < end_idx; node_idx++) { - AlignedRead read; - char *buf = nullptr; - alloc_aligned((void **)&buf, SECTOR_LEN, SECTOR_LEN); - nhoods.push_back(std::make_pair(node_list[node_idx], buf)); - read.len = SECTOR_LEN; - read.buf = buf; - read.offset = NODE_SECTOR_NO(node_list[node_idx]) * SECTOR_LEN; - read_reqs.push_back(read); + nodes_to_read.push_back(node_list[node_idx]); + coord_buffers.push_back(_coord_cache_buf + node_idx * _aligned_dim); + nbr_buffers.emplace_back(0, _nhood_cache_buf + node_idx * (_max_degree + 1)); } - reader->read(read_reqs, ctx); + // issue the reads + auto read_status = read_nodes(nodes_to_read, coord_buffers, nbr_buffers); - size_t node_idx = start_idx; - for (uint32_t i = 0; i < read_reqs.size(); i++) + // check for success and insert into the cache. + for (size_t i = 0; i < read_status.size(); i++) { -#if defined(_WINDOWS) && defined(USE_BING_INFRA) // this block is to handle failed reads in - // production settings - if ((*ctx.m_pRequestsStatus)[i] != IOContext::READ_SUCCESS) + if (read_status[i] == true) { - continue; + _coord_cache.insert(std::make_pair(nodes_to_read[i], coord_buffers[i])); + _nhood_cache.insert(std::make_pair(nodes_to_read[i], nbr_buffers[i])); } -#endif - auto &nhood = nhoods[i]; - char *node_buf = OFFSET_TO_NODE(nhood.second, nhood.first); - T *node_coords = OFFSET_TO_NODE_COORDS(node_buf); - T *cached_coords = coord_cache_buf + node_idx * aligned_dim; - memcpy(cached_coords, node_coords, disk_bytes_per_point); - coord_cache.insert(std::make_pair(nhood.first, cached_coords)); - - // insert node nhood into nhood_cache - uint32_t *node_nhood = OFFSET_TO_NODE_NHOOD(node_buf); - - auto nnbrs = *node_nhood; - uint32_t *nbrs = node_nhood + 1; - std::pair cnhood; - cnhood.first = nnbrs; - cnhood.second = nhood_cache_buf + node_idx * (max_degree + 1); - memcpy(cnhood.second, nbrs, nnbrs * sizeof(uint32_t)); - nhood_cache.insert(std::make_pair(nhood.first, cnhood)); - aligned_free(nhood.second); - node_idx++; } } diskann::cout << "..done." << std::endl; @@ -210,24 +273,24 @@ void PQFlashIndex::generate_cache_list_from_sample_queries(std::strin std::vector &node_list) { #endif - if (num_nodes_to_cache >= this->num_points) + if (num_nodes_to_cache >= this->_num_points) { // for small num_points and big num_nodes_to_cache, use below way to get the node_list quickly - node_list.resize(this->num_points); - for (uint32_t i = 0; i < this->num_points; ++i) + node_list.resize(this->_num_points); + for (uint32_t i = 0; i < this->_num_points; ++i) { node_list[i] = i; } return; } - this->count_visited_nodes = true; - this->node_visit_counter.clear(); - this->node_visit_counter.resize(this->num_points); - for (uint32_t i = 0; i < node_visit_counter.size(); i++) + this->_count_visited_nodes = true; + this->_node_visit_counter.clear(); + this->_node_visit_counter.resize(this->_num_points); + for (uint32_t i = 0; i < _node_visit_counter.size(); i++) { - this->node_visit_counter[i].first = i; - this->node_visit_counter[i].second = 0; + this->_node_visit_counter[i].first = i; + this->_node_visit_counter[i].second = 0; } uint64_t sample_num, sample_dim, sample_aligned_dim; @@ -272,19 +335,19 @@ void PQFlashIndex::generate_cache_list_from_sample_queries(std::strin tmp_result_dists.data() + i, beamwidth, filtered_search, label_for_search, false); } - std::sort(this->node_visit_counter.begin(), node_visit_counter.end(), + std::sort(this->_node_visit_counter.begin(), _node_visit_counter.end(), [](std::pair &left, std::pair &right) { return left.second > right.second; }); node_list.clear(); node_list.shrink_to_fit(); - num_nodes_to_cache = std::min(num_nodes_to_cache, this->node_visit_counter.size()); + num_nodes_to_cache = std::min(num_nodes_to_cache, this->_node_visit_counter.size()); node_list.reserve(num_nodes_to_cache); for (uint64_t i = 0; i < num_nodes_to_cache; i++) { - node_list.push_back(this->node_visit_counter[i].first); + node_list.push_back(this->_node_visit_counter[i].first); } - this->count_visited_nodes = false; + this->_count_visited_nodes = false; diskann::aligned_free(samples); } @@ -299,27 +362,27 @@ void PQFlashIndex::cache_bfs_levels(uint64_t num_nodes_to_cache, std: tsl::robin_set node_set; // Do not cache more than 10% of the nodes in the index - uint64_t tenp_nodes = (uint64_t)(std::round(this->num_points * 0.1)); + uint64_t tenp_nodes = (uint64_t)(std::round(this->_num_points * 0.1)); if (num_nodes_to_cache > tenp_nodes) { diskann::cout << "Reducing nodes to cache from: " << num_nodes_to_cache << " to: " << tenp_nodes - << "(10 percent of total nodes:" << this->num_points << ")" << std::endl; + << "(10 percent of total nodes:" << this->_num_points << ")" << std::endl; num_nodes_to_cache = tenp_nodes == 0 ? 1 : tenp_nodes; } diskann::cout << "Caching " << num_nodes_to_cache << "..." << std::endl; // borrow thread data - ScratchStoreManager> manager(this->thread_data); - auto this_thread_data = manager.scratch_space(); - IOContext &ctx = this_thread_data->ctx; + //ScratchStoreManager> manager(this->_thread_data); + //auto this_thread_data = manager.scratch_space(); + //IOContext &ctx = this_thread_data->ctx; std::unique_ptr> cur_level, prev_level; cur_level = std::make_unique>(); prev_level = std::make_unique>(); - for (uint64_t miter = 0; miter < num_medoids && cur_level->size() < num_nodes_to_cache; miter++) + for (uint64_t miter = 0; miter < _num_medoids && cur_level->size() < num_nodes_to_cache; miter++) { - cur_level->insert(medoids[miter]); + cur_level->insert(_medoids[miter]); } if ((_filter_to_medoid_ids.size() > 0) && (cur_level->size() < num_nodes_to_cache)) @@ -373,53 +436,46 @@ void PQFlashIndex::cache_bfs_levels(uint64_t num_nodes_to_cache, std: diskann::cout << "." << std::flush; size_t start = block * BLOCK_SIZE; size_t end = (std::min)((block + 1) * BLOCK_SIZE, nodes_to_expand.size()); - std::vector read_reqs; - std::vector> nhoods; + + std::vector nodes_to_read; + std::vector coord_buffers(end - start, nullptr); + std::vector> nbr_buffers; + for (size_t cur_pt = start; cur_pt < end; cur_pt++) { - char *buf = nullptr; - alloc_aligned((void **)&buf, SECTOR_LEN, SECTOR_LEN); - nhoods.emplace_back(nodes_to_expand[cur_pt], buf); - AlignedRead read; - read.len = SECTOR_LEN; - read.buf = buf; - read.offset = NODE_SECTOR_NO(nodes_to_expand[cur_pt]) * SECTOR_LEN; - read_reqs.push_back(read); + nodes_to_read.push_back(nodes_to_expand[cur_pt]); + nbr_buffers.emplace_back(0, new uint32_t[_max_degree + 1]); } // issue read requests - reader->read(read_reqs, ctx); + auto read_status = read_nodes(nodes_to_read, coord_buffers, nbr_buffers); // process each nhood buf - for (uint32_t i = 0; i < read_reqs.size(); i++) + for (uint32_t i = 0; i < read_status.size(); i++) { -#if defined(_WINDOWS) && defined(USE_BING_INFRA) // this block is to handle read failures in - // production settings - if ((*ctx.m_pRequestsStatus)[i] != IOContext::READ_SUCCESS) + if (read_status[i] == false) { continue; } -#endif - auto &nhood = nhoods[i]; - - // insert node coord into coord_cache - char *node_buf = OFFSET_TO_NODE(nhood.second, nhood.first); - uint32_t *node_nhood = OFFSET_TO_NODE_NHOOD(node_buf); - uint64_t nnbrs = (uint64_t)*node_nhood; - uint32_t *nbrs = node_nhood + 1; - // explore next level - for (uint64_t j = 0; j < nnbrs && !finish_flag; j++) + else { - if (node_set.find(nbrs[j]) == node_set.end()) - { - cur_level->insert(nbrs[j]); - } - if (cur_level->size() + node_set.size() >= num_nodes_to_cache) + uint32_t nnbrs = nbr_buffers[i].first; + uint32_t *nbrs = nbr_buffers[i].second; + + // explore next level + for (uint32_t j = 0; j < nnbrs && !finish_flag; j++) { - finish_flag = true; + if (node_set.find(nbrs[j]) == node_set.end()) + { + cur_level->insert(nbrs[j]); + } + if (cur_level->size() + node_set.size() >= num_nodes_to_cache) + { + finish_flag = true; + } } } - aligned_free(nhood.second); + delete[] nbr_buffers[i].second; } } @@ -446,64 +502,50 @@ void PQFlashIndex::cache_bfs_levels(uint64_t num_nodes_to_cache, std: template void PQFlashIndex::use_medoids_data_as_centroids() { - if (centroid_data != nullptr) - aligned_free(centroid_data); - alloc_aligned(((void **)¢roid_data), num_medoids * aligned_dim * sizeof(float), 32); - std::memset(centroid_data, 0, num_medoids * aligned_dim * sizeof(float)); + if (_centroid_data != nullptr) + aligned_free(_centroid_data); + alloc_aligned(((void **)&_centroid_data), _num_medoids * _aligned_dim * sizeof(float), 32); + std::memset(_centroid_data, 0, _num_medoids * _aligned_dim * sizeof(float)); // borrow ctx - ScratchStoreManager> manager(this->thread_data); - auto data = manager.scratch_space(); - IOContext &ctx = data->ctx; - diskann::cout << "Loading centroid data from medoids vector data of " << num_medoids << " medoid(s)" << std::endl; - for (uint64_t cur_m = 0; cur_m < num_medoids; cur_m++) - { - auto medoid = medoids[cur_m]; - // read medoid nhood - char *medoid_buf = nullptr; - alloc_aligned((void **)&medoid_buf, SECTOR_LEN, SECTOR_LEN); - std::vector medoid_read(1); - medoid_read[0].len = SECTOR_LEN; - medoid_read[0].buf = medoid_buf; - medoid_read[0].offset = NODE_SECTOR_NO(medoid) * SECTOR_LEN; - reader->read(medoid_read, ctx); - - // all data about medoid - char *medoid_node_buf = OFFSET_TO_NODE(medoid_buf, medoid); - - // add medoid coords to `coord_cache` - T *medoid_coords = new T[data_dim]; - T *medoid_disk_coords = OFFSET_TO_NODE_COORDS(medoid_node_buf); - memcpy(medoid_coords, medoid_disk_coords, disk_bytes_per_point); - - if (!use_disk_index_pq) - { - for (uint32_t i = 0; i < data_dim; i++) - centroid_data[cur_m * aligned_dim + i] = medoid_coords[i]; - } - else - { - disk_pq_table.inflate_vector((uint8_t *)medoid_coords, (centroid_data + cur_m * aligned_dim)); - } + //ScratchStoreManager> manager(this->_thread_data); + //auto data = manager.scratch_space(); + //IOContext &ctx = data->ctx; + diskann::cout << "Loading centroid data from medoids vector data of " << _num_medoids << " medoid(s)" << std::endl; + + std::vector nodes_to_read; + std::vector medoid_bufs; + std::vector> nbr_bufs; - aligned_free(medoid_buf); - delete[] medoid_coords; + for (uint64_t cur_m = 0; cur_m < _num_medoids; cur_m++) + { + nodes_to_read.push_back(_medoids[cur_m]); + medoid_bufs.push_back(new T[_data_dim]); + nbr_bufs.emplace_back(0, nullptr); } -} -template -inline int32_t PQFlashIndex::get_filter_number(const LabelT &filter_label) -{ - int idx = -1; - for (uint32_t i = 0; i < _filter_list.size(); i++) + auto read_status = read_nodes(nodes_to_read, medoid_bufs, nbr_bufs); + + for (uint64_t cur_m = 0; cur_m < _num_medoids; cur_m++) { - if (_filter_list[i] == filter_label) + if (read_status[cur_m] == true) { - idx = i; - break; + if (!_use_disk_index_pq) + { + for (uint32_t i = 0; i < _data_dim; i++) + _centroid_data[cur_m * _aligned_dim + i] = medoid_bufs[cur_m][i]; + } + else + { + _disk_pq_table.inflate_vector((uint8_t *)medoid_bufs[cur_m], (_centroid_data + cur_m * _aligned_dim)); + } } + else + { + throw ANNException("Unable to read a medoid", -1, __FUNCSIG__, __FILE__, __LINE__); + } + delete[] medoid_bufs[cur_m]; } - return idx; } template @@ -514,38 +556,29 @@ void PQFlashIndex::generate_random_labels(std::vector &labels labels.clear(); labels.resize(num_labels); - uint64_t num_total_labels = - _pts_to_label_offsets[num_points - 1] + _pts_to_labels[_pts_to_label_offsets[num_points - 1]]; + uint64_t num_total_labels = _pts_to_label_offsets[_num_points - 1] + _pts_to_label_counts[_num_points - 1]; std::mt19937 gen(rd()); - std::uniform_int_distribution dis(0, num_total_labels); - - tsl::robin_set skip_locs; - for (uint32_t i = 0; i < num_points; i++) + if (num_total_labels == 0) { - skip_locs.insert(_pts_to_label_offsets[i]); + std::stringstream stream; + stream << "No labels found in data. Not sampling random labels "; + diskann::cerr << stream.str() << std::endl; + throw diskann::ANNException(stream.str(), -1, __FUNCSIG__, __FILE__, __LINE__); } + std::uniform_int_distribution dis(0, num_total_labels - 1); #pragma omp parallel for schedule(dynamic, 1) num_threads(nthreads) for (int64_t i = 0; i < num_labels; i++) { - bool found_flag = false; - while (!found_flag) - { - uint64_t rnd_loc = dis(gen); - if (skip_locs.find(rnd_loc) == skip_locs.end()) - { - found_flag = true; - labels[i] = _filter_list[_pts_to_labels[rnd_loc]]; - } - } + uint64_t rnd_loc = dis(gen); + labels[i] = (LabelT)_pts_to_labels[rnd_loc]; } } template -std::unordered_map PQFlashIndex::load_label_map(const std::string &labels_map_file) +std::unordered_map PQFlashIndex::load_label_map(std::basic_istream &map_reader) { std::unordered_map string_to_int_mp; - std::ifstream map_reader(labels_map_file); std::string line, token; LabelT token_as_num; std::string label_str; @@ -570,7 +603,7 @@ LabelT PQFlashIndex::get_converted_label(const std::string &filter_la } else if (_use_universal_label) { - return static_cast(_universal_filter_num); + return _universal_filter_label; } else { @@ -578,6 +611,13 @@ LabelT PQFlashIndex::get_converted_label(const std::string &filter_la } } +template +void PQFlashIndex::reset_stream_for_reading(std::basic_istream &infile) +{ + infile.clear(); + infile.seekg(0); +} + template bool PQFlashIndex::is_label_valid(const std::string& filter_label) { @@ -589,7 +629,6 @@ bool PQFlashIndex::is_label_valid(const std::string& filter_label) return false; } -// test commit template void PQFlashIndex::get_label_file_metadata(const std::string &fileContent, uint32_t &num_pts, uint32_t &num_total_labels) @@ -635,14 +674,14 @@ void PQFlashIndex::get_label_file_metadata(const std::string &fileCon } template -inline bool PQFlashIndex::point_has_label(uint32_t point_id, uint32_t label_id) +inline bool PQFlashIndex::point_has_label(uint32_t point_id, LabelT label_id) { uint32_t start_vec = _pts_to_label_offsets[point_id]; - uint32_t num_lbls = _pts_to_labels[start_vec]; + uint32_t num_lbls = _pts_to_label_counts[point_id]; bool ret_val = false; for (uint32_t i = 0; i < num_lbls; i++) { - if (_pts_to_labels[start_vec + 1 + i] == label_id) + if (_pts_to_labels[start_vec + i] == label_id) { ret_val = true; break; @@ -652,13 +691,8 @@ inline bool PQFlashIndex::point_has_label(uint32_t point_id, uint32_t } template -void PQFlashIndex::parse_label_file(const std::string &label_file, size_t &num_points_labels) +void PQFlashIndex::parse_label_file(std::basic_istream& infile, size_t &num_points_labels) { - std::ifstream infile(label_file, std::ios::binary); - if (infile.fail()) - { - throw diskann::ANNException(std::string("Failed to open file ") + label_file, -1); - } infile.seekg(0, std::ios::end); size_t file_size = infile.tellg(); @@ -666,8 +700,8 @@ void PQFlashIndex::parse_label_file(const std::string &label_file, si infile.seekg(0, std::ios::beg); infile.read(&buffer[0], file_size); - infile.close(); + std::string line; uint32_t line_cnt = 0; uint32_t num_pts_in_label_file; @@ -675,8 +709,9 @@ void PQFlashIndex::parse_label_file(const std::string &label_file, si get_label_file_metadata(buffer, num_pts_in_label_file, num_total_labels); _pts_to_label_offsets = new uint32_t[num_pts_in_label_file]; - _pts_to_labels = new uint32_t[num_pts_in_label_file + num_total_labels]; - uint32_t counter = 0; + _pts_to_label_counts = new uint32_t[num_pts_in_label_file]; + _pts_to_labels = new LabelT[num_total_labels]; + uint32_t labels_seen_so_far = 0; std::string label_str; size_t cur_pos = 0; @@ -689,10 +724,9 @@ void PQFlashIndex::parse_label_file(const std::string &label_file, si break; } - _pts_to_label_offsets[line_cnt] = counter; - uint32_t &num_lbls_in_cur_pt = _pts_to_labels[counter]; + _pts_to_label_offsets[line_cnt] = labels_seen_so_far; + uint32_t &num_lbls_in_cur_pt = _pts_to_label_counts[line_cnt]; num_lbls_in_cur_pt = 0; - counter++; size_t lbl_pos = cur_pos; size_t next_lbl_pos = 0; @@ -704,30 +738,26 @@ void PQFlashIndex::parse_label_file(const std::string &label_file, si next_lbl_pos = next_pos; } - if (next_lbl_pos > next_pos) // the last label in one line + if (next_lbl_pos > next_pos) // the last label in one line, just read to the end { next_lbl_pos = next_pos; } label_str.assign(buffer.c_str() + lbl_pos, next_lbl_pos - lbl_pos); - if (label_str[label_str.length() - 1] == '\t') + if (label_str[label_str.length() - 1] == '\t') // '\t' won't exist in label file? { label_str.erase(label_str.length() - 1); } LabelT token_as_num = (LabelT)std::stoul(label_str); - if (_labels.find(token_as_num) == _labels.end()) - { - _filter_list.emplace_back(token_as_num); - } - - _pts_to_labels[counter++] = token_as_num; + _pts_to_labels[labels_seen_so_far++] = (LabelT)token_as_num; num_lbls_in_cur_pt++; - _labels.insert(token_as_num); + // move to next label lbl_pos = next_lbl_pos + 1; } + // move to next line cur_pos = next_pos + 1; if (num_lbls_in_cur_pt == 0) @@ -740,12 +770,13 @@ void PQFlashIndex::parse_label_file(const std::string &label_file, si } num_points_labels = line_cnt; + reset_stream_for_reading(infile); } template void PQFlashIndex::set_universal_label(const LabelT &label) { _use_universal_label = true; - _universal_filter_num = (uint32_t)label; + _universal_filter_label = label; } #ifdef EXEC_ENV_OLS @@ -763,15 +794,14 @@ template int PQFlashIndex::load(uint32_ std::string labels_to_medoids = std::string(index_prefix) + "_labels_to_medoids.txt"; std::string labels_map_file = std::string(index_prefix) + "_labels_map.txt"; std::string univ_label_file = std::string(index_prefix) + "_universal_label.txt"; - #ifdef EXEC_ENV_OLS return load_from_separate_paths(files, num_threads, disk_index_file.c_str(), pq_table_bin.c_str(), - pq_compressed_vectors.c_str(), labels_file.c_str(), labels_to_medoids.c_str(), - labels_map_file.c_str(), univ_label_file.c_str()); + pq_compressed_vectors.c_str(), labels_file.c_str(), labels_to_medoids.c_str(), + labels_map_file.c_str(), univ_label_file.c_str()); #else return load_from_separate_paths(num_threads, disk_index_file.c_str(), pq_table_bin.c_str(), - pq_compressed_vectors.c_str(), labels_file.c_str(), labels_to_medoids.c_str(), - labels_map_file.c_str(), univ_label_file.c_str()); + pq_compressed_vectors.c_str(), labels_file.c_str(), labels_to_medoids.c_str(), + labels_map_file.c_str(), univ_label_file.c_str()); #endif } @@ -793,13 +823,13 @@ int PQFlashIndex::load_from_separate_paths(uint32_t num_threads, cons #endif std::string pq_table_bin = pivots_filepath; std::string pq_compressed_vectors = compressed_filepath; - std::string disk_index_file = index_filepath; - std::string medoids_file = std::string(disk_index_file) + "_medoids.bin"; - std::string centroids_file = std::string(disk_index_file) + "_centroids.bin"; + std::string _disk_index_file = index_filepath; + std::string medoids_file = std::string(_disk_index_file) + "_medoids.bin"; + std::string centroids_file = std::string(_disk_index_file) + "_centroids.bin"; std::string labels_file = (labels_filepath == nullptr ? "" : labels_filepath); std::string labels_to_medoids = (labels_to_medoids_filepath == nullptr ? "" : labels_to_medoids_filepath); - std::string dummy_map_file = std ::string(disk_index_file) + "_dummy_map.txt"; + std::string dummy_map_file = std ::string(_disk_index_file) + "_dummy_map.txt"; std::string labels_map_file = (labels_map_filepath == nullptr ? "" : labels_map_filepath); size_t num_pts_in_label_file = 0; @@ -810,7 +840,7 @@ int PQFlashIndex::load_from_separate_paths(uint32_t num_threads, cons get_bin_metadata(pq_table_bin, pq_file_num_centroids, pq_file_dim, METADATA_SIZE); #endif - this->disk_index_file = disk_index_file; + this->_disk_index_file = _disk_index_file; if (pq_file_num_centroids != 256) { @@ -818,13 +848,11 @@ int PQFlashIndex::load_from_separate_paths(uint32_t num_threads, cons return -1; } - this->data_dim = pq_file_dim; - // will reset later if we use PQ on disk - this->disk_data_dim = this->data_dim; + this->_data_dim = pq_file_dim; // will change later if we use PQ on disk or if we are using // inner product without PQ - this->disk_bytes_per_point = this->data_dim * sizeof(T); - this->aligned_dim = ROUND_UP(pq_file_dim, 8); + this->_disk_bytes_per_point = this->_data_dim * sizeof(T); + this->_aligned_dim = ROUND_UP(pq_file_dim, 8); size_t npts_u64, nchunks_u64; #ifdef EXEC_ENV_OLS @@ -833,17 +861,53 @@ int PQFlashIndex::load_from_separate_paths(uint32_t num_threads, cons diskann::load_bin(pq_compressed_vectors, this->data, npts_u64, nchunks_u64); #endif - this->num_points = npts_u64; - this->n_chunks = nchunks_u64; + this->_num_points = npts_u64; + this->_n_chunks = nchunks_u64; +#ifdef EXEC_ENV_OLS + if (files.fileExists(labels_file)) + { + FileContent &content_labels = files.getContent(labels_file); + std::stringstream infile(std::string((const char *)content_labels._content, content_labels._size)); +#else if (file_exists(labels_file)) { - parse_label_file(labels_file, num_pts_in_label_file); - assert(num_pts_in_label_file == this->num_points); - _label_map = load_label_map(labels_map_file); + std::ifstream infile(labels_file, std::ios::binary); + if (infile.fail()) + { + throw diskann::ANNException(std::string("Failed to open file ") + labels_file, -1); + } +#endif + parse_label_file(infile, num_pts_in_label_file); + assert(num_pts_in_label_file == this->_num_points); + +#ifndef EXEC_ENV_OLS + infile.close(); +#endif + +#ifdef EXEC_ENV_OLS + FileContent &content_labels_map = files.getContent(labels_map_file); + std::stringstream map_reader(std::string((const char *)content_labels_map._content, content_labels_map._size)); +#else + std::ifstream map_reader(labels_map_file); +#endif + _label_map = load_label_map(map_reader); + +#ifndef EXEC_ENV_OLS + map_reader.close(); +#endif + +#ifdef EXEC_ENV_OLS + if (files.fileExists(labels_to_medoids)) + { + FileContent &content_labels_to_meoids = files.getContent(labels_to_medoids); + std::stringstream medoid_stream( + std::string((const char *)content_labels_to_meoids._content, content_labels_to_meoids._size)); +#else if (file_exists(labels_to_medoids)) { std::ifstream medoid_stream(labels_to_medoids); assert(medoid_stream.is_open()); +#endif std::string line, token; _filter_to_medoid_ids.clear(); @@ -871,22 +935,41 @@ int PQFlashIndex::load_from_separate_paths(uint32_t num_threads, cons throw FileException(labels_to_medoids, e, __FUNCSIG__, __FILE__, __LINE__); } } - std::string univ_label_file = (unv_label_filepath == nullptr ? "" : unv_label_filepath); + +#ifdef EXEC_ENV_OLS + if (files.fileExists(univ_label_file)) + { + FileContent& content_univ_label = files.getContent(univ_label_file); + std::stringstream universal_label_reader( + std::string((const char*)content_univ_label._content, content_univ_label._size)); +#else if (file_exists(univ_label_file)) { std::ifstream universal_label_reader(univ_label_file); assert(universal_label_reader.is_open()); +#endif std::string univ_label; universal_label_reader >> univ_label; +#ifndef EXEC_ENV_OLS universal_label_reader.close(); +#endif LabelT label_as_num = (LabelT)std::stoul(univ_label); set_universal_label(label_as_num); } + +#ifdef EXEC_ENV_OLS + if (files.fileExists(dummy_map_file)) + { + FileContent &content_dummy_map = files.getContent(dummy_map_file); + std::stringstream dummy_map_stream( + std::string((const char *)content_dummy_map._content, content_dummy_map._size)); +#else if (file_exists(dummy_map_file)) { std::ifstream dummy_map_stream(dummy_map_file); assert(dummy_map_stream.is_open()); +#endif std::string line, token; while (std::getline(dummy_map_stream, line)) @@ -912,21 +995,24 @@ int PQFlashIndex::load_from_separate_paths(uint32_t num_threads, cons _real_to_dummy_map[real_id].emplace_back(dummy_id); } +#ifndef EXEC_ENV_OLS dummy_map_stream.close(); +#endif diskann::cout << "Loaded dummy map" << std::endl; } } #ifdef EXEC_ENV_OLS - pq_table.load_pq_centroid_bin(files, pq_table_bin.c_str(), nchunks_u64); + _pq_table.load_pq_centroid_bin(files, pq_table_bin.c_str(), nchunks_u64); #else - pq_table.load_pq_centroid_bin(pq_table_bin.c_str(), nchunks_u64); + _pq_table.load_pq_centroid_bin(pq_table_bin.c_str(), nchunks_u64); #endif - diskann::cout << "Loaded PQ centroids and in-memory compressed vectors. #points: " << num_points - << " #dim: " << data_dim << " #aligned_dim: " << aligned_dim << " #chunks: " << n_chunks << std::endl; + diskann::cout << "Loaded PQ centroids and in-memory compressed vectors. #points: " << _num_points + << " #dim: " << _data_dim << " #aligned_dim: " << _aligned_dim << " #chunks: " << _n_chunks + << std::endl; - if (n_chunks > MAX_PQ_CHUNKS) + if (_n_chunks > MAX_PQ_CHUNKS) { std::stringstream stream; stream << "Error loading index. Ensure that max PQ bytes for in-memory " @@ -935,23 +1021,26 @@ int PQFlashIndex::load_from_separate_paths(uint32_t num_threads, cons throw diskann::ANNException(stream.str(), -1, __FUNCSIG__, __FILE__, __LINE__); } - std::string disk_pq_pivots_path = this->disk_index_file + "_pq_pivots.bin"; - if (file_exists(disk_pq_pivots_path)) - { - use_disk_index_pq = true; + std::string disk_pq_pivots_path = this->_disk_index_file + "_pq_pivots.bin"; #ifdef EXEC_ENV_OLS - // giving 0 chunks to make the pq_table infer from the + if (files.fileExists(disk_pq_pivots_path)) + { + _use_disk_index_pq = true; + // giving 0 chunks to make the _pq_table infer from the // chunk_offsets file the correct value - disk_pq_table.load_pq_centroid_bin(files, disk_pq_pivots_path.c_str(), 0); + _disk_pq_table.load_pq_centroid_bin(files, disk_pq_pivots_path.c_str(), 0); #else - // giving 0 chunks to make the pq_table infer from the + if (file_exists(disk_pq_pivots_path)) + { + _use_disk_index_pq = true; + // giving 0 chunks to make the _pq_table infer from the // chunk_offsets file the correct value - disk_pq_table.load_pq_centroid_bin(disk_pq_pivots_path.c_str(), 0); + _disk_pq_table.load_pq_centroid_bin(disk_pq_pivots_path.c_str(), 0); #endif - disk_pq_n_chunks = disk_pq_table.get_num_chunks(); - disk_bytes_per_point = - disk_pq_n_chunks * sizeof(uint8_t); // revising disk_bytes_per_point since DISK PQ is used. - diskann::cout << "Disk index uses PQ data compressed down to " << disk_pq_n_chunks << " bytes per point." + _disk_pq_n_chunks = _disk_pq_table.get_num_chunks(); + _disk_bytes_per_point = + _disk_pq_n_chunks * sizeof(uint8_t); // revising disk_bytes_per_point since DISK PQ is used. + diskann::cout << "Disk index uses PQ data compressed down to " << _disk_pq_n_chunks << " bytes per point." << std::endl; } @@ -962,15 +1051,15 @@ int PQFlashIndex::load_from_separate_paths(uint32_t num_threads, cons // DiskPriorityIO class. So, we need to estimate how many // bytes are needed to store the header and read in that many using our // 'standard' aligned file reader approach. - reader->open(disk_index_file); + reader->open(_disk_index_file); this->setup_thread_data(num_threads); - this->max_nthreads = num_threads; + this->_max_nthreads = num_threads; char *bytes = getHeaderBytes(); ContentBuf buf(bytes, HEADER_SIZE); std::basic_istream index_metadata(&buf); #else - std::ifstream index_metadata(disk_index_file, std::ios::binary); + std::ifstream index_metadata(_disk_index_file, std::ios::binary); #endif uint32_t nr, nc; // metadata itself is stored as bin format (nr is number of @@ -983,59 +1072,59 @@ int PQFlashIndex::load_from_separate_paths(uint32_t num_threads, cons READ_U64(index_metadata, disk_nnodes); READ_U64(index_metadata, disk_ndims); - if (disk_nnodes != num_points) + if (disk_nnodes != _num_points) { diskann::cout << "Mismatch in #points for compressed data file and disk " "index file: " - << disk_nnodes << " vs " << num_points << std::endl; + << disk_nnodes << " vs " << _num_points << std::endl; return -1; } size_t medoid_id_on_file; READ_U64(index_metadata, medoid_id_on_file); - READ_U64(index_metadata, max_node_len); - READ_U64(index_metadata, nnodes_per_sector); - max_degree = ((max_node_len - disk_bytes_per_point) / sizeof(uint32_t)) - 1; + READ_U64(index_metadata, _max_node_len); + READ_U64(index_metadata, _nnodes_per_sector); + _max_degree = ((_max_node_len - _disk_bytes_per_point) / sizeof(uint32_t)) - 1; - if (max_degree > MAX_GRAPH_DEGREE) + if (_max_degree > defaults::MAX_GRAPH_DEGREE) { std::stringstream stream; stream << "Error loading index. Ensure that max graph degree (R) does " "not exceed " - << MAX_GRAPH_DEGREE << std::endl; + << defaults::MAX_GRAPH_DEGREE << std::endl; throw diskann::ANNException(stream.str(), -1, __FUNCSIG__, __FILE__, __LINE__); } // setting up concept of frozen points in disk index for streaming-DiskANN - READ_U64(index_metadata, this->num_frozen_points); + READ_U64(index_metadata, this->_num_frozen_points); uint64_t file_frozen_id; READ_U64(index_metadata, file_frozen_id); - if (this->num_frozen_points == 1) - this->frozen_location = file_frozen_id; - if (this->num_frozen_points == 1) + if (this->_num_frozen_points == 1) + this->_frozen_location = file_frozen_id; + if (this->_num_frozen_points == 1) { - diskann::cout << " Detected frozen point in index at location " << this->frozen_location + diskann::cout << " Detected frozen point in index at location " << this->_frozen_location << ". Will not output it at search time." << std::endl; } - READ_U64(index_metadata, this->reorder_data_exists); - if (this->reorder_data_exists) + READ_U64(index_metadata, this->_reorder_data_exists); + if (this->_reorder_data_exists) { - if (this->use_disk_index_pq == false) + if (this->_use_disk_index_pq == false) { throw ANNException("Reordering is designed for used with disk PQ " "compression option", -1, __FUNCSIG__, __FILE__, __LINE__); } - READ_U64(index_metadata, this->reorder_data_start_sector); - READ_U64(index_metadata, this->ndims_reorder_vecs); - READ_U64(index_metadata, this->nvecs_per_sector); + READ_U64(index_metadata, this->_reorder_data_start_sector); + READ_U64(index_metadata, this->_ndims_reorder_vecs); + READ_U64(index_metadata, this->_nvecs_per_sector); } diskann::cout << "Disk-Index File Meta-data: "; - diskann::cout << "# nodes per sector: " << nnodes_per_sector; - diskann::cout << ", max node len (bytes): " << max_node_len; - diskann::cout << ", max node degree: " << max_degree << std::endl; + diskann::cout << "# nodes per sector: " << _nnodes_per_sector; + diskann::cout << ", max node len (bytes): " << _max_node_len; + diskann::cout << ", max node degree: " << _max_degree << std::endl; #ifdef EXEC_ENV_OLS delete[] bytes; @@ -1045,10 +1134,10 @@ int PQFlashIndex::load_from_separate_paths(uint32_t num_threads, cons #ifndef EXEC_ENV_OLS // open AlignedFileReader handle to index_file - std::string index_fname(disk_index_file); + std::string index_fname(_disk_index_file); reader->open(index_fname); this->setup_thread_data(num_threads); - this->max_nthreads = num_threads; + this->_max_nthreads = num_threads; #endif @@ -1056,12 +1145,12 @@ int PQFlashIndex::load_from_separate_paths(uint32_t num_threads, cons if (files.fileExists(medoids_file)) { size_t tmp_dim; - diskann::load_bin(files, medoids_file, medoids, num_medoids, tmp_dim); + diskann::load_bin(files, norm_file, medoids_file, _medoids, _num_medoids, tmp_dim); #else if (file_exists(medoids_file)) { size_t tmp_dim; - diskann::load_bin(medoids_file, medoids, num_medoids, tmp_dim); + diskann::load_bin(medoids_file, _medoids, _num_medoids, tmp_dim); #endif if (tmp_dim != 1) @@ -1088,12 +1177,12 @@ int PQFlashIndex::load_from_separate_paths(uint32_t num_threads, cons { size_t num_centroids, aligned_tmp_dim; #ifdef EXEC_ENV_OLS - diskann::load_aligned_bin(files, centroids_file, centroid_data, num_centroids, tmp_dim, + diskann::load_aligned_bin(files, centroids_file, _centroid_data, num_centroids, tmp_dim, aligned_tmp_dim); #else - diskann::load_aligned_bin(centroids_file, centroid_data, num_centroids, tmp_dim, aligned_tmp_dim); + diskann::load_aligned_bin(centroids_file, _centroid_data, num_centroids, tmp_dim, aligned_tmp_dim); #endif - if (aligned_tmp_dim != aligned_dim || num_centroids != num_medoids) + if (aligned_tmp_dim != _aligned_dim || num_centroids != _num_medoids) { std::stringstream stream; stream << "Error loading centroids data file. Expected bin format " @@ -1108,21 +1197,29 @@ int PQFlashIndex::load_from_separate_paths(uint32_t num_threads, cons } else { - num_medoids = 1; - medoids = new uint32_t[1]; - medoids[0] = (uint32_t)(medoid_id_on_file); + _num_medoids = 1; + _medoids = new uint32_t[1]; + _medoids[0] = (uint32_t)(medoid_id_on_file); use_medoids_data_as_centroids(); } - std::string norm_file = std::string(disk_index_file) + "_max_base_norm.bin"; + std::string norm_file = std::string(_disk_index_file) + "_max_base_norm.bin"; +#ifdef EXEC_ENV_OLS + if (files.fileExists(norm_file) && metric == diskann::Metric::INNER_PRODUCT) + { + uint64_t dumr, dumc; + float *norm_val; + diskann::load_bin(files, norm_val, dumr, dumc); +#else if (file_exists(norm_file) && metric == diskann::Metric::INNER_PRODUCT) { uint64_t dumr, dumc; float *norm_val; diskann::load_bin(norm_file, norm_val, dumr, dumc); - this->max_base_norm = norm_val[0]; - diskann::cout << "Setting re-scaling factor of base vectors to " << this->max_base_norm << std::endl; +#endif + this->_max_base_norm = norm_val[0]; + diskann::cout << "Setting re-scaling factor of base vectors to " << this->_max_base_norm << std::endl; delete[] norm_val; } diskann::cout << "done.." << std::endl; @@ -1130,37 +1227,46 @@ int PQFlashIndex::load_from_separate_paths(uint32_t num_threads, cons } #ifdef USE_BING_INFRA -bool getNextCompletedRequest(const IOContext &ctx, size_t size, int &completedIndex) +bool getNextCompletedRequest(std::shared_ptr &reader, IOContext &ctx, size_t size, + int &completedIndex) { - bool waitsRemaining = false; - long completeCount = ctx.m_completeCount; - do + if ((*ctx.m_pRequests)[0].m_callback) { - for (int i = 0; i < size; i++) + bool waitsRemaining = false; + long completeCount = ctx.m_completeCount; + do { - auto ithStatus = (*ctx.m_pRequestsStatus)[i]; - if (ithStatus == IOContext::Status::READ_SUCCESS) + for (int i = 0; i < size; i++) { - completedIndex = i; - return true; + auto ithStatus = (*ctx.m_pRequestsStatus)[i]; + if (ithStatus == IOContext::Status::READ_SUCCESS) + { + completedIndex = i; + return true; + } + else if (ithStatus == IOContext::Status::READ_WAIT) + { + waitsRemaining = true; + } } - else if (ithStatus == IOContext::Status::READ_WAIT) + + // if we didn't find one in READ_SUCCESS, wait for one to complete. + if (waitsRemaining) { - waitsRemaining = true; + WaitOnAddress(&ctx.m_completeCount, &completeCount, sizeof(completeCount), 100); + // this assumes the knowledge of the reader behavior (implicit + // contract). need better factoring? } - } + } while (waitsRemaining); - // if we didn't find one in READ_SUCCESS, wait for one to complete. - if (waitsRemaining) - { - WaitOnAddress(&ctx.m_completeCount, &completeCount, sizeof(completeCount), 100); - // this assumes the knowledge of the reader behavior (implicit - // contract). need better factoring? - } - } while (waitsRemaining); - - completedIndex = -1; - return false; + completedIndex = -1; + return false; + } + else + { + reader->wait(ctx, completedIndex); + return completedIndex != -1; + } } #endif @@ -1201,16 +1307,17 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t const uint32_t io_limit, const bool use_reorder_data, QueryStats *stats) { - int32_t filter_num = filter_label; - if (beam_width > MAX_N_SECTOR_READS) - throw ANNException("Beamwidth can not be higher than MAX_N_SECTOR_READS", -1, __FUNCSIG__, __FILE__, __LINE__); + uint64_t num_sector_per_nodes = DIV_ROUND_UP(_max_node_len, defaults::SECTOR_LEN); + if (beam_width > num_sector_per_nodes * defaults::MAX_N_SECTOR_READS) + throw ANNException("Beamwidth can not be higher than defaults::MAX_N_SECTOR_READS", -1, __FUNCSIG__, __FILE__, + __LINE__); - ScratchStoreManager> manager(this->thread_data); + ScratchStoreManager> manager(this->_thread_data); auto data = manager.scratch_space(); IOContext &ctx = data->ctx; auto query_scratch = &(data->scratch); - auto pq_query_scratch = query_scratch->_pq_scratch; + auto pq_query_scratch = query_scratch->pq_scratch(); // reset query scratch query_scratch->reset(); @@ -1218,36 +1325,39 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t // copy query to thread specific aligned and allocated memory (for distance // calculations we need aligned data) float query_norm = 0; - T *aligned_query_T = query_scratch->aligned_query_T; + T *aligned_query_T = query_scratch->aligned_query_T(); float *query_float = pq_query_scratch->aligned_query_float; float *query_rotated = pq_query_scratch->rotated_query; - // if inner product, we laso normalize the query and set the last coordinate - // to 0 (this is the extra coordindate used to convert MIPS to L2 search) - if (metric == diskann::Metric::INNER_PRODUCT) + // normalization step. for cosine, we simply normalize the query + // for mips, we normalize the first d-1 dims, and add a 0 for last dim, since an extra coordinate was used to + // convert MIPS to L2 search + if (metric == diskann::Metric::INNER_PRODUCT || metric == diskann::Metric::COSINE) { - for (size_t i = 0; i < this->data_dim - 1; i++) + uint64_t inherent_dim = (metric == diskann::Metric::COSINE) ? this->_data_dim : (uint64_t)(this->_data_dim - 1); + for (size_t i = 0; i < inherent_dim; i++) { aligned_query_T[i] = query1[i]; query_norm += query1[i] * query1[i]; } - aligned_query_T[this->data_dim - 1] = 0; + if (metric == diskann::Metric::INNER_PRODUCT) + aligned_query_T[this->_data_dim - 1] = 0; query_norm = std::sqrt(query_norm); - for (size_t i = 0; i < this->data_dim - 1; i++) + for (size_t i = 0; i < inherent_dim; i++) { aligned_query_T[i] = (T)(aligned_query_T[i] / query_norm); } - pq_query_scratch->set(this->data_dim, aligned_query_T); + pq_query_scratch->initialize(this->_data_dim, aligned_query_T); } else { - for (size_t i = 0; i < this->data_dim; i++) + for (size_t i = 0; i < this->_data_dim; i++) { aligned_query_T[i] = query1[i]; } - pq_query_scratch->set(this->data_dim, aligned_query_T); + pq_query_scratch->initialize(this->_data_dim, aligned_query_T); } // pointers to buffers for data @@ -1257,12 +1367,14 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t // sector scratch char *sector_scratch = query_scratch->sector_scratch; uint64_t §or_scratch_idx = query_scratch->sector_idx; + const uint64_t num_sectors_per_node = + _nnodes_per_sector > 0 ? 1 : DIV_ROUND_UP(_max_node_len, defaults::SECTOR_LEN); // query <-> PQ chunk centers distances - pq_table.preprocess_query(query_rotated); // center the query and rotate if - // we have a rotation matrix + _pq_table.preprocess_query(query_rotated); // center the query and rotate if + // we have a rotation matrix float *pq_dists = pq_query_scratch->aligned_pqtable_dist_scratch; - pq_table.populate_chunk_distances(query_rotated, pq_dists); + _pq_table.populate_chunk_distances(query_rotated, pq_dists); // query <-> neighbor list float *dist_scratch = pq_query_scratch->aligned_dist_scratch; @@ -1271,8 +1383,8 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t // lambda to batch compute query<-> node distances in PQ space auto compute_dists = [this, pq_coord_scratch, pq_dists](const uint32_t *ids, const uint64_t n_ids, float *dists_out) { - diskann::aggregate_coords(ids, n_ids, this->data, this->n_chunks, pq_coord_scratch); - diskann::pq_dist_lookup(pq_coord_scratch, n_ids, this->n_chunks, pq_dists, dists_out); + diskann::aggregate_coords(ids, n_ids, this->data, this->_n_chunks, pq_coord_scratch); + diskann::pq_dist_lookup(pq_coord_scratch, n_ids, this->_n_chunks, pq_dists, dists_out); }; Timer query_timer, io_timer, cpu_timer; @@ -1285,13 +1397,13 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t float best_dist = (std::numeric_limits::max)(); if (!use_filter) { - for (uint64_t cur_m = 0; cur_m < num_medoids; cur_m++) + for (uint64_t cur_m = 0; cur_m < _num_medoids; cur_m++) { float cur_expanded_dist = - dist_cmp_float->compare(query_float, centroid_data + aligned_dim * cur_m, (uint32_t)aligned_dim); + _dist_cmp_float->compare(query_float, _centroid_data + _aligned_dim * cur_m, (uint32_t)_aligned_dim); if (cur_expanded_dist < best_dist) { - best_medoid = medoids[cur_m]; + best_medoid = _medoids[cur_m]; best_dist = cur_expanded_dist; } } @@ -1352,8 +1464,8 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t { auto nbr = retset.closest_unexpanded(); num_seen++; - auto iter = nhood_cache.find(nbr.id); - if (iter != nhood_cache.end()) + auto iter = _nhood_cache.find(nbr.id); + if (iter != _nhood_cache.end()) { cached_nhoods.push_back(std::make_pair(nbr.id, iter->second)); if (stats != nullptr) @@ -1365,9 +1477,9 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t { frontier.push_back(nbr.id); } - if (this->count_visited_nodes) + if (this->_count_visited_nodes) { - reinterpret_cast &>(this->node_visit_counter[nbr.id].second).fetch_add(1); + reinterpret_cast &>(this->_node_visit_counter[nbr.id].second).fetch_add(1); } } @@ -1381,10 +1493,11 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t auto id = frontier[i]; std::pair fnhood; fnhood.first = id; - fnhood.second = sector_scratch + sector_scratch_idx * SECTOR_LEN; + fnhood.second = sector_scratch + num_sectors_per_node * sector_scratch_idx * defaults::SECTOR_LEN; sector_scratch_idx++; frontier_nhoods.push_back(fnhood); - frontier_read_reqs.emplace_back(NODE_SECTOR_NO(((size_t)id)) * SECTOR_LEN, SECTOR_LEN, fnhood.second); + frontier_read_reqs.emplace_back(get_node_sector((size_t)id) * defaults::SECTOR_LEN, + num_sectors_per_node * defaults::SECTOR_LEN, fnhood.second); if (stats != nullptr) { stats->n_4k++; @@ -1395,7 +1508,7 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t io_timer.reset(); #ifdef USE_BING_INFRA reader->read(frontier_read_reqs, ctx, - true); // async reader windows. + true); // asynhronous reader for Bing. #else reader->read(frontier_read_reqs, ctx); // synchronous IO linux #endif @@ -1408,19 +1521,19 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t // process cached nhoods for (auto &cached_nhood : cached_nhoods) { - auto global_cache_iter = coord_cache.find(cached_nhood.first); + auto global_cache_iter = _coord_cache.find(cached_nhood.first); T *node_fp_coords_copy = global_cache_iter->second; float cur_expanded_dist; - if (!use_disk_index_pq) + if (!_use_disk_index_pq) { - cur_expanded_dist = dist_cmp->compare(aligned_query_T, node_fp_coords_copy, (uint32_t)aligned_dim); + cur_expanded_dist = _dist_cmp->compare(aligned_query_T, node_fp_coords_copy, (uint32_t)_aligned_dim); } else { if (metric == diskann::Metric::INNER_PRODUCT) - cur_expanded_dist = disk_pq_table.inner_product(query_float, (uint8_t *)node_fp_coords_copy); + cur_expanded_dist = _disk_pq_table.inner_product(query_float, (uint8_t *)node_fp_coords_copy); else - cur_expanded_dist = disk_pq_table.l2_distance( // disk_pq does not support OPQ yet + cur_expanded_dist = _disk_pq_table.l2_distance( // disk_pq does not support OPQ yet query_float, (uint8_t *)node_fp_coords_copy); } full_retset.push_back(Neighbor((uint32_t)cached_nhood.first, cur_expanded_dist)); @@ -1446,8 +1559,8 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t if (!use_filter && _dummy_pts.find(id) != _dummy_pts.end()) continue; - if (use_filter && !point_has_label(id, filter_num) - && (!_use_universal_label || !point_has_label(id, _universal_filter_num))) + if (use_filter && !(point_has_label(id, filter_label)) && + (!_use_universal_label || !point_has_label(id, _universal_filter_label))) continue; cmps++; float dist = dist_scratch[m]; @@ -1462,7 +1575,7 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t long requestCount = static_cast(frontier_read_reqs.size()); // If we issued read requests and if a read is complete or there are // reads in wait state, then enter the while loop. - while (requestCount > 0 && getNextCompletedRequest(ctx, requestCount, completedIndex)) + while (requestCount > 0 && getNextCompletedRequest(reader, ctx, requestCount, completedIndex)) { assert(completedIndex >= 0); auto &frontier_nhood = frontier_nhoods[completedIndex]; @@ -1471,22 +1584,22 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t for (auto &frontier_nhood : frontier_nhoods) { #endif - char *node_disk_buf = OFFSET_TO_NODE(frontier_nhood.second, frontier_nhood.first); - uint32_t *node_buf = OFFSET_TO_NODE_NHOOD(node_disk_buf); + char *node_disk_buf = offset_to_node(frontier_nhood.second, frontier_nhood.first); + uint32_t *node_buf = offset_to_node_nhood(node_disk_buf); uint64_t nnbrs = (uint64_t)(*node_buf); - T *node_fp_coords = OFFSET_TO_NODE_COORDS(node_disk_buf); - memcpy(data_buf, node_fp_coords, disk_bytes_per_point); + T *node_fp_coords = offset_to_node_coords(node_disk_buf); + memcpy(data_buf, node_fp_coords, _disk_bytes_per_point); float cur_expanded_dist; - if (!use_disk_index_pq) + if (!_use_disk_index_pq) { - cur_expanded_dist = dist_cmp->compare(aligned_query_T, data_buf, (uint32_t)aligned_dim); + cur_expanded_dist = _dist_cmp->compare(aligned_query_T, data_buf, (uint32_t)_aligned_dim); } else { if (metric == diskann::Metric::INNER_PRODUCT) - cur_expanded_dist = disk_pq_table.inner_product(query_float, (uint8_t *)data_buf); + cur_expanded_dist = _disk_pq_table.inner_product(query_float, (uint8_t *)data_buf); else - cur_expanded_dist = disk_pq_table.l2_distance(query_float, (uint8_t *)data_buf); + cur_expanded_dist = _disk_pq_table.l2_distance(query_float, (uint8_t *)data_buf); } full_retset.push_back(Neighbor(frontier_nhood.first, cur_expanded_dist)); uint32_t *node_nbrs = (node_buf + 1); @@ -1509,8 +1622,8 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t if (!use_filter && _dummy_pts.find(id) != _dummy_pts.end()) continue; - if (use_filter && !point_has_label(id, filter_num) - && (!_use_universal_label || !point_has_label(id, _universal_filter_num))) + if (use_filter && !(point_has_label(id, filter_label)) && + (!_use_universal_label || !point_has_label(id, _universal_filter_label))) continue; cmps++; float dist = dist_scratch[m]; @@ -1538,7 +1651,7 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t if (use_reorder_data) { - if (!(this->reorder_data_exists)) + if (!(this->_reorder_data_exists)) { throw ANNException("Requested use of reordering data which does " "not exist in index " @@ -1553,8 +1666,9 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t for (size_t i = 0; i < full_retset.size(); ++i) { - vec_read_reqs.emplace_back(VECTOR_SECTOR_NO(((size_t)full_retset[i].id)) * SECTOR_LEN, SECTOR_LEN, - sector_scratch + i * SECTOR_LEN); + // MULTISECTORFIX + vec_read_reqs.emplace_back(VECTOR_SECTOR_NO(((size_t)full_retset[i].id)) * defaults::SECTOR_LEN, + defaults::SECTOR_LEN, sector_scratch + i * defaults::SECTOR_LEN); if (stats != nullptr) { @@ -1565,7 +1679,7 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t io_timer.reset(); #ifdef USE_BING_INFRA - reader->read(vec_read_reqs, ctx, false); // sync reader windows. + reader->read(vec_read_reqs, ctx, true); // async reader windows. #else reader->read(vec_read_reqs, ctx); // synchronous IO linux #endif @@ -1577,8 +1691,9 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t for (size_t i = 0; i < full_retset.size(); ++i) { auto id = full_retset[i].id; - auto location = (sector_scratch + i * SECTOR_LEN) + VECTOR_SECTOR_OFFSET(id); - full_retset[i].distance = dist_cmp->compare(aligned_query_T, (T *)location, (uint32_t)this->data_dim); + // MULTISECTORFIX + auto location = (sector_scratch + i * defaults::SECTOR_LEN) + VECTOR_SECTOR_OFFSET(id); + full_retset[i].distance = _dist_cmp->compare(aligned_query_T, (T *)location, (uint32_t)this->_data_dim); } std::sort(full_retset.begin(), full_retset.end()); @@ -1603,8 +1718,8 @@ void PQFlashIndex::cached_beam_search(const T *query1, const uint64_t distances[i] = (-distances[i]); // rescale to revert back to original norms (cancelling the // effect of base and query pre-processing) - if (max_base_norm != 0) - distances[i] *= (max_base_norm * query_norm); + if (_max_base_norm != 0) + distances[i] *= (_max_base_norm * query_norm); } } } @@ -1665,7 +1780,7 @@ uint32_t PQFlashIndex::range_search(const T *query1, const double ran template uint64_t PQFlashIndex::get_data_dim() { - return data_dim; + return _data_dim; } template diskann::Metric PQFlashIndex::get_metric() @@ -1705,6 +1820,18 @@ template char *PQFlashIndex::getHeaderB } #endif +template +std::vector PQFlashIndex::get_pq_vector(std::uint64_t vid) +{ + std::uint8_t *pqVec = &this->data[vid * this->_n_chunks]; + return std::vector(pqVec, pqVec + this->_n_chunks); +} + +template std::uint64_t PQFlashIndex::get_num_points() +{ + return _num_points; +} + // instantiations template class PQFlashIndex; template class PQFlashIndex; diff --git a/src/pq_l2_distance.cpp b/src/pq_l2_distance.cpp new file mode 100644 index 000000000..c08744c35 --- /dev/null +++ b/src/pq_l2_distance.cpp @@ -0,0 +1,284 @@ + +#include "pq.h" +#include "pq_l2_distance.h" +#include "pq_scratch.h" + +// block size for reading/processing large files and matrices in blocks +#define BLOCK_SIZE 5000000 + +namespace diskann +{ + +template +PQL2Distance::PQL2Distance(uint32_t num_chunks, bool use_opq) : _num_chunks(num_chunks), _is_opq(use_opq) +{ +} + +template PQL2Distance::~PQL2Distance() +{ +#ifndef EXEC_ENV_OLS + if (_tables != nullptr) + delete[] _tables; + if (_chunk_offsets != nullptr) + delete[] _chunk_offsets; + if (_centroid != nullptr) + delete[] _centroid; + if (_rotmat_tr != nullptr) + delete[] _rotmat_tr; +#endif + if (_tables_tr != nullptr) + delete[] _tables_tr; +} + +template bool PQL2Distance::is_opq() const +{ + return this->_is_opq; +} + +template +std::string PQL2Distance::get_quantized_vectors_filename(const std::string &prefix) const +{ + if (_num_chunks == 0) + { + throw diskann::ANNException("Must set num_chunks before calling get_quantized_vectors_filename", -1, + __FUNCSIG__, __FILE__, __LINE__); + } + return diskann::get_quantized_vectors_filename(prefix, _is_opq, (uint32_t)_num_chunks); +} +template std::string PQL2Distance::get_pivot_data_filename(const std::string &prefix) const +{ + if (_num_chunks == 0) + { + throw diskann::ANNException("Must set num_chunks before calling get_pivot_data_filename", -1, __FUNCSIG__, + __FILE__, __LINE__); + } + return diskann::get_pivot_data_filename(prefix, _is_opq, (uint32_t)_num_chunks); +} +template +std::string PQL2Distance::get_rotation_matrix_suffix(const std::string &pq_pivots_filename) const +{ + return diskann::get_rotation_matrix_suffix(pq_pivots_filename); +} + +#ifdef EXEC_ENV_OLS +template +void PQL2Distance::load_pivot_data(MemoryMappedFiles &files, const std::string &pq_table_file, + size_t num_chunks) +{ +#else +template +void PQL2Distance::load_pivot_data(const std::string &pq_table_file, size_t num_chunks) +{ +#endif + uint64_t nr, nc; + // std::string rotmat_file = get_opq_rot_matrix_filename(pq_table_file, + // false); + +#ifdef EXEC_ENV_OLS + size_t *file_offset_data; // since load_bin only sets the pointer, no need + // to delete. + diskann::load_bin(files, pq_table_file, file_offset_data, nr, nc); +#else + std::unique_ptr file_offset_data; + diskann::load_bin(pq_table_file, file_offset_data, nr, nc); +#endif + + bool use_old_filetype = false; + + if (nr != 4 && nr != 5) + { + diskann::cout << "Error reading pq_pivots file " << pq_table_file + << ". Offsets dont contain correct metadata, # offsets = " << nr << ", but expecting " << 4 + << " or " << 5; + throw diskann::ANNException("Error reading pq_pivots file at offsets data.", -1, __FUNCSIG__, __FILE__, + __LINE__); + } + + if (nr == 4) + { + diskann::cout << "Offsets: " << file_offset_data[0] << " " << file_offset_data[1] << " " << file_offset_data[2] + << " " << file_offset_data[3] << std::endl; + } + else if (nr == 5) + { + use_old_filetype = true; + diskann::cout << "Offsets: " << file_offset_data[0] << " " << file_offset_data[1] << " " << file_offset_data[2] + << " " << file_offset_data[3] << file_offset_data[4] << std::endl; + } + else + { + throw diskann::ANNException("Wrong number of offsets in pq_pivots", -1, __FUNCSIG__, __FILE__, __LINE__); + } + +#ifdef EXEC_ENV_OLS + diskann::load_bin(files, pq_table_file, tables, nr, nc, file_offset_data[0]); +#else + diskann::load_bin(pq_table_file, _tables, nr, nc, file_offset_data[0]); +#endif + + if ((nr != NUM_PQ_CENTROIDS)) + { + diskann::cout << "Error reading pq_pivots file " << pq_table_file << ". file_num_centers = " << nr + << " but expecting " << NUM_PQ_CENTROIDS << " centers"; + throw diskann::ANNException("Error reading pq_pivots file at pivots data.", -1, __FUNCSIG__, __FILE__, + __LINE__); + } + + this->_ndims = nc; + +#ifdef EXEC_ENV_OLS + diskann::load_bin(files, pq_table_file, centroid, nr, nc, file_offset_data[1]); +#else + diskann::load_bin(pq_table_file, _centroid, nr, nc, file_offset_data[1]); +#endif + + if ((nr != this->_ndims) || (nc != 1)) + { + diskann::cerr << "Error reading centroids from pq_pivots file " << pq_table_file << ". file_dim = " << nr + << ", file_cols = " << nc << " but expecting " << this->_ndims << " entries in 1 dimension."; + throw diskann::ANNException("Error reading pq_pivots file at centroid data.", -1, __FUNCSIG__, __FILE__, + __LINE__); + } + + int chunk_offsets_index = 2; + if (use_old_filetype) + { + chunk_offsets_index = 3; + } +#ifdef EXEC_ENV_OLS + diskann::load_bin(files, pq_table_file, chunk_offsets, nr, nc, file_offset_data[chunk_offsets_index]); +#else + diskann::load_bin(pq_table_file, _chunk_offsets, nr, nc, file_offset_data[chunk_offsets_index]); +#endif + + if (nc != 1 || (nr != num_chunks + 1 && num_chunks != 0)) + { + diskann::cerr << "Error loading chunk offsets file. numc: " << nc << " (should be 1). numr: " << nr + << " (should be " << num_chunks + 1 << " or 0 if we need to infer)" << std::endl; + throw diskann::ANNException("Error loading chunk offsets file", -1, __FUNCSIG__, __FILE__, __LINE__); + } + + this->_num_chunks = nr - 1; + diskann::cout << "Loaded PQ Pivots: #ctrs: " << NUM_PQ_CENTROIDS << ", #dims: " << this->_ndims + << ", #chunks: " << this->_num_chunks << std::endl; + + // For OPQ there will be a rotation matrix to load. + if (this->_is_opq) + { + std::string rotmat_file = get_rotation_matrix_suffix(pq_table_file); +#ifdef EXEC_ENV_OLS + diskann::load_bin(files, rotmat_file, (float *&)rotmat_tr, nr, nc); +#else + diskann::load_bin(rotmat_file, _rotmat_tr, nr, nc); +#endif + if (nr != this->_ndims || nc != this->_ndims) + { + diskann::cerr << "Error loading rotation matrix file" << std::endl; + throw diskann::ANNException("Error loading rotation matrix file", -1, __FUNCSIG__, __FILE__, __LINE__); + } + } + + // alloc and compute transpose + _tables_tr = new float[256 * this->_ndims]; + for (size_t i = 0; i < 256; i++) + { + for (size_t j = 0; j < this->_ndims; j++) + { + _tables_tr[j * 256 + i] = _tables[i * this->_ndims + j]; + } + } +} + +template uint32_t PQL2Distance::get_num_chunks() const +{ + return static_cast(_num_chunks); +} + +// REFACTOR: Instead of doing half the work in the caller and half in this +// function, we let this function +// do all of the work, making it easier for the caller. +template +void PQL2Distance::preprocess_query(const data_t *aligned_query, uint32_t dim, PQScratch &scratch) +{ + // Copy query vector to float and then to "rotated" query + for (size_t d = 0; d < dim; d++) + { + scratch.aligned_query_float[d] = (float)aligned_query[d]; + } + scratch.initialize(dim, aligned_query); + + for (uint32_t d = 0; d < _ndims; d++) + { + scratch.rotated_query[d] -= _centroid[d]; + } + std::vector tmp(_ndims, 0); + if (_is_opq) + { + for (uint32_t d = 0; d < _ndims; d++) + { + for (uint32_t d1 = 0; d1 < _ndims; d1++) + { + tmp[d] += scratch.rotated_query[d1] * _rotmat_tr[d1 * _ndims + d]; + } + } + std::memcpy(scratch.rotated_query, tmp.data(), _ndims * sizeof(float)); + } + this->prepopulate_chunkwise_distances(scratch.rotated_query, scratch.aligned_pqtable_dist_scratch); +} + +template +void PQL2Distance::preprocessed_distance(PQScratch &pq_scratch, const uint32_t n_ids, float *dists_out) +{ + pq_dist_lookup(pq_scratch.aligned_pq_coord_scratch, n_ids, _num_chunks, pq_scratch.aligned_pqtable_dist_scratch, + dists_out); +} + +template +void PQL2Distance::preprocessed_distance(PQScratch &pq_scratch, const uint32_t n_ids, + std::vector &dists_out) +{ + pq_dist_lookup(pq_scratch.aligned_pq_coord_scratch, n_ids, _num_chunks, pq_scratch.aligned_pqtable_dist_scratch, + dists_out); +} + +template float PQL2Distance::brute_force_distance(const float *query_vec, uint8_t *base_vec) +{ + float res = 0; + for (size_t chunk = 0; chunk < _num_chunks; chunk++) + { + for (size_t j = _chunk_offsets[chunk]; j < _chunk_offsets[chunk + 1]; j++) + { + const float *centers_dim_vec = _tables_tr + (256 * j); + float diff = centers_dim_vec[base_vec[chunk]] - (query_vec[j]); + res += diff * diff; + } + } + return res; +} + +template +void PQL2Distance::prepopulate_chunkwise_distances(const float *query_vec, float *dist_vec) +{ + memset(dist_vec, 0, 256 * _num_chunks * sizeof(float)); + // chunk wise distance computation + for (size_t chunk = 0; chunk < _num_chunks; chunk++) + { + // sum (q-c)^2 for the dimensions associated with this chunk + float *chunk_dists = dist_vec + (256 * chunk); + for (size_t j = _chunk_offsets[chunk]; j < _chunk_offsets[chunk + 1]; j++) + { + const float *centers_dim_vec = _tables_tr + (256 * j); + for (size_t idx = 0; idx < 256; idx++) + { + double diff = centers_dim_vec[idx] - (query_vec[j]); + chunk_dists[idx] += (float)(diff * diff); + } + } + } +} + +template DISKANN_DLLEXPORT class PQL2Distance; +template DISKANN_DLLEXPORT class PQL2Distance; +template DISKANN_DLLEXPORT class PQL2Distance; + +} // namespace diskann \ No newline at end of file diff --git a/src/restapi/search_wrapper.cpp b/src/restapi/search_wrapper.cpp index dc9f5734e..001e36d39 100644 --- a/src/restapi/search_wrapper.cpp +++ b/src/restapi/search_wrapper.cpp @@ -100,7 +100,9 @@ InMemorySearch::InMemorySearch(const std::string &baseFile, const std::string { size_t dimensions, total_points = 0; diskann::get_bin_metadata(baseFile, total_points, dimensions); - _index = std::unique_ptr>(new diskann::Index(m, dimensions, total_points, false)); + auto search_params = diskann::IndexSearchParams(search_l, num_threads); + _index = std::unique_ptr>( + new diskann::Index(m, dimensions, total_points, nullptr, search_params, 0, false)); _index->load(indexFile.c_str(), num_threads, search_l); } diff --git a/src/scratch.cpp b/src/scratch.cpp index 745daa6a7..8b8427453 100644 --- a/src/scratch.cpp +++ b/src/scratch.cpp @@ -5,6 +5,7 @@ #include #include "scratch.h" +#include "pq_scratch.h" namespace diskann { @@ -24,18 +25,18 @@ InMemQueryScratch::InMemQueryScratch(uint32_t search_l, uint32_t indexing_l, throw diskann::ANNException(ss.str(), -1); } - alloc_aligned(((void **)&_aligned_query), aligned_dim * sizeof(T), alignment_factor * sizeof(T)); - memset(_aligned_query, 0, aligned_dim * sizeof(T)); + alloc_aligned(((void **)&this->_aligned_query_T), aligned_dim * sizeof(T), alignment_factor * sizeof(T)); + memset(this->_aligned_query_T, 0, aligned_dim * sizeof(T)); if (init_pq_scratch) - _pq_scratch = new PQScratch(MAX_GRAPH_DEGREE, aligned_dim); + this->_pq_scratch = new PQScratch(defaults::MAX_GRAPH_DEGREE, aligned_dim); else - _pq_scratch = nullptr; + this->_pq_scratch = nullptr; _occlude_factor.reserve(maxc); _inserted_into_pool_bs = new boost::dynamic_bitset<>(); - _id_scratch.reserve((size_t)std::ceil(1.5 * GRAPH_SLACK_FACTOR * _R)); - _dist_scratch.reserve((size_t)std::ceil(1.5 * GRAPH_SLACK_FACTOR * _R)); + _id_scratch.reserve((size_t)std::ceil(1.5 * defaults::GRAPH_SLACK_FACTOR * _R)); + _dist_scratch.reserve((size_t)std::ceil(1.5 * defaults::GRAPH_SLACK_FACTOR * _R)); resize_for_new_L(std::max(search_l, indexing_l)); @@ -77,12 +78,13 @@ template void InMemQueryScratch::resize_for_new_L(uint32_t new_l template InMemQueryScratch::~InMemQueryScratch() { - if (_aligned_query != nullptr) + if (this->_aligned_query_T != nullptr) { - aligned_free(_aligned_query); + aligned_free(this->_aligned_query_T); + this->_aligned_query_T = nullptr; } - delete _pq_scratch; + delete this->_pq_scratch; delete _inserted_into_pool_bs; } @@ -102,13 +104,14 @@ template SSDQueryScratch::SSDQueryScratch(size_t aligned_dim, si size_t coord_alloc_size = ROUND_UP(sizeof(T) * aligned_dim, 256); diskann::alloc_aligned((void **)&coord_scratch, coord_alloc_size, 256); - diskann::alloc_aligned((void **)§or_scratch, (size_t)MAX_N_SECTOR_READS * (size_t)SECTOR_LEN, SECTOR_LEN); - diskann::alloc_aligned((void **)&aligned_query_T, aligned_dim * sizeof(T), 8 * sizeof(T)); + diskann::alloc_aligned((void **)§or_scratch, defaults::MAX_N_SECTOR_READS * defaults::SECTOR_LEN, + defaults::SECTOR_LEN); + diskann::alloc_aligned((void **)&this->_aligned_query_T, aligned_dim * sizeof(T), 8 * sizeof(T)); - _pq_scratch = new PQScratch(MAX_GRAPH_DEGREE, aligned_dim); + this->_pq_scratch = new PQScratch(defaults::MAX_GRAPH_DEGREE, aligned_dim); memset(coord_scratch, 0, coord_alloc_size); - memset(aligned_query_T, 0, aligned_dim * sizeof(T)); + memset(this->_aligned_query_T, 0, aligned_dim * sizeof(T)); visited.reserve(visited_reserve); full_retset.reserve(visited_reserve); @@ -118,9 +121,9 @@ template SSDQueryScratch::~SSDQueryScratch() { diskann::aligned_free((void *)coord_scratch); diskann::aligned_free((void *)sector_scratch); - diskann::aligned_free((void *)aligned_query_T); + diskann::aligned_free((void *)this->_aligned_query_T); - delete[] _pq_scratch; + delete this->_pq_scratch; } template @@ -133,6 +136,39 @@ template void SSDThreadData::clear() scratch.reset(); } +template PQScratch::PQScratch(size_t graph_degree, size_t aligned_dim) +{ + diskann::alloc_aligned((void **)&aligned_pq_coord_scratch, + (size_t)graph_degree * (size_t)MAX_PQ_CHUNKS * sizeof(uint8_t), 256); + diskann::alloc_aligned((void **)&aligned_pqtable_dist_scratch, 256 * (size_t)MAX_PQ_CHUNKS * sizeof(float), 256); + diskann::alloc_aligned((void **)&aligned_dist_scratch, (size_t)graph_degree * sizeof(float), 256); + diskann::alloc_aligned((void **)&aligned_query_float, aligned_dim * sizeof(float), 8 * sizeof(float)); + diskann::alloc_aligned((void **)&rotated_query, aligned_dim * sizeof(float), 8 * sizeof(float)); + + memset(aligned_query_float, 0, aligned_dim * sizeof(float)); + memset(rotated_query, 0, aligned_dim * sizeof(float)); +} + +template PQScratch::~PQScratch() +{ + diskann::aligned_free((void *)aligned_pq_coord_scratch); + diskann::aligned_free((void *)aligned_pqtable_dist_scratch); + diskann::aligned_free((void *)aligned_dist_scratch); + diskann::aligned_free((void *)aligned_query_float); + diskann::aligned_free((void *)rotated_query); +} + +template void PQScratch::initialize(size_t dim, const T *query, const float norm) +{ + for (size_t d = 0; d < dim; ++d) + { + if (norm != 1.0f) + rotated_query[d] = aligned_query_float[d] = static_cast(query[d]) / norm; + else + rotated_query[d] = aligned_query_float[d] = static_cast(query[d]); + } +} + template DISKANN_DLLEXPORT class InMemQueryScratch; template DISKANN_DLLEXPORT class InMemQueryScratch; template DISKANN_DLLEXPORT class InMemQueryScratch; @@ -141,7 +177,12 @@ template DISKANN_DLLEXPORT class SSDQueryScratch; template DISKANN_DLLEXPORT class SSDQueryScratch; template DISKANN_DLLEXPORT class SSDQueryScratch; +template DISKANN_DLLEXPORT class PQScratch; +template DISKANN_DLLEXPORT class PQScratch; +template DISKANN_DLLEXPORT class PQScratch; + template DISKANN_DLLEXPORT class SSDThreadData; template DISKANN_DLLEXPORT class SSDThreadData; template DISKANN_DLLEXPORT class SSDThreadData; + } // namespace diskann diff --git a/src/utils.cpp b/src/utils.cpp index b675e656d..3773cda22 100644 --- a/src/utils.cpp +++ b/src/utils.cpp @@ -391,29 +391,30 @@ template void read_array(AlignedFileReader &reader, T *data, size_t if (data == nullptr) { throw diskann::ANNException("read_array requires an allocated buffer.", -1); - if (size * sizeof(T) > MAX_REQUEST_SIZE) - { - std::stringstream ss; - ss << "Cannot read more than " << MAX_REQUEST_SIZE - << " bytes. Current request size: " << std::to_string(size) << " sizeof(T): " << sizeof(T) << std::endl; - throw diskann::ANNException(ss.str(), -1, __FUNCSIG__, __FILE__, __LINE__); - } - std::vector read_requests; - AlignedRead read_req; - read_req.buf = data; - read_req.len = size * sizeof(T); - read_req.offset = offset; - read_requests.push_back(read_req); - IOContext &ctx = reader.get_ctx(); - reader.read(read_requests, ctx); + } - if ((*(ctx.m_pRequestsStatus))[0] != IOContext::READ_SUCCESS) - { - std::stringstream ss; - ss << "Failed to read_array() of size: " << size * sizeof(T) << " at offset: " << offset << " from reader. " - << std::endl; - throw diskann::ANNException(ss.str(), -1, __FUNCSIG__, __FILE__, __LINE__); - } + if (size * sizeof(T) > MAX_REQUEST_SIZE) + { + std::stringstream ss; + ss << "Cannot read more than " << MAX_REQUEST_SIZE << " bytes. Current request size: " << std::to_string(size) + << " sizeof(T): " << sizeof(T) << std::endl; + throw diskann::ANNException(ss.str(), -1, __FUNCSIG__, __FILE__, __LINE__); + } + std::vector read_requests; + AlignedRead read_req; + read_req.buf = data; + read_req.len = size * sizeof(T); + read_req.offset = offset; + read_requests.push_back(read_req); + IOContext &ctx = reader.get_ctx(); + reader.read(read_requests, ctx); + + if ((*(ctx.m_pRequestsStatus))[0] != IOContext::READ_SUCCESS) + { + std::stringstream ss; + ss << "Failed to read_array() of size: " << size * sizeof(T) << " at offset: " << offset << " from reader. " + << std::endl; + throw diskann::ANNException(ss.str(), -1, __FUNCSIG__, __FILE__, __LINE__); } } diff --git a/tests/index_write_parameters_builder_tests.cpp b/tests/index_write_parameters_builder_tests.cpp index acd5e2227..0aa798da8 100644 --- a/tests/index_write_parameters_builder_tests.cpp +++ b/tests/index_write_parameters_builder_tests.cpp @@ -14,7 +14,6 @@ BOOST_AUTO_TEST_CASE(test_build) float alpha = (float)rand(); uint32_t filter_list_size = rand(); uint32_t max_occlusion_size = rand(); - uint32_t num_frozen_points = rand(); bool saturate_graph = true; diskann::IndexWriteParametersBuilder builder(search_list_size, max_degree); @@ -22,7 +21,6 @@ BOOST_AUTO_TEST_CASE(test_build) builder.with_alpha(alpha) .with_filter_list_size(filter_list_size) .with_max_occlusion_size(max_occlusion_size) - .with_num_frozen_points(num_frozen_points) .with_num_threads(0) .with_saturate_graph(saturate_graph); @@ -34,7 +32,6 @@ BOOST_AUTO_TEST_CASE(test_build) BOOST_TEST(alpha == parameters.alpha); BOOST_TEST(filter_list_size == parameters.filter_list_size); BOOST_TEST(max_occlusion_size == parameters.max_occlusion_size); - BOOST_TEST(num_frozen_points == parameters.num_frozen_points); BOOST_TEST(saturate_graph == parameters.saturate_graph); BOOST_TEST(parameters.num_threads > (uint32_t)0); @@ -43,8 +40,7 @@ BOOST_AUTO_TEST_CASE(test_build) { uint32_t num_threads = rand() + 1; saturate_graph = false; - builder.with_num_threads(num_threads) - .with_saturate_graph(saturate_graph); + builder.with_num_threads(num_threads).with_saturate_graph(saturate_graph); auto parameters = builder.build(); @@ -53,7 +49,6 @@ BOOST_AUTO_TEST_CASE(test_build) BOOST_TEST(alpha == parameters.alpha); BOOST_TEST(filter_list_size == parameters.filter_list_size); BOOST_TEST(max_occlusion_size == parameters.max_occlusion_size); - BOOST_TEST(num_frozen_points == parameters.num_frozen_points); BOOST_TEST(saturate_graph == parameters.saturate_graph); BOOST_TEST(num_threads == parameters.num_threads); diff --git a/unit_tester.sh b/unit_tester.sh index d19e62575..1ef96c025 100755 --- a/unit_tester.sh +++ b/unit_tester.sh @@ -43,29 +43,29 @@ while IFS= read -r line; do BUDGETBUILD=`bc <<< "scale=4; 0.0001 + ${FILESIZE}/(5*1024*1024*1024)"` BUDGETSERVE=`bc <<< "scale=4; 0.0001 + ${FILESIZE}/(10*1024*1024*1024)"` echo "=============================================================================================================================================" - echo "Running tests on ${DATASET} dataset, ${TYPE} datatype, $METRIC metric, ${BUDGETBUILD} GiB and ${BUDGETSERVE} GiB build and serve budget" + echo "Running apps on ${DATASET} dataset, ${TYPE} datatype, $METRIC metric, ${BUDGETBUILD} GiB and ${BUDGETSERVE} GiB build and serve budget" echo "=============================================================================================================================================" rm ${DISK}_* #echo "Going to run test on ${BASE} base, ${QUERY} query, ${TYPE} datatype, ${METRIC} metric, saving gt at ${GT}" echo "Computing Groundtruth" - #${BUILD_FOLDER}/tests/utils/compute_groundtruth ${TYPE} ${BASE} ${QUERY} 30 ${GT} ${METRIC} > /dev/null - ${BUILD_FOLDER}/tests/utils/compute_groundtruth --data_type ${TYPE} --base_file ${BASE} --query_file ${QUERY} --K 30 --gt_file ${GT} --dist_fn ${METRIC} > /dev/null + #${BUILD_FOLDER}/apps/utils/compute_groundtruth ${TYPE} ${BASE} ${QUERY} 30 ${GT} ${METRIC} > /dev/null + ${BUILD_FOLDER}/apps/utils/compute_groundtruth --data_type ${TYPE} --base_file ${BASE} --query_file ${QUERY} --K 30 --gt_file ${GT} --dist_fn ${METRIC} > /dev/null echo "Building Mem Index" -# /usr/bin/time ${BUILD_FOLDER}/tests/build_memory_index ${TYPE} ${METRIC} ${BASE} ${MEM} 32 50 1.2 0 > ${MBLOG} - /usr/bin/time ${BUILD_FOLDER}/tests/build_memory_index --data_type ${TYPE} --dist_fn ${METRIC} --data_path ${BASE} --index_path_prefix ${MEM} -R 32 -L 50 --alpha 1.2 -T 0 > ${MBLOG} +# /usr/bin/time ${BUILD_FOLDER}/apps/build_memory_index ${TYPE} ${METRIC} ${BASE} ${MEM} 32 50 1.2 0 > ${MBLOG} + /usr/bin/time ${BUILD_FOLDER}/apps/build_memory_index --data_type ${TYPE} --dist_fn ${METRIC} --data_path ${BASE} --index_path_prefix ${MEM} -R 32 -L 50 --alpha 1.2 -T 0 > ${MBLOG} awk '/^Degree/' ${MBLOG} awk '/^Indexing/' ${MBLOG} echo "Searching Mem Index" - ${BUILD_FOLDER}/tests/search_memory_index --data_type ${TYPE} --dist_fn ${METRIC} --index_path_prefix ${MEM} -T 16 --query_file ${QUERY} --gt_file ${GT} -K 10 --result_path /tmp/res -L 10 20 30 40 50 60 70 80 90 100 > ${MSLOG} + ${BUILD_FOLDER}/apps/search_memory_index --data_type ${TYPE} --dist_fn ${METRIC} --index_path_prefix ${MEM} -T 16 --query_file ${QUERY} --gt_file ${GT} -K 10 --result_path /tmp/res -L 10 20 30 40 50 60 70 80 90 100 > ${MSLOG} awk '/===/{x=NR+10}(NR<=x){print}' ${MSLOG} echo "Building Disk Index" - ${BUILD_FOLDER}/tests/build_disk_index --data_type ${TYPE} --dist_fn ${METRIC} --data_path ${BASE} --index_path_prefix ${DISK} -R 32 -L 50 -B ${BUDGETSERVE} -M ${BUDGETBUILD} -T 32 --PQ_disk_bytes 0 > ${DBLOG} + ${BUILD_FOLDER}/apps/build_disk_index --data_type ${TYPE} --dist_fn ${METRIC} --data_path ${BASE} --index_path_prefix ${DISK} -R 32 -L 50 -B ${BUDGETSERVE} -M ${BUDGETBUILD} -T 32 --PQ_disk_bytes 0 > ${DBLOG} awk '/^Compressing/' ${DBLOG} echo "#shards in disk index" awk '/^Indexing/' ${DBLOG} echo "Searching Disk Index" - ${BUILD_FOLDER}/tests/search_disk_index --data_type ${TYPE} --dist_fn ${METRIC} --index_path_prefix ${DISK} --num_nodes_to_cache 10000 -T 10 -W 4 --query_file ${QUERY} --gt_file ${GT} -K 10 --result_path /tmp/res -L 20 40 60 80 100 > ${DSLOG} + ${BUILD_FOLDER}/apps/search_disk_index --data_type ${TYPE} --dist_fn ${METRIC} --index_path_prefix ${DISK} --num_nodes_to_cache 10000 -T 10 -W 4 --query_file ${QUERY} --gt_file ${GT} -K 10 --result_path /tmp/res -L 20 40 60 80 100 > ${DSLOG} echo "# shards used during index construction:" awk '/medoids/{x=NR+1}(NR<=x){print}' ${DSLOG} awk '/===/{x=NR+10}(NR<=x){print}' ${DSLOG} diff --git a/workflows/SSD_index.md b/workflows/SSD_index.md index f86856796..e95ece97f 100644 --- a/workflows/SSD_index.md +++ b/workflows/SSD_index.md @@ -11,7 +11,7 @@ The arguments are as follows: 3. **--data_file**: The input data over which to build an index, in .bin format. The first 4 bytes represent number of points as an integer. The next 4 bytes represent the dimension of data as an integer. The following `n*d*sizeof(T)` bytes contain the contents of the data one data point in time. `sizeof(T)` is 1 for byte indices, and 4 for float indices. This will be read by the program as int8_t for signed indices, uint8_t for unsigned indices or float for float indices. 4. **--index_path_prefix**: the index will span a few files, all beginning with the specified prefix path. For example, if you provide `~/index_test` as the prefix path, build generates files such as `~/index_test_pq_pivots.bin, ~/index_test_pq_compressed.bin, ~/index_test_disk.index, ...`. There may be between 8 and 10 files generated with this prefix depending on how the index is constructed. 5. **-R (--max_degree)** (default is 64): the degree of the graph index, typically between 60 and 150. Larger R will result in larger indices and longer indexing times, but better search quality. -6. **-L (--Lbuild)** (default is 100): the size of search listduring index build. Typical values are between 75 to 200. Larger values will take more time to build but result in indices that provide higher recall for the same search complexity. Use a value for L value that is at least the value of R unless you need to build indices really quickly and can somewhat compromise on quality. +6. **-L (--Lbuild)** (default is 100): the size of search list during index build. Typical values are between 75 to 200. Larger values will take more time to build but result in indices that provide higher recall for the same search complexity. Use a value for L value that is at least the value of R unless you need to build indices really quickly and can somewhat compromise on quality. 7. **-B (--search_DRAM_budget)**: bound on the memory footprint of the index at search time in GB. Once built, the index will use up only the specified RAM limit, the rest will reside on disk. This will dictate how aggressively we compress the data vectors to store in memory. Larger will yield better performance at search time. For an n point index, to use b byte PQ compressed representation in memory, use `B = ((n * b) / 2^30 + (250000*(4*R + sizeof(T)*ndim)) / 2^30)`. The second term in the summation is to allow some buffer for caching about 250,000 nodes from the graph in memory while serving. If you are not sure about this term, add 0.25GB to the first term. 8. **-M (--build_DRAM_budget)**: Limit on the memory allowed for building the index in GB. If you specify a value less than what is required to build the index in one pass, the index is built using a divide and conquer approach so that sub-graphs will fit in the RAM budget. The sub-graphs are overlayed to build the overall index. This approach can be upto 1.5 times slower than building the index in one shot. Allocate as much memory as your RAM allows. 9. **-T (--num_threads)** (default is to get_omp_num_procs()): number of threads used by the index build process. Since the code is highly parallel, the indexing time improves almost linearly with the number of threads (subject to the cores available on the machine and DRAM bandwidth). @@ -34,7 +34,7 @@ The arguments are as follows: 8. **--gt_file**: The ground truth file for the queries in arg (7) and data file used in index construction. The binary file must start with *n*, the number of queries (4 bytes), followed by *d*, the number of ground truth elements per query (4 bytes), followed by `n*d` entries per query representing the d closest IDs per query in integer format, followed by `n*d` entries representing the corresponding distances (float). Total file size is `8 + 4*n*d + 4*n*d` bytes. The groundtruth file, if not available, can be calculated using the program `apps/utils/compute_groundtruth`. Use "null" if you do not have this file and if you do not want to compute recall. 9. **K**: search for *K* neighbors and measure *K*-recall@*K*, meaning the intersection between the retrieved top-*K* nearest neighbors and ground truth *K* nearest neighbors. 10. **result_output_prefix**: Search results will be stored in files with specified prefix, in bin format. -11. **-L (--search_list)**: A list of search_list sizes to perform search with. Larger parameters will result in slower latencies, but higher accuracies. Must be atleast the value of *K* in arg (9). +11. **-L (--search_list)**: A list of search_list sizes to perform search with. Larger parameters will result in slower latencies, but higher accuracies. Must be at least the value of *K* in arg (9). Example with BIGANN: @@ -60,7 +60,7 @@ Now build and search the index and measure the recall using ground truth compute ./apps/search_disk_index --data_type float --dist_fn l2 --index_path_prefix data/sift/disk_index_sift_learn_R32_L50_A1.2 --query_file data/sift/sift_query.fbin --gt_file data/sift/sift_query_learn_gt100 -K 10 -L 10 20 30 40 50 100 --result_path data/sift/res --num_nodes_to_cache 10000 ``` -The search might be slower on machine with remote SSDs. The output lists the quer throughput, the mean and 99.9pc latency in microseconds and mean number of 4KB IOs to disk for each `L` parameter provided. +The search might be slower on machine with remote SSDs. The output lists the query throughput, the mean and 99.9pc latency in microseconds and mean number of 4KB IOs to disk for each `L` parameter provided. ``` L Beamwidth QPS Mean Latency 99.9 Latency Mean IOs CPU (s) Recall@10 diff --git a/workflows/dynamic_index.md b/workflows/dynamic_index.md index ca3bfbf68..17c3fb3bf 100644 --- a/workflows/dynamic_index.md +++ b/workflows/dynamic_index.md @@ -22,6 +22,17 @@ The program then simultaneously inserts newer points drawn from the file and del in chunks of `consolidate_interval` points so that the number of active points in the index is approximately `active_window`. It terminates when the end of data file is reached, and the final index has `active_window + consolidate_interval` number of points. +The index also supports filters on steaming index, you can use `insert_point` function overloads to either insert points as before or insert points with labels. +Additional options are added to support this in `apps/test_streaming_scenario` and `apps/test_streaming_scenario` please refer to program arguments for more details. + +--- +> Note +* The index does not support mixed points, that is, either all points do not have labels or all points have labels. +* You can search the built filter index (one built with filters) without filters as well. + +> WARNING: Deleting points in case of filtered build may cause the quality of Index to degrade and affect recall. +--- + `apps/test_insert_deletes_consolidate` to try inserting, lazy deletes and consolidate_delete --------------------------------------------------------------------------------------------- @@ -63,7 +74,13 @@ The arguments are as follows: 12. **--consolidate_interval**: Granularity at which insert and delete functions are called. 13. **--start_point_norm**: Set the starting node to a random point on a sphere of this radius. A reasonable choice is to set this to the average norm of the data stream. +** To build with filters add these optional parameters. +14. **--label_file**: Filter data for each point, in `.txt` format. Line `i` of the file consists of a comma-separated list of labels corresponding to point `i` in the file passed via `--data_file`. +15. **--FilteredLbuild**: If building a filtered index, we maintain a separate search list from the one provided by `--Lbuild/-L`. +16. **--num_start_points**: number of frozen points in this case should be more then number of unique labels. +17. **--universal_label**: Optionally, the label data may contain a special "universal" label. A point with the universal label can be matched against a query with any label. Note that if a point has the universal label, then the filter data must only have the universal label on the line corresponding. +18. **--label_type**: Optionally, type of label to be use its either uint or short, defaulted to `uint`. To search the generated index, use the `apps/search_memory_index` program: --------------------------------------------------------------------------- @@ -83,6 +100,9 @@ The arguments are as follows: 10. **--dynamic** (default false): whether the index being searched is dynamic or not. 11. **--tags** (default false): whether to search with tags. This should be used if point *i* in the ground truth file does not correspond the point in the *i*th position in the loaded index. +** to search with filters add these + +12. **--filter_label**: Filter for each query. For each query, a search is performed with this filter. Example with BIGANN: -------------------- @@ -126,7 +146,13 @@ gt_file=data/sift/gt100_learn-conc-${deletes}-${inserts} are inserted, start deleting the first 10000 points while inserting points 40000--50000. Then delete points 10000--20000 while inserting points 50000--60000 and so until the index is left with points 60000-100000. + +Generate labels for filtered build like this. Generating 50 unique labels zipf's distributed for 100K point dataset. +``` +~/DiskANN/build/apps/utils/generate_synthetic_labels --num_labels 50 --num_points 100000 --output_file data/zipf_labels_50_100K.txt --distribution_type zipf ``` + +```bash type='float' data='data/sift/sift_learn.fbin' query='data/sift/sift_query.fbin' @@ -139,8 +165,23 @@ active=20000 cons_int=10000 index=${index_prefix}.after-streaming-act${active}-cons${cons_int}-max${inserts} gt=data/sift/gt100_learn-act${active}-cons${cons_int}-max${inserts} +filter_label=1 + +## filter options +universal_label = '0' +label_file = 'data/zipf_labels_50_100K.txt' +num_start_points = 50 +gt_filtered= data/sift/gt100_learn-act${active}-cons${cons_int}-max${inserts}_wlabel_${filter_label} + +# Without Filters (build and search) ./apps/test_streaming_scenario --data_type ${type} --dist_fn l2 --data_path ${data} --index_path_prefix ${index_prefix} -R 64 -L 600 --alpha 1.2 --insert_threads ${ins_thr} --consolidate_threads ${cons_thr} --max_points_to_insert ${inserts} --active_window ${active} --consolidate_interval ${cons_int} --start_point_norm 508; ./apps/utils/compute_groundtruth --data_type ${type} --dist_fn l2 --base_file ${index}.data --query_file ${query} --K 100 --gt_file ${gt} --tags_file ${index}.tags ./apps/search_memory_index --data_type ${type} --dist_fn l2 --index_path_prefix ${index} --result_path ${result} --query_file ${query} --gt_file ${gt} -K 10 -L 20 40 60 80 100 -T 64 --dynamic true --tags 1 -``` \ No newline at end of file + +# With filters (build and search) + +./apps/test_streaming_scenario --data_type ${type} --num_start_points ${num_start_points} --label_file ${label_file} --universal_label {universal_label} --dist_fn l2 --data_path ${data} --index_path_prefix ${index_prefix} -R 64 -L 600 --alpha 1.2 --insert_threads ${ins_thr} --consolidate_threads ${cons_thr} --max_points_to_insert ${inserts} --active_window ${active} --consolidate_interval ${cons_int} --start_point_norm 508; +./apps/utils/compute_groundtruth_for_filters --data_type ${type} --dist_fn l2 --base_file ${index}.data --query_file ${query} --K 100 --gt_file ${gt_filtered} --label_file ${label_file} --universal_label {universal_label} --filter_label {filter_label} +./apps/search_memory_index --data_type ${type} --filter_label {filter_label} --dist_fn l2 --index_path_prefix ${index} --result_path ${result} --query_file ${query} --gt_file ${gt_filtered} -K 10 -L 20 40 60 80 100 -T 64 --dynamic true --tags 1 +``` diff --git a/workflows/filtered_ssd_index.md b/workflows/filtered_ssd_index.md index 272100e6d..7457d8c9b 100644 --- a/workflows/filtered_ssd_index.md +++ b/workflows/filtered_ssd_index.md @@ -21,7 +21,7 @@ To generate an SSD-friendly index, use the `apps/build_disk_index` program. 11. **--build_PQ_bytes** (default is 0): Set to a positive value less than the dimensionality of the data to enable faster index build with PQ based distance comparisons. 12. **--use_opq**: use the flag to use OPQ rather than PQ compression. OPQ is more space efficient for some high dimensional datasets, but also needs a bit more build time. 13. **--label_file**: Filter data for each point, in `.txt` format. Line `i` of the file consists of a comma-separated list of filters corresponding to point `i` in the file passed via `--data_file`. -14. **--universal_label**: Optionally, the the filter data may contain a "wild-card" filter corresponding to all filters. This is referred to as a universal label. Note that if a point has the universal label, then the filter data must only have the universal label on the line corresponding to said point. +14. **--universal_label**: Optionally, the label data may contain a special "universal" label. A point with the universal label can be matched against a query with any label. Note that if a point has the universal label, then the filter data must only have the universal label on the line corresponding. 15. **--FilteredLbuild**: If building a filtered index, we maintain a separate search list from the one provided by `--Lbuild`. 16. **--filter_threshold**: Threshold to break up the existing nodes to generate new graph internally by breaking dense points where each node will have a maximum F labels. Default value is zero where no break up happens for the dense points.