-
Notifications
You must be signed in to change notification settings - Fork 259
/
Copy pathnotebook_dql_transfer.py
207 lines (178 loc) · 6.63 KB
/
notebook_dql_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# ---
# jupyter:
# jupytext:
# cell_metadata_filter: title,-all
# formats: py:percent,ipynb
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.16.4
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
# name: python3
# ---
# %%
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# -*- coding: utf-8 -*-
# %%
"""Notebook demonstrating transfer learning capability of the
the Deep Q-learning agent trained and evaluated on the chain
environment of various sizes.
NOTE: You can run this `.py`-notebook directly from VSCode.
You can also generate a traditional Jupyter Notebook
using the VSCode command `Export Currenty Python File As Jupyter Notebook`.
"""
# %%
import os
import sys
import logging
import gymnasium as gym
import torch
import cyberbattle.agents.baseline.learner as learner
import cyberbattle.agents.baseline.plotting as p
import cyberbattle.agents.baseline.agent_wrapper as w
import cyberbattle.agents.baseline.agent_dql as dqla
from cyberbattle.agents.baseline.agent_wrapper import Verbosity
import cyberbattle.agents.baseline.agent_randomcredlookup as rca
import importlib
import cyberbattle._env.cyberbattle_env as cyberbattle_env
import cyberbattle._env.cyberbattle_chain as cyberbattle_chain
importlib.reload(learner)
importlib.reload(cyberbattle_env)
importlib.reload(cyberbattle_chain)
logging.basicConfig(stream=sys.stdout, level=logging.ERROR, format="%(levelname)s: %(message)s")
# %matplotlib inline
# %%
torch.cuda.is_available()
# %%
# To run once
# import plotly.io as pio
# pio.orca.config.use_xvfb = True
# pio.orca.config.save()
# %%
cyberbattlechain_4 = gym.make("CyberBattleChain-v0", size=4, attacker_goal=cyberbattle_env.AttackerGoal(own_atleast_percent=1.0)).unwrapped
cyberbattlechain_10 = gym.make("CyberBattleChain-v0", size=10, attacker_goal=cyberbattle_env.AttackerGoal(own_atleast_percent=1.0)).unwrapped
cyberbattlechain_20 = gym.make("CyberBattleChain-v0", size=20, attacker_goal=cyberbattle_env.AttackerGoal(own_atleast_percent=1.0)).unwrapped
assert isinstance(cyberbattlechain_4, cyberbattle_env.CyberBattleEnv)
assert isinstance(cyberbattlechain_10, cyberbattle_env.CyberBattleEnv)
assert isinstance(cyberbattlechain_20, cyberbattle_env.CyberBattleEnv)
ep = w.EnvironmentBounds.of_identifiers(maximum_total_credentials=22, maximum_node_count=22, identifiers=cyberbattlechain_10.identifiers)
# %% {"tags": ["parameters"]}
iteration_count = 9000
training_episode_count = 50
eval_episode_count = 10
plots_dir = "output/images"
# %%
os.makedirs(plots_dir, exist_ok=True)
# %%
# Run Deep Q-learning
# 0.015
best_dqn_learning_run_10 = learner.epsilon_greedy_search(
cyberbattle_gym_env=cyberbattlechain_10,
environment_properties=ep,
learner=dqla.DeepQLearnerPolicy(ep=ep, gamma=0.015, replay_memory_size=10000, target_update=10, batch_size=512, learning_rate=0.01), # torch default is 1e-2
episode_count=training_episode_count,
iteration_count=iteration_count,
epsilon=0.90,
render=False,
# epsilon_multdecay=0.75, # 0.999,
epsilon_exponential_decay=5000, # 10000
epsilon_minimum=0.10,
verbosity=Verbosity.Quiet,
title="DQL",
)
# %%
# %% Plot episode length
p.plot_episodes_length([best_dqn_learning_run_10])
# %% [markdown]
# %%
if not os.path.exists("images"):
os.mkdir("images")
# %%
dql_exploit_run = learner.epsilon_greedy_search(
cyberbattlechain_10,
ep,
learner=best_dqn_learning_run_10["learner"],
episode_count=eval_episode_count,
iteration_count=iteration_count,
epsilon=0.0, # 0.35,
render=False,
render_last_episode_rewards_to=os.path.join(plots_dir, "dql_transfer-chain10"),
title="Exploiting DQL",
verbosity=Verbosity.Quiet,
)
# %%
random_run = learner.epsilon_greedy_search(
cyberbattlechain_10,
ep,
learner=learner.RandomPolicy(),
episode_count=eval_episode_count,
iteration_count=iteration_count,
epsilon=1.0, # purely random
render=False,
verbosity=Verbosity.Quiet,
title="Random search",
)
# %%
# Plot averaged cumulative rewards for DQL vs Random vs DQL-Exploit
themodel = dqla.CyberBattleStateActionModel(ep)
p.plot_averaged_cummulative_rewards(
all_runs=[best_dqn_learning_run_10, random_run, dql_exploit_run],
title=f"Benchmark -- max_nodes={ep.maximum_node_count}, episodes={eval_episode_count},\n"
f"State: {[f.name() for f in themodel.state_space.feature_selection]} "
f"({len(themodel.state_space.feature_selection)}\n"
f"Action: abstract_action ({themodel.action_space.flat_size()})",
)
# %%
# plot cumulative rewards for all episodes
p.plot_all_episodes(best_dqn_learning_run_10)
##################################################
# %%
best_dqn_4 = learner.epsilon_greedy_search(
cyberbattle_gym_env=cyberbattlechain_4,
environment_properties=ep,
learner=dqla.DeepQLearnerPolicy(ep=ep, gamma=0.15, replay_memory_size=10000, target_update=5, batch_size=256, learning_rate=0.01),
episode_count=training_episode_count,
iteration_count=iteration_count,
epsilon=0.90,
render=False,
epsilon_exponential_decay=5000,
epsilon_minimum=0.10,
verbosity=Verbosity.Quiet,
title="DQL",
)
# %%
learner.transfer_learning_evaluation(
environment_properties=ep,
trained_learner=best_dqn_learning_run_10,
eval_env=cyberbattlechain_20,
eval_epsilon=0.0, # alternate with exploration to help generalization to bigger network
eval_episode_count=eval_episode_count,
iteration_count=iteration_count,
benchmark_policy=rca.CredentialCacheExploiter(),
benchmark_training_args={"epsilon": 0.90, "epsilon_exponential_decay": 10000, "epsilon_minimum": 0.10, "title": "Credential lookups (ϵ-greedy)"},
)
learner.transfer_learning_evaluation(
environment_properties=ep,
trained_learner=best_dqn_4,
eval_env=cyberbattlechain_10,
eval_epsilon=0.0, # exploit Q-matrix only
eval_episode_count=eval_episode_count,
iteration_count=iteration_count,
benchmark_policy=rca.CredentialCacheExploiter(),
benchmark_training_args={"epsilon": 0.90, "epsilon_exponential_decay": 10000, "epsilon_minimum": 0.10, "title": "Credential lookups (ϵ-greedy)"},
)
# %%
learner.transfer_learning_evaluation(
environment_properties=ep,
trained_learner=best_dqn_4,
eval_env=cyberbattlechain_20,
eval_epsilon=0.0, # exploit Q-matrix only
eval_episode_count=eval_episode_count,
iteration_count=iteration_count,
benchmark_policy=rca.CredentialCacheExploiter(),
benchmark_training_args={"epsilon": 0.90, "epsilon_exponential_decay": 10000, "epsilon_minimum": 0.10, "title": "Credential lookups (ϵ-greedy)"},
)