-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualization.py
66 lines (51 loc) · 2.38 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch.nn
from tqdm import tqdm
import os
import sys
import torch.optim as optim
from utils.dataset import CustomDataset
from torch.utils.data import DataLoader
from torchvision.utils import save_image
from yolo import YoloV3
from utils.utils import denormalize
from utils.utils import draw_y_on_x
from utils.utils import draw_yp_on_x
from utils.utils import load_checkpoint
from utils import arguments
from utils import custom_transforms
def visualize(model, val_loader, anchors, args, path):
model.eval()
cycle_limit = 1000
val_iter = iter(val_loader)
with torch.no_grad():
for _ in tqdm(range(cycle_limit)):
x, y, z = next(val_iter)
x = x.to(args.device)
yp = model(x)
yp_render = (yp[0].cpu().detach().clone(), yp[1].cpu().detach().clone(), yp[2].cpu().detach().clone())
x_render = x.cpu().detach().clone()
x_render = denormalize(x_render) * 255
draw_y_on_x(x_render, y, args.classes)
draw_yp_on_x(x_render, yp_render, z, args.visualization_threshold, args.iou_threshold, anchors, args.classes)
# Save batch grid as image
image_dir = path
image_dir_exists = os.path.exists(image_dir)
if not image_dir_exists:
os.makedirs(image_dir)
img_name = str(image_dir) + "/" + str(z[0][0].item()) + ".png"
save_image(x_render / 255, img_name)
def main(args):
log_path = "/t/home/peter.lengyel/private/logs/images"
weights_path = "/t/home/peter.lengyel/private/logs/230411-22:57:14_baseline_rgb_and_reshape/save/checkpoint_0_5022.pth.tar"
val_transforms = custom_transforms.get_val_transforms(image_size=416)
val_dataset = CustomDataset(root=args.val_images_path, annFile=args.val_annotations_path, transforms=val_transforms)
val_loader = DataLoader(dataset=val_dataset, batch_size=1, shuffle=False, num_workers=0, drop_last=True, pin_memory=True)
model = YoloV3(args=args.yolo).to(args.device)
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
anchors = torch.tensor(args.anchors).to(args.device)
load_checkpoint(weights_path, model, optimizer, args.device)
visualize(model, val_loader, anchors, args, log_path)
if __name__ == "__main__":
os.chdir(sys.path[0])
args = arguments.parse_config("./args.yaml")
main(args)