Skip to content

Latest commit

 

History

History
108 lines (76 loc) · 4.2 KB

README.md

File metadata and controls

108 lines (76 loc) · 4.2 KB

daguan_competition_2021_codes

This repository contains our code and pre-trained models for participating 达观杯2021风险标签识别比赛.

**************************** Updates ****************************

数据处理:

# 统计标签信息
src/data_proc/label_vocab_process.py

# 句长统计
src/data_proc/sample_length_stats.py

# 数据集拆分
src/data_proc/split_datasets.py

词频对应

本题采用脱敏文本,所以我们需要将词汇与开源BERT词汇对应,得到明文数据

# 从一个corpus中得到词频统计
src/bert_models/vocab_process/get_vocab_freq_from_corpus.py

# 得到词频对应,并将数据集转为明文
src/bert_models/vocab_process/get_vocab_mapping.py

训练示例:

nohup python src/bert_models/training/main.py 
    --model_type nezha 
    --model_name_or_path resources/nezha/NEZHA-Base 
    --data_dir ./datasets/phase_1/splits/fold_0_bertvocab 
    --label_file_level_1 datasets/phase_1/labels_level_1.txt 
    --label_file_level_2 datasets/phase_1/labels_level_2.txt 
    --task daguan --aggregator bert_pooler 
    --model_dir ./experiments/outputs/daguan/nezha_0821_0 
    --do_train --do_eval 
    --train_batch_size 32 
    --num_train_epochs 50 
    --embeddings_learning_rate 0.5e-4 
    --encoder_learning_rate 0.5e-4 
    --classifier_learning_rate 5e-4 
    --warmup_steps 400 
    --max_seq_len 132 
    --dropout_rate 0.15 
    --metric_key_for_early_stop "macro avg__f1-score__level_2" 
    --logging_steps 400 
    --patience 6 
    --label2freq_level_1_dir datasets/phase_1/label2freq_level_1.json 
    --label2freq_level_2_dir datasets/phase_1/label2freq_level_2.json 
    --processor_sep "\t" 
> ./experiments/logs/nezha_0821_0.log &

Results

模型结果记录: 采用5折交叉验证(不重叠的五折)的平均分

模型描述 dev macro-F1
官方baseline: word2vec + bilstm 0.392
随机word2vec + bilstm + max-pool 0.491
- + slf_attn_pool 0.49267002199706494
预训练word2vec + bilstm + max-pool 0.5013160507998644
- + slf_attn_pool 0.4972518334336293
BERT-base + 随机初始化embedding 0.505
- + 词汇表词频对应 0.515
BERT-wwm-ext + 词汇表词频对应 0.524
- 多种pooling操作一起使用 0.528
- + sample weights 0.535
- + ce + NTXENT loss 0.533
NEZHA-base-wwm + 词汇表词频对应 0.535
- + ce + NTXENT loss (系数0.1, gamma 0.5) 0.538
- + ce + NTXENT loss (系数0.5, gamma 0.5) 0.530
- + ce + NTXENT loss (系数0.5, gamma 0.07) 0.526
- + multi-sample dropout (0.4, num=4, sum) 0.543
daguan-bert-base-v0 (lr: 2e-5) 0.5512
daguan-bert-base-v1 (lr: 1e-5) 0.5552

Q&A

for further questions, contact me via wechat. 可以直接加我微信,欢迎前来交流算法竞赛经验。 Alt text