-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathANNs.py
225 lines (163 loc) · 5.06 KB
/
ANNs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!usr/bin/env python3
# -*- coding:utf-8 -*-
from __future__ import division
import numpy as np
import math
np.random.seed(1234)
# definition of sigmoid funtion
# numpy.exp work for arrays.
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# definition of sigmoid derivative funtion
# input must be sigmoid function's result
def sigmoid_output_to_derivative(result):
return result*(1-result)
# init training set
def getTrainingSet(nameOfSet):
setDict = {
"sin": getSinSet(),
"line": getLineSet(),
}
return setDict[nameOfSet]
def getSinSet():
x = 3.14 * np.random.rand(1)
# x = 6.2 * np.random.rand(1) - 3.14
x = x.reshape(1,1)
# y = np.array([5 *x]).reshape(1,1)
# y = np.array([math.sin(x)]).reshape(1,1)
y = np.array([math.sin(x),1]).reshape(1,2)
return x, y
def getLineSet():
x = 1 * np.random.rand(4) - 0.5
x = x.reshape(1,4)
k = np.array([-43.83764134, -15.94397998, 34.92887039, -27.07145086])
k = k.reshape(4,1)
y = np.dot(x, k)
return x, y
def getW(synapse, delta):
resultList = []
# 遍历隐藏层每个隐藏单元对每个输出的权值,比如8个隐藏单元,每个隐藏单元对两个输出各有2个权值
for i in range(synapse.shape[0]):
resultList.append(
(synapse[i,:] * delta).sum()
)
resultArr = np.array(resultList).reshape(1, synapse.shape[0])
return resultArr
def getT(delta, layer):
result = np.dot(layer.T, delta)
return result
def backPropagation(trainingExamples, etah, input_dim, output_dim, hidden_dim, hidden_num, convergence_condition):
# 可行条件
if hidden_num < 1:
print("隐藏层数不得小于1")
return
# 初始化网络权重矩阵,这个是核心
synapseList = []
# 输入层与隐含层1
synapseList.append(2*np.random.random((input_dim,hidden_dim)) - 1)
# 隐含层1与隐含层2, 2->3,,,,,,n-1->n
for i in range(hidden_num-1):
synapseList.append(2*np.random.random((hidden_dim,hidden_dim)) - 1)
# 隐含层n与输出层
synapseList.append(2*np.random.random((hidden_dim,output_dim)) - 1)
iCount = 0
lastErrorMax = 99999
# while True:
for i in range(10000):
errorMax = 0
for x, y in trainingExamples:
iCount += 1
layerList = []
# 正向传播
layerList.append(
sigmoid(np.dot(x,synapseList[0]))
)
for j in range(hidden_num):
layerList.append(
sigmoid(np.dot(layerList[-1],synapseList[j+1]))
)
# 对于网络中的每个输出单元k,计算它的误差项
deltaList = []
layerOutputError = y - layerList[-1]
# 收敛条件
errorMax = layerOutputError.sum() if layerOutputError.sum() > errorMax else errorMax
deltaK = sigmoid_output_to_derivative(layerList[-1]) * layerOutputError
deltaList.append(deltaK)
iLength = len(synapseList)
for j in range(hidden_num):
w = getW(synapseList[iLength - 1 - j], deltaList[j])
delta = sigmoid_output_to_derivative(layerList[iLength - 2 - j]) * w
deltaList.append(delta)
# 更新每个网络权值w(ji)
for j in range(len(synapseList)-1, 0, -1):
t = getT(deltaList[iLength - 1 -j], layerList[j-1])
synapseList[j] = synapseList[j] + etah * t
t = getT(deltaList[-1], x)
synapseList[0] = synapseList[0] + etah * t
print("最大输出误差:")
print(errorMax)
if abs(lastErrorMax - errorMax) < convergence_condition:
print("收敛了")
print("####################")
break
lastErrorMax = errorMax
# 测试训练好的网络
for i in range(5):
xTest, yReal = getSinSet()
# xTest, yReal = getLineSet()
layerTmp = sigmoid(np.dot(xTest,synapseList[0]))
for j in range(1, len(synapseList), 1):
layerTmp = sigmoid(np.dot(layerTmp,synapseList[j]))
yTest = layerTmp
print("x:")
print(xTest)
print("实际的y:")
print(yReal)
print("神经元网络输出的y:")
print(yTest)
print("最终输出误差:")
print(np.abs(yReal - yTest))
print("#####################")
# test in training set
precision = 0
for x, y in trainingExamples:
layerTmp = sigmoid(np.dot(x,synapseList[0]))
for j in range(1, len(synapseList), 1):
layerTmp = sigmoid(np.dot(layerTmp,synapseList[j]))
yTest = layerTmp
if abs(yTest[0][0] - y[0][0]) < 0.1:
precision += 1
print("precision on training set")
print(str(precision / len(trainingExamples) * 100) + "%")
print("迭代次数:")
print(iCount)
if __name__ == '__main__':
import datetime
tStart = datetime.datetime.now()
# 使用什么样的训练样例
nameOfSet = "sin"
# nameOfSet = "line"
x, y = getTrainingSet(nameOfSet)
# setting of parameters
# 这里设置了学习速率。
etah = 0.25
# 隐藏层数
hidden_num = 2
# 网络输入层的大小
input_dim = x.shape[1]
# 隐含层的大小
hidden_dim = 100
# 输出层的大小
output_dim = y.shape[1]
# 收敛条件
convergence_condition = 0.001
# 构建训练样例
trainingExamples = []
for i in range(10000):
x, y = getTrainingSet(nameOfSet)
trainingExamples.append((x, y))
# 开始用反向传播算法训练网络
backPropagation(trainingExamples, etah, input_dim, output_dim, hidden_dim, hidden_num, convergence_condition)
tEnd = datetime.datetime.now()
print("time cost:")
print(tEnd - tStart)