forked from babbu3682/SMART-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
197 lines (144 loc) · 7.54 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
from pathlib import Path
import argparse
import datetime
import numpy as np
import time
import torch
import json
import random
# import functools
import utils
from create_model import create_model
from create_datasets.prepare_datasets import build_test_dataset
from engine import *
from losses import Uptask_Loss, Downtask_Loss
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_args_parser():
parser = argparse.ArgumentParser('SMART-Net Framework Train and Test script', add_help=False)
# Dataset parameters
parser.add_argument('--data-folder-dir', default="/workspace/sunggu/1.Hemorrhage/SMART-Net/datasets/samples", type=str, help='dataset folder dirname')
parser.add_argument('--test-dataset-name', default="Custom", type=str, help='test dataset name')
parser.add_argument('--slice-wise-manner', type=str2bool, default="True", help='stacking slices like slice-wise manner for patient-level testing for Upstream')
# Model parameters
parser.add_argument('--model-name', default='SMART_Net', type=str, help='model name')
# DataLoader setting
parser.add_argument('--num-workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true', default=False, help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
# Setting Upstream, Downstream task
parser.add_argument('--training-stream', default='Upstream', choices=['Upstream', 'Downstream'], type=str, help='training stream')
# DataParrel or Single GPU train
parser.add_argument('--multi-gpu-mode', default='DataParallel', choices=['DataParallel', 'Single'], type=str, help='multi-gpu-mode')
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
parser.add_argument('--cuda-device-order', default='PCI_BUS_ID', type=str, help='cuda_device_order')
parser.add_argument('--cuda-visible-devices', default='0', type=str, help='cuda_visible_devices')
# Continue Training
parser.add_argument('--resume', default='', help='resume from checkpoint') # '' = None
# Validation setting
parser.add_argument('--print-freq', default=10, type=int, metavar='N', help='print frequency (default: 10)')
# Prediction and Save setting
parser.add_argument('--output-dir', default='', help='path where to save, empty for no saving')
return parser
# Fix random seeds for reproducibility
random_seed = 42
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random_seed)
def main(args):
utils.print_args_test(args)
device = torch.device(args.device)
print("Loading dataset ....")
dataset_test, collate_fn_test = build_test_dataset(args=args)
data_loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=1, num_workers=args.num_workers, shuffle=False, pin_memory=args.pin_mem, drop_last=False, collate_fn=collate_fn_test)
# Select Loss
if args.training_stream == 'Upstream':
criterion = Uptask_Loss(name=args.model_name)
else :
criterion = Downtask_Loss(name=args.model_name)
# Select Model
print(f"Creating model : {args.model_name}")
model = create_model(stream=args.training_stream, name=args.model_name)
print(model)
# Resume
if args.resume:
print("Loading... Resume")
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model_state_dict'])
try:
log_path = os.path.dirname(args.resume)+'/log.txt'
lines = open(log_path,'r').readlines()
val_loss_list = []
for l in lines:
exec('log_dict='+l.replace('NaN', '0'))
val_loss_list.append(log_dict['valid_loss'])
print("Epoch: ", np.argmin(val_loss_list), " Minimum Val Loss ==> ", np.min(val_loss_list))
except:
pass
# Multi GPU
if args.multi_gpu_mode == 'DataParallel':
model = torch.nn.DataParallel(model)
model.to(device)
elif args.multi_gpu_mode == 'Single':
model.to(device)
else :
raise Exception('Error...! args.multi_gpu_mode')
start_time = time.time()
# TEST
if args.training_stream == 'Upstream':
if args.model_name == 'Up_SMART_Net':
if args.slice_wise_manner:
test_stats = test_Up_SMART_Net(model, criterion, data_loader_test, device, args.print_freq, 1)
else :
test_stats = test_Up_SMART_Net_Patient_Level(model, criterion, data_loader_test, device, args.print_freq, 1)
## Dual
elif args.model_name == 'Up_SMART_Net_Dual_CLS_SEG':
test_stats = test_Up_SMART_Net_Dual_CLS_SEG(model, criterion, data_loader_test, device, args.print_freq, 1)
elif args.model_name == 'Up_SMART_Net_Dual_CLS_REC':
test_stats = test_Up_SMART_Net_Dual_CLS_REC(model, criterion, data_loader_test, device, args.print_freq, 1)
elif args.model_name == 'Up_SMART_Net_Dual_SEG_REC':
test_stats = test_Up_SMART_Net_Dual_SEG_REC(model, criterion, data_loader_test, device, args.print_freq, 1)
## Single
elif args.model_name == 'Up_SMART_Net_Single_CLS':
test_stats = test_Up_SMART_Net_Single_CLS(model, criterion, data_loader_test, device, args.print_freq, 1)
elif args.model_name == 'Up_SMART_Net_Single_SEG':
test_stats = test_Up_SMART_Net_Single_SEG(model, criterion, data_loader_test, device, args.print_freq, 1)
elif args.model_name == 'Up_SMART_Net_Single_REC':
test_stats = test_Up_SMART_Net_Single_REC(model, criterion, data_loader_test, device, args.print_freq, 1)
else :
raise KeyError("Wrong model name `{}`".format(args.model_name))
elif args.training_stream == 'Downstream':
if args.model_name == 'Down_SMART_Net_CLS':
test_stats = test_Down_SMART_Net_CLS(model, criterion, data_loader_test, device, args.print_freq, 1)
elif args.model_name == 'Down_SMART_Net_SEG':
test_stats = test_Down_SMART_Net_SEG(model, criterion, data_loader_test, device, args.print_freq, 1)
else :
raise KeyError("Wrong model name `{}`".format(args.model_name))
else :
raise KeyError("Wrong training stream `{}`".format(args.training_stream))
log_stats = {**{f'test_{k}': v for k, v in test_stats.items()}}
if args.output_dir:
with open(args.output_dir + "/test_log.txt", "a") as f:
f.write(json.dumps(log_stats) + "\n")
print("Averaged test_stats: ", test_stats)
# Finish
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('TEST time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('SMART-Net Framework training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
os.environ["CUDA_DEVICE_ORDER"] = args.cuda_device_order
os.environ["CUDA_VISIBLE_DEVICES"] = args.cuda_visible_devices
main(args)