forked from brody9512/PCG_FTSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
244 lines (215 loc) · 8.25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
import shutil
import warnings
import multiprocessing
import numpy as np
import sklearn
import sklearn.metrics
import monai
from monai.config import print_config
import pytorch_lightning as pl
from pytorch_lightning.callbacks import LearningRateMonitor, EarlyStopping, StochasticWeightAveraging
import torch
from torch.utils.data import DataLoader
import dotenv
# Local imports
from config import get_args
from model import SEGNET, BasicUNet
from dataset import PCGDataset
from utils import set_seed
# Load environment variables from .env file
dotenv.load_dotenv()
# ----------------------------
# Helper Functions
# ----------------------------
def create_or_reset_folder(folder_path: str):
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
os.mkdir(folder_path)
def load_data_2016(load_path: str):
data2016 = np.load(load_path, allow_pickle=True)
data_test2016 = data2016[:336]
data_train2016 = data2016[336:]
data_train2016, data_valid2016 = sklearn.model_selection.train_test_split(
data_train2016, test_size=0.2, random_state=42
)
return data_train2016, data_valid2016, data_test2016
def build_trainer(model, max_epochs=100, learning_rate=1e-3):
trainer = pl.Trainer(
log_every_n_steps=1,
gradient_clip_algorithm='norm',
accumulate_grad_batches=4,
sync_batchnorm=True,
benchmark=True,
accelerator='gpu',
devices=-1, # Use all available GPUs
max_epochs=max_epochs,
strategy='ddp_find_unused_parameters_true',
check_val_every_n_epoch=1,
callbacks=[
model.checkpoint_callback,
LearningRateMonitor(),
EarlyStopping('val_loss', patience=20),
StochasticWeightAveraging(
swa_epoch_start=0.1,
annealing_epochs=2,
swa_lrs=learning_rate
)
],
)
return trainer
# ----------------------------
# Main Function
# ----------------------------
def main():
args = get_args()
# ----------------------
# Environment Setup
# ----------------------
os.environ["HTTP_PROXY"] = os.getenv("HTTP_PROXY", "")
os.environ["HTTPS_PROXY"] = os.getenv("HTTPS_PROXY", "")
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
# Suppress warnings
warnings.filterwarnings(action='ignore')
# ----------------------
# Device and Worker Setup
# ----------------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
NUM_WORKERS = os.cpu_count()
print("Number of workers:", NUM_WORKERS)
print("multiprocessing.cpu_count()", multiprocessing.cpu_count())
print("cuda.is_available:", torch.cuda.is_available())
print("Using device:", device)
print_config()
# Fixed parameters and constants
IN_CHANNELS = 2
OUT_CHANNELS = 4
MINSIZE = 50
THR = 0.5
VERSION = 2
MAX_EPOCHS = 250
LEARNING_RATE = 2e-4
# Create a comment string to name your results more systematically
comment = (
f"ver{VERSION}_d{args.target_sr}_v{args.ver}_low{args.lowpass}"
f"twice_{args.twice}_nofft_{args.fft}"
)
load_path = f"/workspace/data/PhysioNet{args.year}_{args.target_sr}Hz_{args.lowpass}_fe_{args.featureLength}.npy"
infer_pth = f"/workspace/data/lightning_logs/version_{args.ver}/checkpoints/"
set_seed(args.seed)
print(f"pytorch_lightning version: {pl.__version__}")
# Model setup
net = BasicUNet(
spatial_dims=1,
in_channels=IN_CHANNELS,
out_channels=OUT_CHANNELS,
features=(64, 64, 128, 256, 512, 512, 64),
norm='instance',
upsample='pixelshuffle',
act='gelu',
fft=args.fft, # FFT-based layer
twice=args.twice # double-Conv in Down / UpCat
)
model = SEGNET(
net=net,
featureLength=args.featureLength,
learning_rate=LEARNING_RATE,
in_channels=IN_CHANNELS,
out_channels=OUT_CHANNELS,
minsize=MINSIZE,
thr=THR,
device=device,
path=f'/workspace/data/pcg_2016_jupyters/result/{args.year}_toler{args.toler}_{comment}/',
toler=args.toler
)
# ----------------------
# Training Phase
# ----------------------
if not args.infer:
path = f"/workspace/data/pcg_2016_jupyters/result/{args.year}_toler{args.toler}_{comment}/"
create_or_reset_folder(path)
data_train2016, data_valid2016, data_test2016 = load_data_2016(load_path)
print(len(data_train2016), len(data_valid2016), len(data_test2016))
# Create datasets & loaders
train_ds2016 = PCGDataset(data_train2016, 'train')
train_loader = DataLoader(
train_ds2016,
shuffle=True,
batch_size=args.batch,
drop_last=True
)
valid_ds2016 = PCGDataset(data_valid2016)
valid_loader = DataLoader(
valid_ds2016,
batch_size=1,
collate_fn=monai.data.utils.default_collate
)
test_ds2016 = PCGDataset(data_test2016)
test_loader = DataLoader(
test_ds2016,
batch_size=1,
collate_fn=monai.data.utils.default_collate
)
trainer = build_trainer(model, max_epochs=MAX_EPOCHS, learning_rate=LEARNING_RATE)
trainer.fit(model, train_loader, valid_loader)
else:
print("Inference mode requested. Skipping training.")
# ----------------------
# Testing Phases
# ----------------------
if not args.not_2016:
year = 2016
test_path = f"/workspace/data/pcg_2016_jupyters/result/{year}_toler{args.toler}_{comment}/"
if not args.nofolder:
create_or_reset_folder(test_path)
data2016 = np.load(load_path, allow_pickle=True)
data_test2016 = data2016[:336]
test_ds2016 = PCGDataset(data_test2016)
test_loader_2016 = DataLoader(
test_ds2016,
batch_size=1,
collate_fn=monai.data.utils.default_collate
)
print("\n############# Toler 40 Internal 2016 start #############\n")
checkpoint_file = os.path.join(infer_pth, 'best.ckpt')
checkpoint = torch.load(checkpoint_file, map_location='cpu')
print("Checkpoint state_dict keys:", len(checkpoint['state_dict'].keys()))
print("Model state_dict keys:", len(model.state_dict().keys()))
trainer = build_trainer(model, max_epochs=MAX_EPOCHS, learning_rate=LEARNING_RATE)
trainer.test(model, test_loader_2016, ckpt_path=checkpoint_file)
if not args.not_2022:
print("\nToler 40 External 2022 start\n")
year = 2022
test_path = f"/workspace/data/pcg_2016_jupyters/result/{year}_toler{args.toler}_{comment}/"
if not args.nofolder:
create_or_reset_folder(test_path)
new_load_path = f"/workspace/data/PhysioNet{year}_{args.target_sr}Hz_{args.lowpass}_fe_{args.featureLength}.npy"
data2022 = np.load(new_load_path, allow_pickle=True)
test_ds2022 = PCGDataset(data2022)
test_loader_2022 = DataLoader(
test_ds2022,
batch_size=1,
collate_fn=monai.data.utils.default_collate
)
trainer = build_trainer(model, max_epochs=MAX_EPOCHS, learning_rate=LEARNING_RATE)
trainer.test(model, test_loader_2022, ckpt_path=os.path.join(infer_pth, 'best.ckpt'))
if not args.not_amc:
print("\nToler 40 External amc start\n")
year = "amc"
test_path = f"/workspace/data/pcg_2016_jupyters/result/{year}_toler{args.toler}_{comment}/"
if not args.nofolder:
create_or_reset_folder(test_path)
amc_load_path = f"/workspace/data/{year}_{args.target_sr}Hz_{args.lowpass}_fe_{args.featureLength}.npy"
data_amc = np.load(amc_load_path, allow_pickle=True)
test_ds_amc = PCGDataset(data_amc)
test_loader_amc = DataLoader(
test_ds_amc,
batch_size=1,
collate_fn=monai.data.utils.default_collate
)
trainer = build_trainer(model, max_epochs=MAX_EPOCHS, learning_rate=LEARNING_RATE)
trainer.test(model, test_loader_amc, ckpt_path=os.path.join(infer_pth, 'best.ckpt'))
if __name__ == "__main__":
main()