forked from pytorch/ignite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataflow.py
232 lines (182 loc) · 6.85 KB
/
dataflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import cv2
import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset
from torch.utils.data.dataset import Subset
from torchvision.datasets.sbd import SBDataset
from torchvision.datasets.voc import VOCSegmentation
import ignite.distributed as idist
from ignite.utils import convert_tensor
class TransformedDataset(Dataset):
def __init__(self, ds, transform_fn):
assert isinstance(ds, Dataset)
assert callable(transform_fn)
self.ds = ds
self.transform_fn = transform_fn
def __len__(self):
return len(self.ds)
def __getitem__(self, index):
dp = self.ds[index]
return self.transform_fn(**dp)
class VOCSegmentationOpencv(VOCSegmentation):
target_names = [
"background",
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"plant",
"sheep",
"sofa",
"train",
"tv/monitor",
]
def __init__(self, *args, return_meta=False, **kwargs):
super(VOCSegmentationOpencv, self).__init__(*args, **kwargs)
self.return_meta = return_meta
def __getitem__(self, index):
img = cv2.imread(self.images[index])
assert img is not None, f"Image at '{self.images[index]}' has a problem"
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
mask = np.asarray(Image.open(self.masks[index]))
if self.return_meta:
return {
"image": img,
"mask": mask,
"meta": {"index": index, "image_path": self.images[index], "mask_path": self.masks[index],},
}
return {"image": img, "mask": mask}
class SBDatasetOpencv(SBDataset):
def __init__(self, *args, return_meta=False, **kwargs):
super(SBDatasetOpencv, self).__init__(*args, **kwargs)
assert self.mode == "segmentation", "SBDatasetOpencv should be in segmentation mode only"
self.return_meta = return_meta
def _get_segmentation_target(self, filepath):
mat = self._loadmat(filepath)
return mat["GTcls"][0]["Segmentation"][0]
def __getitem__(self, index):
img = cv2.imread(self.images[index])
assert img is not None, f"Image at '{self.images[index]}' has a problem"
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
mask = self._get_target(self.masks[index])
if self.return_meta:
return {
"image": img,
"mask": mask,
"meta": {"index": index, "image_path": self.images[index], "mask_path": self.masks[index],},
}
return {"image": img, "mask": mask}
def get_train_dataset(root_path, return_meta=False):
return VOCSegmentationOpencv(
root=root_path, year="2012", image_set="train", download=False, return_meta=return_meta,
)
def get_val_dataset(root_path, return_meta=False):
return VOCSegmentationOpencv(root=root_path, year="2012", image_set="val", download=False, return_meta=return_meta,)
def get_train_noval_sbdataset(root_path, return_meta=False):
return SBDatasetOpencv(root_path, image_set="train_noval", mode="segmentation", return_meta=return_meta)
def get_dataloader(dataset, sampler=None, shuffle=False, limit_num_samples=None, **kwargs):
if limit_num_samples is not None:
np.random.seed(limit_num_samples)
indices = np.random.permutation(len(dataset))[:limit_num_samples]
dataset = Subset(dataset, indices)
return idist.auto_dataloader(dataset, sampler=sampler, shuffle=(sampler is None) and shuffle, **kwargs)
def get_train_val_loaders(
root_path,
train_transforms,
val_transforms,
batch_size=16,
num_workers=8,
train_sampler=None,
val_batch_size=None,
sbd_path=None,
limit_train_num_samples=None,
limit_val_num_samples=None,
):
train_ds = get_train_dataset(root_path)
val_ds = get_val_dataset(root_path)
if sbd_path is not None:
sbd_train_ds = get_train_noval_sbdataset(sbd_path)
train_ds = train_ds + sbd_train_ds
if len(val_ds) < len(train_ds):
train_eval_indices = np.random.permutation(len(train_ds))[: len(val_ds)]
train_eval_ds = Subset(train_ds, train_eval_indices)
else:
train_eval_ds = train_ds
train_ds = TransformedDataset(train_ds, transform_fn=train_transforms)
val_ds = TransformedDataset(val_ds, transform_fn=val_transforms)
train_eval_ds = TransformedDataset(train_eval_ds, transform_fn=val_transforms)
val_batch_size = batch_size * 4 if val_batch_size is None else val_batch_size
train_loader = get_dataloader(
train_ds,
shuffle=True,
sampler=train_sampler,
batch_size=batch_size,
num_workers=num_workers,
drop_last=True,
limit_num_samples=limit_train_num_samples,
)
val_loader = get_dataloader(
val_ds,
shuffle=False,
batch_size=val_batch_size,
num_workers=num_workers,
drop_last=False,
limit_num_samples=limit_val_num_samples,
)
train_eval_loader = get_dataloader(
train_eval_ds,
shuffle=False,
batch_size=val_batch_size,
num_workers=num_workers,
drop_last=False,
limit_num_samples=limit_val_num_samples,
)
return train_loader, val_loader, train_eval_loader
def get_inference_dataloader(
root_path, mode, transforms, batch_size=16, num_workers=8, pin_memory=True, limit_num_samples=None,
):
assert mode in ("train", "test"), "Mode should be 'train' or 'test'"
get_dataset_fn = get_train_dataset if mode == "train" else get_val_dataset
dataset = get_dataset_fn(root_path, return_meta=True)
dataset = TransformedDataset(dataset, transform_fn=transforms)
return get_dataloader(
dataset,
limit_num_samples=limit_num_samples,
shuffle=False,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
drop_last=False,
)
def ignore_mask_boundaries(force_apply, **kwargs):
assert "mask" in kwargs, "Input should contain 'mask'"
mask = kwargs["mask"]
mask[mask == 255] = 0
kwargs["mask"] = mask
return kwargs
def denormalize(t, mean, std, max_pixel_value=255):
assert isinstance(t, torch.Tensor), f"{type(t)}"
assert t.ndim == 3
d = t.device
mean = torch.tensor(mean, device=d).unsqueeze(-1).unsqueeze(-1)
std = torch.tensor(std, device=d).unsqueeze(-1).unsqueeze(-1)
tensor = std * t + mean
tensor *= max_pixel_value
return tensor
def prepare_image_mask(batch, device, non_blocking):
x, y = batch["image"], batch["mask"]
x = convert_tensor(x, device, non_blocking=non_blocking)
y = convert_tensor(y, device, non_blocking=non_blocking).long()
return x, y