-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathab_sk_test.py
202 lines (157 loc) · 5.75 KB
/
ab_sk_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import streamlit as st
import pandas as pd
import numpy as np
import scipy.stats
from scipy.stats import norm
import altair as alt
st.set_page_config(
page_title="A/B Test Comparison", page_icon="📈", initial_sidebar_state="expanded"
)
def conversion_rate(conversions, visitors):
return (conversions / visitors) * 100
def lift(cra, crb):
return ((crb - cra) / cra) * 100
def std_err(cr, visitors):
return np.sqrt((cr / 100 * (1 - cr / 100)) / visitors)
def std_err_diff(sea, seb):
return np.sqrt(sea ** 2 + seb ** 2)
def z_score(cra, crb, error):
return ((crb - cra) / error) / 100
def p_value(z, hypothesis):
if hypothesis == "One-sided" and z < 0:
return 1 - norm().sf(z)
elif hypothesis == "One-sided" and z >= 0:
return norm().sf(z) / 2
else:
return norm().sf(z)
def significance(alpha, p):
return "YES" if p < alpha else "NO"
def plot_chart(df):
chart = (
alt.Chart(df)
.mark_bar(color="#61b33b")
.encode(
x=alt.X("Group:O", axis=alt.Axis(labelAngle=0)),
y=alt.Y("Conversion:Q", title="Conversion rate (%)"),
opacity="Group:O",
)
.properties(width=500, height=500)
)
chart_text = chart.mark_text(
align="center", baseline="middle", dy=-10, color="black"
).encode(text=alt.Text("Conversion:Q", format=",.3g"))
return st.altair_chart((chart + chart_text).interactive())
def style_negative(v, props=""):
return props if v < 0 else None
def style_p_value(v, props=""):
return np.where(v < st.session_state.alpha, "color:green;", props)
def calculate_significance(
conversions_a, conversions_b, visitors_a, visitors_b, hypothesis, alpha
):
st.session_state.cra = conversion_rate(int(conversions_a), int(visitors_a))
st.session_state.crb = conversion_rate(int(conversions_b), int(visitors_b))
st.session_state.uplift = lift(st.session_state.cra, st.session_state.crb)
st.session_state.sea = std_err(st.session_state.cra, float(visitors_a))
st.session_state.seb = std_err(st.session_state.crb, float(visitors_b))
st.session_state.sed = std_err_diff(st.session_state.sea, st.session_state.seb)
st.session_state.z = z_score(
st.session_state.cra, st.session_state.crb, st.session_state.sed
)
st.session_state.p = p_value(st.session_state.z, st.session_state.hypothesis)
st.session_state.significant = significance(
st.session_state.alpha, st.session_state.p
)
placeholder = st.empty()
placeholder.title("A/B Test Comparison")
with st.sidebar:
uploaded_file = st.file_uploader("Upload CSV", type=".csv")
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.markdown("#### Data preview")
st.dataframe(df.head())
ab = st.multiselect("A/B column", options=df.columns)
if ab:
control = df[ab[0]].unique()[0]
treatment = df[ab[0]].unique()[1]
decide = st.radio(f"Is {treatment} Variant B?", options=["Yes", "No"])
if decide == "No":
control, treatment = treatment, control
visitors_a = df[ab[0]].value_counts()[control]
visitors_b = df[ab[0]].value_counts()[treatment]
result = st.multiselect("Result column", options=df.columns)
if result:
conversions_a = (
df[[ab[0], result[0]]].groupby(ab[0]).agg("sum")[result[0]][control]
)
conversions_b = (
df[[ab[0], result[0]]].groupby(ab[0]).agg("sum")[result[0]][treatment]
)
with st.sidebar.form("parameters"):
st.markdown("### Parameters")
st.radio(
"Hypothesis type",
options=["One-sided", "Two-sided"],
index=0,
key="hypothesis",
help="TBD",
)
st.slider(
"Significance level (α)",
min_value=0.01,
max_value=0.10,
value=0.05,
step=0.01,
key="alpha",
help=" The probability of mistakenly rejecting the null hypothesis, if the null hypothesis is true. This is also called false positive and type I error. ",
)
submit = st.form_submit_button("Apply changes", on_click=None)
if submit:
placeholder.empty() # Remove title
calculate_significance(
conversions_a,
conversions_b,
visitors_a,
visitors_b,
st.session_state.hypothesis,
st.session_state.alpha,
)
mcol1, mcol2 = st.beta_columns(2)
with mcol1:
st.metric(
"Delta",
value=f"{(st.session_state.crb - st.session_state.cra):.3g}%",
delta=f"{(st.session_state.crb - st.session_state.cra):.3g}%",
)
with mcol2:
st.metric("Significant?", value=st.session_state.significant)
results_df = pd.DataFrame(
{
"Group": ["Control", "Treatment"],
"Conversion": [st.session_state.cra, st.session_state.crb],
}
)
plot_chart(results_df)
table = pd.DataFrame(
{
"Converted": [conversions_a, conversions_b],
"Total": [visitors_a, visitors_b],
"% Converted": [st.session_state.cra, st.session_state.crb],
},
index=pd.Index(["Control", "Treatment"]),
)
st.write(table.style.format(formatter={("% Converted"): "{:.3g}%"}))
metrics = pd.DataFrame(
{
"p-value": [st.session_state.p],
"z-score": [st.session_state.z],
"uplift": [st.session_state.uplift],
},
index=pd.Index(["Metrics"]),
)
st.write(
metrics.style.format(
formatter={("p-value", "z-score"): "{:.3g}", ("uplift"): "{:.3g}%"}
)
.applymap(style_negative, props="color:red;")
.apply(style_p_value, props="color:red;", axis=1, subset=["p-value"])
)