-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathimage_search.py
40 lines (33 loc) · 1.43 KB
/
image_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
import gradio as gr
from PIL import Image
from transformers import AutoProcessor, SiglipModel
import faiss
import numpy as np
from huggingface_hub import hf_hub_download
from datasets import load_dataset
hf_hub_download("merve/siglip-faiss-wikiart", "siglip_new.index", local_dir="./")
index = faiss.read_index("./siglip_new.index")
dataset = load_dataset("huggan/wikiart")
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
dataset = dataset.with_format("torch", device=device)
processor = AutoProcessor.from_pretrained("nielsr/siglip-base-patch16-224")
model = SiglipModel.from_pretrained("nielsr/siglip-base-patch16-224").to(device)
def extract_features_siglip(image):
with torch.no_grad():
inputs = processor(images=image, return_tensors="pt").to(device)
image_features = model.get_image_features(**inputs)
return image_features
def infer(input_image):
input_features = extract_features_siglip(input_image)
input_features = input_features.detach().cpu().numpy()
input_features = np.float32(input_features)
faiss.normalize_L2(input_features)
distances, indices = index.search(input_features, 9)
gallery_output = []
for i,v in enumerate(indices[0]):
sim = -distances[0][i]
img_resized = dataset["train"][int(v)]['image']
gallery_output.append(img_resized)
return gallery_output
gr.Interface(infer, "sketchpad", "gallery", title="Draw to Search Art 🖼️").launch()