-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathwebcam-pix2pix.py
140 lines (95 loc) · 3.9 KB
/
webcam-pix2pix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
@author: memo
Main app
"""
from __future__ import print_function
from __future__ import division
import numpy as np
import time
import params
import gui
import msa.utils
from msa.capturer import Capturer
from msa.predictor import Predictor
from msa.framestats import FrameStats
#%%
capture = None # msa.capturer.Capturer, video capture wrapper
predictor = None # msa.predictor.Predictor, model for prediction
img_cap = np.empty([]) # captured image before processing
img_in = np.empty([]) # processed capture image
img_out = np.empty([]) # output from prediction model
#%% init gui and params
gui.init_app()
pyqt_params = gui.init_params(params.params_list, target_obj=params, w=320)
# reading & writing to pyqtgraph.parametertree seems to be slow,
# so going to cache in an object for direct access
gui.params_to_obj(pyqt_params, target_obj=params, create_missing=True, verbose=True)
# create main window
gui.init_window(x=320, w=(gui.screen_size().width()-320), h=(gui.screen_size().width()-320)*0.4)
#%%
# load predictor model
predictor = Predictor(json_path = './models/gart_canny_256.json')
# init capture device
def init_capture(capture, output_shape):
if capture:
capture.close()
capture_shape = (params.Capture.Init.height, params.Capture.Init.width)
capture = Capturer(sleep_s = params.Capture.sleep_s,
device_id = params.Capture.Init.device_id,
capture_shape = capture_shape,
capture_fps = params.Capture.Init.fps,
output_shape = output_shape
)
capture.update()
if params.Capture.Init.use_thread:
capture.start()
return capture
capture = init_capture(capture, output_shape=predictor.input_shape)
# keep track of frame count and frame rate
frame_stats = FrameStats('Main')
# main update loop
while not params.Main.quit:
# reinit capture device if parameters have changed
if params.Capture.Init.reinitialise:
params.child('Capture').child('Init').child('reinitialise').setValue(False)
capture = init_capture(capture, output_shape=predictor.input_shape)
capture.enabled = params.Capture.enabled
if params.Capture.enabled:
# update capture parameters from GUI
capture.output_shape = predictor.input_shape
capture.verbose = params.Main.verbose
capture.freeze = params.Capture.freeze
capture.sleep_s = params.Capture.sleep_s
for p in msa.utils.get_members(params.Capture.Processing):
setattr(capture, p, getattr(params.Capture.Processing, p))
# run capture if multithreading is disabled
if params.Capture.Init.use_thread == False:
capture.update()
img_cap = np.copy(capture.img) # create copy to avoid thread issues
# interpolate (temporal blur) on input image
img_in = msa.utils.np_lerp( img_in, img_cap, 1 - params.Prediction.pre_time_lerp)
# run prediction
if params.Prediction.enabled and predictor:
img_predicted = predictor.predict(img_in)[0]
else:
img_predicted = capture.img0
# interpolate (temporal blur) on output image
img_out = msa.utils.np_lerp(img_out, img_predicted, 1 - params.Prediction.post_time_lerp)
# update frame states
frame_stats.verbose = params.Main.verbose
frame_stats.update()
# update gui
gui.update_image(0, capture.img0)
gui.update_image(1, img_in)
gui.update_image(2, img_out)
gui.update_stats(frame_stats.str + " | " + capture.frame_stats.str)
gui.process_events()
time.sleep(params.Main.sleep_s)
# cleanup
capture.close()
gui.close()
capture = None
predictor = None
print('Finished')