-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmorph_scratch.py
2308 lines (1824 loc) · 75.7 KB
/
morph_scratch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""morph scratch
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1N0Ez5daJXFHvrHp1f2OwWeVSUXpOKTpp
Memory-based morphology?
"""
# Commented out IPython magic to ensure Python compatibility.
import sys
import numpy as np
import scipy
from matplotlib import pyplot as plt
from collections import *
# %tensorflow_version 2.x
import tensorflow as tf
import tensorflow.keras as tkeras
import networkx as nx
import sklearn.neighbors
class Vocab:
def __init__(self):
self.alphaToInd = {}
self.indToAlpha = {}
self.nChars = 0
def get(self, ss):
val = self.alphaToInd.get(ss, None)
if val is not None:
return val
self.alphaToInd[ss] = self.nChars
self.indToAlpha[self.nChars] = ss
self.nChars += 1
return self.nChars
def decode(self, vec):
res = []
for ii in range(vec.shape[0]):
ind = np.argmax(vec[ii, :])
if vec[ii, ind] == 0:
res.append("0")
else:
res.append(self.indToAlpha[ind])
return "".join(res)
def decodeIndices(self, vec):
return "".join([self.indToAlpha[ind] for ind in vec])
def hasFeats(fset, targets, exclude=[]):
feats = fset.split(";")
#print(fset, targets)
return all([xx in feats for xx in targets]) and not any([xx in feats for xx in exclude])
def nospaces(row):
lemma, form, feats = row
return not " " in form
def fullParadigms(rows):
#prefilter for missing forms
lemmaForms = defaultdict(set)
for lemma, form, feats in rows:
lemmaForms[lemma].add(feats)
fpSize = max([len(xx) for xx in lemmaForms.values()])
print("Paradigm size guessed", fpSize)
return [(lemma, form, feats) for (lemma, form, feats) in rows if len(lemmaForms[lemma]) == fpSize]
def readUD(rows, target=[], exclude=[]):
#read a UD treebank, return a list of (lemma, form, feats) tuples and a frequency count
res = []
counts = Counter()
for row in rows:
if row[0] == "#":
continue
num, word, lemma, pos, subtag, feats, dep, role, x1, x2 = row
if " " in word or "-" in word:
#exclude particles
continue
if word.endswith("'") or word.endswith("’"):
#exclude phonological dropping of last vowel
continue
word = word.lower()
lemma = lemma.lower()
feats = "%s;%s" % (pos, feats.replace("|", ";"))
if hasFeats(feats, target, exclude):
if word not in counts:
res.append((lemma, word, feats))
counts[word] += 1
return res, counts
spanish = np.loadtxt("https://raw.githubusercontent.com/unimorph/spa/master/spa", dtype=str, delimiter="\t").tolist()
irish = np.loadtxt("https://raw.githubusercontent.com/unimorph/gle/master/gle", dtype=str, delimiter="\t").tolist()
english = np.genfromtxt("https://raw.githubusercontent.com/UniversalDependencies/UD_English-GUM/master/en_gum-ud-train.conllu",
dtype=str, delimiter="\t", invalid_raise=False).tolist()
irishCorpus = np.genfromtxt("https://raw.githubusercontent.com/UniversalDependencies/UD_Irish-IDT/master/ga_idt-ud-train.conllu",
dtype=str, delimiter="\t", invalid_raise=False).tolist()
irishWords, irishFreq = readUD(irishCorpus, ["NOUN", "Case=NomAcc"], exclude=["Foreign", "Definite=Def", "Form=Len", "Form=Ecl", "Form=HPref"])
#print(len(gaelicWords))
#print(wordFreq.most_common(10))
print(irishWords[:10])
englishWords, englishFreq = readUD(english, ["NOUN"], exclude=[])
presInd = [row for row in spanish if hasFeats(row[-1], ["V", "IND", "PRS"]) and nospaces(row)]
print(presInd[:5])
nom = [row for row in irish if hasFeats(row[-1], ["N", "NOM"], exclude=["DEF"]) and nospaces(row)]
print(nom[:5])
irishWords = fullParadigms(irishWords)
nom = fullParadigms(nom)
englishWords = fullParadigms(englishWords)
replacements = {"NOUN;Number=Plur":"N;NOM;PL", "NOUN;Number=Sing":"N;NOM;SG"}
for ii in range(len(englishWords)):
lemma, word, feats = englishWords[ii]
englishWords[ii] = lemma, word, replacements[feats]
print(len(nom), "irish words from unimorph")
print(len(englishWords), "english words from corpus")
print(len(irishWords), "irish words from corpus")
lemmaForms = defaultdict(dict)
for (lemma, form, feats) in irishWords:
lemmaForms[lemma][feats] = form
for li, sub in lemmaForms.items():
print(li)
for kk, vv in sub.items():
print(kk, vv)
break
workingSet = nom
charset = set()
outputSize = 0
for (lemma, form, feats) in nom + englishWords:
for ch in form.lower():
charset.update(ch)
outputSize = max(outputSize, len(form) + 1)
print("Output size", outputSize)
print("Chars", charset)
#Grace's alignment code
cache = {}
##Returns minimum edit distance and all possible alignments for a pair of forms
def EditDistanceWithAlignment(s1, s2, level=0):
if(len(s1)==0):
return len(s2), set([
(tuple(), tuple([(char, False) for char in s2]))
])
if(len(s2)==0):
return len(s1), set([
(tuple([(char, False) for char in s1]), tuple())
])
if(s1, s2) in cache:
return cache[(s1, s2)]
if(s1[-1]==s2[-1]):
cost = 0
else:
cost = 2
op1, solutions1 = EditDistanceWithAlignment(s1[:-1], s2, level=level + 1)
op2, solutions2 = EditDistanceWithAlignment(s1, s2[:-1], level=level + 1)
op3, solutions3 = EditDistanceWithAlignment(s1[:-1], s2[:-1], level=level + 1)
op1 += 1
op2 += 1
op3 += cost
solutions = set()
mincost = min(op1, op2, op3)
if op1==mincost:
for (sol1, sol2) in solutions1:
solutions.add( (sol1 + ((s1[-1], False),), sol2) )
if op2==mincost:
for (sol1, sol2) in solutions2:
solutions.add( (sol1, sol2 + ((s2[-1], False),)) )
if op3==mincost and cost==0:
for (sol1, sol2) in solutions3:
solutions.add( (sol1 + ((s1[-1], True),), sol2 + ((s2[-1], True),)) )
if op3==mincost and cost>0:
for (sol1, sol2) in solutions3:
solutions.add( (sol1 + ((s1[-1], False),), sol2 + ((s2[-1], False),)) )
cache[(s1, s2)] = (mincost, solutions)
return mincost, solutions
class GenData(tkeras.utils.Sequence):
def __init__(self, words):
self.vocab = Vocab()
self.vocab.get("$")
self.words = words
self.references = None
self.lemmaToForms = defaultdict(dict)
for lemma, form, feats in words:
for ch in form.lower():
self.vocab.get(ch)
self.lemmaToForms[lemma][feats] = form.lower()
fLimit = 1 #fixme
delete = []
for lemma, sub in self.lemmaToForms.items():
if len(sub) < fLimit:
delete.append(lemma)
for lemma in delete:
del self.lemmaToForms[lemma]
self.lemmas = list(self.lemmaToForms.keys())
np.random.shuffle(self.lemmas)
allForms = []
for sub in self.lemmaToForms.values():
allForms += list(sub.values())
self.outputSize = int(np.percentile([len(xx) for xx in allForms], 100)) + 2
self.inputSize = self.outputSize
self.policy = np.random.normal(size=(7, 16))
def setReferences(self, references):
self.references = references
for ri in references:
for ci in ri:
self.vocab.get(ci)
self.nRefChars = self.inputSize * len(self.references) + 1
def __len__(self):
return len(self.lemmas)
def getPolicy(self, targetForm):
if targetForm.endswith("mos"):
category = 0
elif targetForm.endswith("s"):
category = 3
else:
category = 6
return self.policy[category, :]
def __getitem__(self, idx):
#print("Accessing batch", idx)
lemma = self.lemmas[idx]
forms = self.lemmaToForms[lemma]
#fixme
if np.random.random() < .5:
lIn = self.getForm(forms, ["3", "SG"])
lOut = self.getForm(forms, ["2", "SG"])
policy = self.getPolicy(lOut)
else:
lIn = self.getForm(forms, ["3", "SG"])
lOut = self.getForm(forms, ["1", "PL"])
policy = self.getPolicy(lOut)
#policy = np.zeros((16,))
#lIn = forms["in"]
#lOut = forms["out"]
positions = np.arange(1, self.inputSize + 1, dtype="int")
#refReprs = list(zip(
# self.matrixizeRefs(self.references, length=self.inputSize, pad=True),
# self.indexizeRefs(self.references, length=self.inputSize, tagRef=True, pad=True),
#))
refReprs = self.matrixizeRefs(self.references, length=self.inputSize, pad=True)
rval = ([self.matrixize(lIn, length=self.inputSize, pad=True),
positions[None, ...],
policy[None, ...],
] +
refReprs,
self.matrixize(lOut, length=self.outputSize, pad=True))
#print("shapes", [xx.shape for xx in rval[0]], rval[1].shape)
return rval
def getForm(self, forms, target):
for feats, form in forms.items():
if hasFeats(feats, target):
return form
def indexize(self, ss, length=None, pad=False):
ss = "$%s$" % ss
if pad:
ss += "$" * (length - len(ss))
if length is None:
length = len(ss)
mat = np.zeros((1, length,))
for ii, si in enumerate(ss[:length]):
mat[0, ii] = self.vocab.get(si)
return mat
def matrixize(self, ss, length=None, pad=False):
ss = "$%s$" % ss
if length is None:
length = len(ss)
if pad:
ss += "$" * (length - len(ss))
mat = np.zeros((1, length, self.vocab.nChars))
for ii, si in enumerate(ss[:length]):
mat[0, ii, self.vocab.get(si)] = 1
return mat
def matrixizeRefs(self, refs, length, pad=False):
return [self.matrixize(ri, length, pad=pad) for ri in refs]
def indexizeRefs(self, refs, length, tagRef=False, pad=False):
if not tagRef:
return [self.indexize(ri, length) for ri in refs]
else:
res = []
for rid, ri in enumerate(self.references):
ss = "$%s$" % ri
if pad:
ss += "$" * (length - len(ss))
row = np.zeros((1, length))
for cid, ci in enumerate(ss):
row[0, cid] = (length * rid + cid + 1)
res.append(row)
return res
class BatchAdapter(tkeras.utils.Sequence):
def __init__(self, underlying, batchSize):
self.underlying = underlying
self.batchSize = batchSize
self.indices = list(range(len(self.underlying)))
np.random.shuffle(self.indices)
def __len__(self):
return len(self.underlying) // self.batchSize
def __getitem__(self, idx):
inds = self.indices[self.batchSize * idx : self.batchSize * (idx + 1)]
batch = []
for ii in inds:
batch.append(self.underlying[ii])
return self.restructure(batch)
def restructure(self, stuff):
if isinstance(stuff[0], np.ndarray):
return np.concatenate(stuff)
else:
res = []
for dim in range(len(stuff[0])):
res.append(self.restructure([si[dim] for si in stuff]))
return res
if False:
instances = []
for ii in range(1000):
wstr = []
alphabet = "abcdefghijklmnopqrst" + "uvwxyz"
for jj in range(np.random.randint(5, 12)):
wstr.append(np.random.choice(list(alphabet)))
wstr = "".join(wstr)
instances.append(("w%d" % ii, wstr, "in"))
instances.append(("w%d" % ii, wstr + "xyz", "out"))
print(instances[0], instances[1])
data = GenData(instances)
data.setReferences(["abcdxyz"])
elif False:
data = GenData(presInd)
data.setReferences(["mueves", "movemos"])
else:
data = GenData(workingSet)
def parseAlt(solution, get="theme"):
res = []
for char, alt in solution[0]:
if alt and get == "theme":
res.append(char)
elif get != "theme" and not alt:
res.append(char)
return "".join(res)
def segmentAll(forms):
theme = forms[0]
for fi in forms[1:]:
cost, solutions = EditDistanceWithAlignment(theme, fi)
theme = parseAlt(list(solutions)[0], "theme")
#print("theme of all forms", theme)
dists = []
for fi in forms:
cost, solutions = EditDistanceWithAlignment(fi, theme)
dists.append(parseAlt(list(solutions)[0], "dist"))
#print("distinguisher for", fi, theme, "is", dists[-1])
return dists
microclasses = defaultdict(list)
for ii, (verb, forms) in enumerate(data.lemmaToForms.items()):
sortedForms = [form for (cell, form) in sorted(forms.items())]
dists = segmentAll(list(sortedForms))
microclasses[tuple(dists)].append(verb)
print(len(microclasses), "microclasses found")
for mclass, members in sorted(microclasses.items(), key=lambda xx: len(xx[1]), reverse=True):
print(min(members, key=len), mclass, len(members))
def extractTree(forms):
table = defaultdict(list)
for formTab in forms:
flist = list(formTab.items())
for ii, (featsI, formI) in enumerate(flist):
for jj, (featsJ, formJ) in enumerate(flist[ii + 1:]):
cost, solutions = EditDistanceWithAlignment(formI, formJ)
table[(featsI, featsJ)].append(cost)
graph = nx.Graph()
for (featsI, featsJ), costs in table.items():
cost = np.mean(costs)
graph.add_edge(featsI, featsJ, weight=cost)
spanning = nx.algorithms.tree.branchings.minimum_spanning_arborescence(graph.to_directed())
return spanning.edges()
example = list(data.lemmaToForms.keys())[0]
extractTree([data.lemmaToForms[example]])
class MicroclassData(GenData):
def __init__(self, words, microclasses, charset=None, outputSize=None, balance=False, nInstances=200, batchSize=1, copy=None):
super(MicroclassData, self).__init__(words)
self.microclasses = microclasses
self.copy = copy
self.batchSize = batchSize
self.nInstances = nInstances
self.balance = balance
if outputSize is not None:
self.outputSize = outputSize
self.inputSize = outputSize
if charset is not None:
for ch in charset:
self.vocab.get(ch)
if copy is None:
self.sourceTab = {}
self.referenceTab = {}
self.policies = {}
self.trees = {}
mcLemmas = set()
#this configures the model, but the string should not be used
self.references = [ "NOTUSED" ]
singleTree = extractTree(list(self.lemmaToForms.values())[:100])
nxt = 0
for (mc, members) in self.microclasses.items():
mcLemmas.update(members)
exemplar = list(members)[0]
exemplarForms = self.lemmaToForms[exemplar]
self.trees[mc] = singleTree
for (featsI, featsJ) in self.trees[mc]:
self.sourceTab[mc, featsJ] = featsI
self.referenceTab[mc, featsJ] = mc, featsJ
self.policies[mc, featsJ] = nxt
nxt += 1
self.lemmas = list(mcLemmas)
else:
self.referenceTab = copy.referenceTab
self.sourceTab = copy.sourceTab
self.policies = copy.policies
#for (mc, cell), pol in copy.policies.items():
# if mc in self.microclasses:
# self.policies[(mc, cell)] = pol
self.trees = copy.trees
self.vocab = copy.vocab
self.outputSize = copy.outputSize
self.inputSize = copy.inputSize
self.generateTrainingData()
self.mode = "train"
def policyMembers(self):
invPol = defaultdict(list)
for (pi, pid) in self.policies.items():
invPol[pid].append(pi)
return invPol
def referenceMembers(self):
invRef = defaultdict(list)
for (ri, rid) in self.referenceTab.items():
invRef[rid].append(ri)
return invRef
def __len__(self):
return len(self.batchIndices) // self.batchSize
def supports(self, mc, lemma, cell):
forms = self.lemmaToForms[lemma]
src = self.sourceTab.get((mc, cell))
#print("checking support", mc, lemma, forms, src, src in forms, cell in forms)
if src in forms and cell in forms:
return True
def generateTrainingData(self):
self.batchIndices = []
for policy, users in self.policyMembers().items():
toGenerate = []
for mc, cell in users:
toGenerate += [(mc, li, cell) for li in self.microclasses.get(mc, []) if self.supports(mc, li, cell)]
if self.balance is True:
nInstances = self.nInstances
elif type(self.balance) is dict:
nInstances = self.balance[policy]
else:
nInstances = None
if toGenerate:
print("getting batch indices for policy", policy, len(users), "users", nInstances, "instances")
items = self.getBatchIndices(toGenerate, nInstances)
self.batchIndices += items
print("Generated", len(self.batchIndices), "items over", len(self.policyMembers()), "policies")
def getBatchIndices(self, members, nInstances):
inst = []
if nInstances is None:
nInstances = len(members) + 1
while len(inst) < nInstances:
np.random.shuffle(members)
for mc, li, cell in members:
inst.append((mc, li, cell))
inst = inst[:nInstances]
return inst
def report(self, inflect):
print(len(self.microclasses), "microclasses known")
for mc, members in sorted(self.microclasses.items(), key=lambda xx: len(xx[1]), reverse=True):
#find an example verb
example = members[0]
mcd = {mc : members}
minidat = self.__class__(self.words, mcd, pUseAlignment=0, copy=self)
minidat.batchIndices.sort(key=lambda xx: (xx[1] != example, np.random.randint(0, 500)))
preds = inflect.predict(minidat, verbose=False, steps=min(100, len(minidat)))
#print how many members
overallAcc = 0
overallDen = 0
catAcc = defaultdict(int)
catDen = defaultdict(int)
for ii in range(preds.shape[0]):
pi = self.vocab.decode(preds[ii]).strip("$0")
dummy, li, ci = minidat.batchIndices[ii]
ai = self.lemmaToForms[li][ci]
overallDen += 1
catDen[ci] += 1
if pi == ai:
overallAcc += 1
catAcc[ci] += 1
catAcc = { cat : (catAcc[cat] / den) for cat, den in catDen.items() }
macroAvg = sum(catAcc.values()) / len(catAcc.values())
print("#%d" % len(members), "overall acc", overallAcc / overallDen, "macroavg", macroAvg)
#for each form, print the appropriate form, the policy in use, the reference in use, and the model prediction
for cell, form in sorted(self.lemmaToForms[example].items()):
print("{0: <40}".format("%s %s" % (cell, form)), end="\t")
print()
for cell, form in sorted(self.lemmaToForms[example].items()):
pol = self.policies.get((mc, cell), None)
if pol is None:
polStr = "[-]"
else:
polStr = "[%d]" % pol
ref = self.referenceTab.get((mc, cell), None)
if ref == (mc, cell):
refStr = "[self]"
elif ref == None:
refStr = "[-]"
else:
ex = self.microclasses[ref[0]][0]
exA = self.lemmaToForms[ex][ref[1]]
refStr = "[%s]" % exA
print("{0: <40}".format("%s %s" % (polStr, refStr)), end="\t")
print()
for cell, form in sorted(self.lemmaToForms[example].items()):
acc = 0
den = 0
specific = None
for ii, (dummy, lx, cx) in enumerate(minidat.batchIndices[:preds.shape[0]]):
if lx == example and cx == cell:
specific = self.vocab.decode(preds[ii]).strip("$0")
if cx == cell:
answer = self.vocab.decode(preds[ii]).strip("$0")
if answer == self.lemmaToForms[lx][cx]:
acc += 1
den += 1
if den > 0:
print("{0: <40}".format("{0} {1}/{2} = {3:.3g}".format(specific, acc, den, acc/den)), end="\t")
else:
print("{0: <40}".format("- -/- -"), end="\t")
print()
print()
def __getitem__(self, batchIdx):
#print("Accessing batch", idx)
if self.batchSize == 1:
return self.get(batchIdx)
ins = np.zeros((self.batchSize, self.inputSize, self.vocab.nChars))
posns = np.zeros((self.batchSize, self.inputSize))
policies = np.zeros((self.batchSize, 1))
#refs = [np.zeros((self.batchSize, self.inputSize, self.vocab.nChars)) for ri in self.references]
ref = np.zeros((self.batchSize, self.inputSize, self.vocab.nChars))
outs = np.zeros((self.batchSize, self.outputSize, self.vocab.nChars))
for ii, idx in enumerate(range(self.batchSize * batchIdx, self.batchSize * (batchIdx + 1))):
xs, ys = self.get(idx)
ins[ii] = xs[0][0]
posns[ii] = xs[1][0]
policies[ii] = xs[2][0]
#xrs = xs[3]
#for rid, ri in enumerate(xrs):
# refs[rid][ii] = ri[0]
ref[ii] = xs[3][0]
return (ins, posns, policies, ref), outs
def getExemplar(self, refMC, refFeats, omit=None):
#try:
# references = self.microclasses[refMC]
#except KeyError:
# references = self.copy.microclasses[refMC]
#print("getting exemplar for", refMC, refFeats, omit)
references = []
try:
ref = self.referenceMembers()[refMC, refFeats]
except KeyError:
ref = self.copy.referenceMembers()[refMC, refFeats]
for mc, cell in ref:
try:
references += self.microclasses[mc]
except KeyError:
references += self.copy.microclasses[mc]
#print("fetched mcs", ref)
#print("list of references", references)
if omit in references:
references.remove(omit)
assert(len(references) > 1) #at least 50% chance to terminate
#exemplar = omit
#while exemplar == omit:
exemplar = np.random.choice(references)
forms = self.lemmaToForms[exemplar]
relevantForm = forms[refFeats]
return relevantForm
def get(self, idx):
mc, lemma, featsJ = self.batchIndices[idx]
forms = self.lemmaToForms[lemma]
featsI = self.sourceTab[mc, featsJ]
refMC, refFeats = self.referenceTab[mc, featsJ]
lIn = forms[featsI]
lOut = forms[featsJ]
policy = self.policies[mc, featsJ]
positions = np.arange(1, self.inputSize + 1, dtype="int")
relevantForm = self.getExemplar(refMC, refFeats, omit=lemma)
#print("Instance", lIn, lOut, "policy class",
# self.policies[mc, featsJ], featsI, featsJ, relevantForm)
rval = ([self.matrixize(lIn, length=self.inputSize, pad=False),
positions[None, ...],
policy[None, ...],
self.matrixize(relevantForm, length=self.inputSize, pad=False)],
self.matrixize(lOut, length=self.outputSize, pad=True),)
#print("shapes", [xx.shape for xx in rval[0]], rval[1].shape)
return rval
def formIterator(self, policyOnly=False):
for mc, lemmas in self.microclasses.items():
for li in lemmas:
forms = self.lemmaToForms[li]
for cell, form in forms.items():
if policyOnly and (mc, cell) not in self.policies:
continue
yield (mc, li, cell, form)
def classAssignmentData(self):
nPolicies = len(self.policyMembers())
nReferences = len(self.referenceMembers())
polNames = {}
refNames = {}
nForms = len(list(self.formIterator(policyOnly=True)))
xs = np.zeros((nForms, self.inputSize, self.vocab.nChars))
positions = np.zeros((nForms, self.inputSize))
yPolicy = np.zeros((nForms, nPolicies))
yReference = np.zeros((nForms, nReferences))
for ind, (mc, lemma, cell, form) in enumerate(self.formIterator(policyOnly=True)):
if (mc, cell) not in self.policies: #root of the infl. tree
continue
policy = self.policies[mc, cell]
reference = self.referenceTab[mc, cell]
if policy not in polNames:
polNames[policy] = len(polNames)
pN = polNames[policy]
if reference not in refNames:
refNames[reference] = len(refNames)
rN = refNames[reference]
xs[ind] = self.matrixize(form, length=self.inputSize, pad=False)
positions[ind] = np.arange(1, self.inputSize + 1, dtype="int")
yPolicy[ind, pN] = 1
yReference[ind, rN] = 1
return [xs, positions], [yPolicy, yReference], polNames, refNames
sortedMicroclasses = sorted(microclasses.items(), key=lambda xx: len(xx[1]), reverse=True)
mc0 = sortedMicroclasses[0]
#print(mc0)
classes0 = { mc0[0] : mc0[1] }
classes100 = {}
classes5 = {}
for mc, members in sortedMicroclasses:
if len(members) > 100:
classes100[mc] = members
if len(members) > 5:
classes5[mc] = members
print(len(classes5), "microclasses selected")
data = MicroclassData(workingSet, classes5, charset=charset, outputSize=outputSize, balance=True, nInstances=300, batchSize=1)
print(data.policies)
nUnits = 64
charDims = data.vocab.nChars #can go smaller, but not when the embedding matrix is the identity!
#embed a sequence
form = tkeras.layers.Input(shape=(data.inputSize, data.vocab.nChars))
pos = tkeras.layers.Input(shape=(data.inputSize,))
#mform = tkeras.layers.Masking()(form)
class PosUnit(tkeras.constraints.Constraint):
def __init__(self):
super(PosUnit, self).__init__()
self.c1 = tkeras.constraints.NonNeg()
self.c2 = tkeras.constraints.UnitNorm()
def __call__(self, ww):
return self.c2(self.c1(ww))
def get_config(self):
return {}
embedChar = tkeras.layers.Dense(charDims, activation=None, use_bias=False,
kernel_initializer='identity',
kernel_constraint=PosUnit(),
name="embedChar")
cEmbeds = embedChar(form)
embedPos = tkeras.layers.Embedding(data.inputSize + 1, charDims)
pEmbeds = embedPos(pos)
#c1 = tkeras.layers.Conv1D(nUnits, 3, padding="same", activation="relu")(cEmbeds)
#c2 = tkeras.layers.Conv1D(nUnits, 3, padding="same", activation="relu")(c1)
seq = tkeras.layers.Bidirectional(tkeras.layers.LSTM(nUnits, return_sequences=True))(cEmbeds)
seq2 = tkeras.layers.Concatenate()([pEmbeds, seq])
#seq3 = tkeras.layers.Bidirectional(tkeras.layers.LSTM(nUnits, return_sequences=True))(seq)
#seq4 = tkeras.layers.Concatenate()([pEmbeds, seq3])
mdl = tkeras.Model(inputs=[form, pos], outputs=[seq2, cEmbeds], name="inputEmbedding")
mdl.summary()
#https://stackoverflow.com/questions/59663963/how-to-create-two-layers-with-shared-weights-where-one-is-the-transpose-of-the
class TransposedDense(tkeras.layers.Layer):
def __init__(self, originalLayer):
super(TransposedDense, self).__init__()
self.originalLayer = originalLayer
self.supports_masking = True
def __call__(self, inputs):
weights = self.originalLayer.weights[0]
weights = tf.transpose(weights)
val = tf.linalg.matmul(inputs, weights)
return val
class ZeroOneAccuracy(tkeras.metrics.Metric):
def __init__(self):
super(ZeroOneAccuracy, self).__init__()
self.correct = self.add_weight(name="correct", initializer="zeros", dtype="int32")
self.total = self.add_weight(name="total", initializer="zeros", dtype="int32")
def update_state(self, y_true, y_pred, sample_weight=None):
assert(sample_weight is None) #not bothering to handle right now
bsize = tf.cast(tf.reduce_sum(tf.ones_like(y_true), axis=0)[0, 0], "int32")
self.total.assign_add(bsize)
pred = tf.argmax(y_pred, axis=-1)
ans = tf.argmax(y_true, axis=-1)
corrChar = tf.cast((tf.cast(ans, "int32") == tf.cast(pred, "int32")), "int32")
corrWord = tf.reduce_prod(corrChar, axis=-1)
nCorrWord = tf.reduce_sum(corrWord)
self.correct.assign_add(nCorrWord)
def result(self):
return self.correct / self.total
def reset_states(self):
self.correct.assign(0)
self.total.assign(0)
zoa = ZeroOneAccuracy()
yt = np.zeros((2, 3, 4), dtype="float32")
yp = np.zeros((2, 3, 4), dtype="float32")
yt[0, 0, 1] = 1
yt[0, 1, 2] = 1
yt[0, 1, 3] = 1
yt[1, 0, 1] = 1
yt[1, 1, 3] = 1
yt[1, 2, 3] = 1
yp[0, 0, 1] = 1
yp[0, 1, 2] = 1
yp[0, 1, 3] = 1
yp[1, 0, 1] = 1
yp[1, 1, 3] = 1
yp[1, 2, 3] = 1
print(zoa(yt, yp)) #1.0
zoa.reset_states()
yp[1, 2, 3] = 0
yp[1, 2, 2] = 1
print(zoa(yt, yp)) #0.5
def smooth(prs, alpha=.05):
unif = .5 * tf.ones_like(prs)
return alpha * unif + (1 - alpha) * prs
class DecoderCell(tkeras.layers.Layer):
def __init__(self, nUnits, nChars, nInput, nRef, embedChar, **kwargs):
super(DecoderCell, self).__init__(**kwargs)
self.nUnits = nUnits
self.cell = tkeras.layers.LSTMCell(nUnits)
self.embedChar = embedChar
self.transposedChar = TransposedDense(self.embedChar)
self.nChars = nChars
self.nInput = nInput
self.nRef = nRef
self.state_size = ( (nUnits,), (self.nInput,), (self.nInput,), (self.nChars) )
self.charEmbedSize = self.embedChar.weights[0].shape[0]
embSize = 2 * self.nUnits + self.nChars
self.projectInputEmb = tkeras.layers.Dense(embSize, activation="tanh")
self.projectInputEmbB = tkeras.layers.Dense(embSize, activation="tanh")
self.dprojA = tkeras.layers.Dense(embSize, activation="tanh")
self.dprojB = tkeras.layers.Dense(embSize, activation="tanh")
self.shiftA = tkeras.layers.Dense(1, activation="sigmoid")
self.shiftB = tkeras.layers.Dense(1, activation="sigmoid")
self.choose = tkeras.layers.Dense(1, activation="sigmoid")
#cx = tkeras.layers.Input(shape=(self.nUnits + 2 * self.charEmbedSize,))
#c1 = tkeras.layers.Dense(1, activation="sigmoid")(cx)
#c2 = tkeras.layers.Dropout(.1)(c1)
#c1 = tkeras.layers.Dense(64, activation="tanh")(cx)
#c2 = tkeras.layers.Dense(1, activation="sigmoid")(c1)
#self.choose = tkeras.Model(inputs=cx, outputs=c2)
def get_initial_state(self, inputs=None, batch_size=None, dtype=None):
#print("getting initial stt", inputs, batch_size, dtype)
return ([tf.zeros((batch_size, self.nUnits)), tf.zeros((batch_size, self.nUnits))],
tf.zeros((batch_size, self.nInput)), tf.zeros((batch_size, self.nInput * self.nRef)), tf.zeros((batch_size, self.nChars)))
# if batch_size is None:
# batch_size = tf.shape(inputs)[0]
# lstm = tf.zeros((batch_size, self.nUnits))
# return (lstm, tf.zeros(batch_size, 10), tf.zeros(batch_size, 10), tf.zeros(batch_size, self.nChars))
def build(self, input_shape):
#this is where we build our weights, if we have any
#print("Behold, the build method is called!", input_shape)
initEmbSize = 2 * self.nUnits + self.nChars
self.cell.build((None, input_shape[1] + initEmbSize + initEmbSize + self.charEmbedSize))
self.projectInputEmb.build((None, initEmbSize))
self.projectInputEmbB.build((None, initEmbSize))
self.dprojA.build((None, self.nUnits))
self.dprojB.build((None, self.nUnits))
self.shiftA.build((None, self.nUnits + 2 * self.charEmbedSize))
self.shiftB.build((None, self.nUnits + 2 * self.charEmbedSize))
self.choose.build((None, self.nUnits + 2 * self.charEmbedSize))
self.transposedChar.build((None, self.charEmbedSize))
self.built = True
def call(self, inputs, states, constants=None):
return self.__call__(inputs, states, constants=constants)
def __call__(self, inputs, states, constants=None):
#print("inp in call", inputs)
#print("state in call", states)
(lstmState, attnA, attnB, outputCh) = states
(charsA, embedsA, charsB, embedsB) = constants
cvA = tf.matmul(attnA, embedsA)[:, 0, :]
cvB = tf.matmul(attnB, embedsB)[:, 0, :]
#print("cell inp !!!", [inputs, cvA, cvB, outputCh])
cellInputs = tf.concat([inputs, cvA, cvB, outputCh], axis=-1)
#print("cell input tensor", cellInputs, lstmState)
cellOutput, newLSTMState = self.cell(cellInputs, lstmState)
#print("ran lstm cell")
keysA = self.projectInputEmb(embedsA)
keysB = self.projectInputEmbB(embedsB)
#use output to compute attention
newAttnWtsA = self.attention(cellOutput, keysA, self.dprojA)
newAttnWtsB = self.attention(cellOutput, keysB, self.dprojB)
maskA = tf.reduce_sum(charsA, axis=-1)
maskB = tf.reduce_sum(charsB, axis=-1)
newAttnWtsA *= maskA
newAttnWtsB *= maskB
#print("made initial attn wts")
shiftedAttnWtsA = self.shift(attnA)[:, None, :]
shiftedAttnWtsB = self.shift(attnB)[:, None, :]
shiftedAttnWtsA *= maskA
shiftedAttnWtsB *= maskB
#print("made shifted matrices", attnA, shiftedAttnWtsA)
#print("made shifted matrices", attnB, shiftedAttnWtsB)
finalAttnWtsA, finalAttnA, shiftA = self.chooseAttn((newAttnWtsA, charsA), (shiftedAttnWtsA, charsA), cellOutput, self.shiftA)
finalAttnWtsB, finalAttnB, shiftB = self.chooseAttn((newAttnWtsB, charsB), (shiftedAttnWtsB, charsB), cellOutput, self.shiftB)
#unifAttnA = maskA / tf.reduce_sum(maskA, axis=-1, keepdims=True)
#finalAttnWtsA = .05 * unifAttnA + .95 * finalAttnWtsA