-
Notifications
You must be signed in to change notification settings - Fork 0
/
normalizeStaining.py
117 lines (85 loc) · 3.7 KB
/
normalizeStaining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import argparse
import numpy as np
from PIL import Image
def normalizeStaining(img, saveFile=None, Io=240, alpha=1, beta=0.15):
''' Normalize staining appearence of H&E stained images
Example use:
see test.py
Input:
I: RGB input image
Io: (optional) transmitted light intensity
Output:
Inorm: normalized image
H: hematoxylin image
E: eosin image
Reference:
A method for normalizing histology slides for quantitative analysis. M.
Macenko et al., ISBI 2009
'''
HERef = np.array([[0.5626, 0.2159],
[0.7201, 0.8012],
[0.4062, 0.5581]])
maxCRef = np.array([1.9705, 1.0308])
# define height and width of image
h, w, c = img.shape
# reshape image
img = img.reshape((-1,3))
# calculate optical density
OD = -np.log((img.astype(np.float)+1)/Io)
# remove transparent pixels
ODhat = OD[~np.any(OD<beta, axis=1)]
# compute eigenvectors
eigvals, eigvecs = np.linalg.eigh(np.cov(ODhat.T))
#eigvecs *= -1
#project on the plane spanned by the eigenvectors corresponding to the two
# largest eigenvalues
That = ODhat.dot(eigvecs[:,1:3])
phi = np.arctan2(That[:,1],That[:,0])
minPhi = np.percentile(phi, alpha)
maxPhi = np.percentile(phi, 100-alpha)
vMin = eigvecs[:,1:3].dot(np.array([(np.cos(minPhi), np.sin(minPhi))]).T)
vMax = eigvecs[:,1:3].dot(np.array([(np.cos(maxPhi), np.sin(maxPhi))]).T)
# a heuristic to make the vector corresponding to hematoxylin first and the
# one corresponding to eosin second
if vMin[0] > vMax[0]:
HE = np.array((vMin[:,0], vMax[:,0])).T
else:
HE = np.array((vMax[:,0], vMin[:,0])).T
# rows correspond to channels (RGB), columns to OD values
Y = np.reshape(OD, (-1, 3)).T
# determine concentrations of the individual stains
C = np.linalg.lstsq(HE,Y, rcond=None)[0]
# normalize stain concentrations
maxC = np.array([np.percentile(C[0,:], 99), np.percentile(C[1,:],99)])
tmp = np.divide(maxC,maxCRef)
C2 = np.divide(C,tmp[:, np.newaxis])
# recreate the image using reference mixing matrix
Inorm = np.multiply(Io, np.exp(-HERef.dot(C2)))
Inorm[Inorm>255] = 254
Inorm = np.reshape(Inorm.T, (h, w, 3)).astype(np.uint8)
# unmix hematoxylin and eosin
H = np.multiply(Io, np.exp(np.expand_dims(-HERef[:,0], axis=1).dot(np.expand_dims(C2[0,:], axis=0))))
H[H>255] = 254
H = np.reshape(H.T, (h, w, 3)).astype(np.uint8)
E = np.multiply(Io, np.exp(np.expand_dims(-HERef[:,1], axis=1).dot(np.expand_dims(C2[1,:], axis=0))))
E[E>255] = 254
E = np.reshape(E.T, (h, w, 3)).astype(np.uint8)
if saveFile is not None:
Image.fromarray(Inorm).save(saveFile+'.png')
Image.fromarray(H).save(saveFile+'_H.png')
Image.fromarray(E).save(saveFile+'_E.png')
return Inorm, H, E
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--imageFile', type=str, default='example1.tif', help='RGB image file')
parser.add_argument('--saveFile', type=str, default='output', help='save file')
parser.add_argument('--Io', type=int, default=240)
parser.add_argument('--alpha', type=float, default=1)
parser.add_argument('--beta', type=float, default=0.15)
args = parser.parse_args()
img = np.array(Image.open(args.imageFile))
normalizeStaining(img = img,
saveFile = args.saveFile,
Io = args.Io,
alpha = args.alpha,
beta = args.beta)