-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathvix.py
142 lines (121 loc) · 4.04 KB
/
vix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
## vix.py
## vix.py is a python script that calculates the CBOE Volatility Index (VIX) (https://markets.cboe.com/tradable_products/vix/) according to the method described in the
## CBOE VIX White Paper (https://cdn.cboe.com/resources/futures/vixwhite.pdf).
## This script reproduces the example in the whitepaper.
## To run, copy vixnearterm.dat and vixnextterm.dat to the same directory as vix.py, then run python3 vix.py
##
##inputs
rates=[0.000305, 0.000286] #risk-free interest rates (whitepaper, p5)
datafiles=['./vixnearterm.dat', './vixnextterm.dat'] #SPX Option Data Used in Sample VIX Index Calculation (whitepaper, appendix A)
verbose=0 #0 for just the result, 1 for some output, 2 for more output
import math
#get option data from vixnearterm.dat and vixnextterm.dat for options expiring on near term and next term expiration dates
quotedata=[[], []]
for j in (0,1):
f=open(datafiles[j])
for line in f:
ar=[]
for v in line.strip().split("\t"):
ar.append(float(v))
quotedata[j].append(ar)
f.close()
#get minutes and years to near term and next term expiration dates (p5)
Nt=[854+510+34560, 854+900+44640] #minutes
T=[Nt[0]/(60*24*365), Nt[1]/(60*24*365)] #years
if(verbose>=1):
print('Nt:', Nt)
print('T:', T)
#Step 1: Select the options to be used in the VIX Index calculation
#Compute F for near term and next term (p6)
F=[None, None]
for j in (0,1):
mindiff=None
diff=None
mindiff=None
Fstrike=None
Fcall=None
Fput=None
for d in quotedata[j]:
diff=abs( ((d[1]+d[2])/2) - ((d[3]+d[4])/2) )
if(mindiff is None or diff<mindiff):
mindiff=diff
Fstrike=d[0]
Fcall=(d[1]+d[2])/2
Fput=(d[3]+d[4])/2
F[j]=Fstrike + math.exp(rates[j]*T[j]) * (Fcall - Fput)
if(verbose>=1): print('F:', F)
#select the options to be used in the VIX Index calculation (p6,7)
selectedoptions=[[], []]
k0=[None, None]
for j in (0,1):
i=0
for d in quotedata[j]:
if(d[0]<F[j]):
k0[j]=d[0]
k0i=i
i+=1
d=quotedata[j][k0i]
ar=[d[0], 'put/call average', (((d[1]+d[2])/2)+((d[3]+d[4])/2))/2]
selectedoptions[j].append(ar)
i=k0i-1
b=True
previousbid=None
while(b and i>=0):
d=quotedata[j][i]
if(d[3]>0):
ar=[d[0], 'put', (d[3]+d[4])/2]
selectedoptions[j].insert(0,ar)
else:
if(previousbid==0): b=False
previousbid=d[3]
i-=1
i=k0i+1
b=True
previousbid=None
while(b and i<len(quotedata[j])):
d=quotedata[j][i]
if(d[1]>0):
ar=[d[0], 'call', (d[1]+d[2])/2]
selectedoptions[j].append(ar)
else:
if(previousbid==0): b=False
previousbid=d[1]
i+=1
if(verbose==2):
print('selectedoptions (near term):')
for e in selectedoptions[0]: print('', e)
print('selectedoptions (next term):')
for e in selectedoptions[1]: print('', e)
#Step 2: Calculate volatility for both near-term and next-term options (p8)
for j in (0,1):
i=0
for d in selectedoptions[j]:
if(i==0):
deltak=selectedoptions[j][1][0]-selectedoptions[j][0][0]
elif(i==len(selectedoptions[j])-1):
deltak=selectedoptions[j][i][0]-selectedoptions[j][i-1][0]
else:
deltak=(selectedoptions[j][i+1][0]-selectedoptions[j][i-1][0])/2
contributionbystrike=(deltak/(d[0]*d[0])) * math.exp(rates[j]*T[j]) * d[2]
selectedoptions[j][i].append(contributionbystrike)
i+=1
if(verbose==2):
print('contributions by strike (near term):')
for e in selectedoptions[0]: print('', e)
print('contributions by strike (next term):')
for e in selectedoptions[1]: print('', e)
aggregatedcontributionbystrike=[None, None]
for j in (0,1):
aggregatedcontributionbystrike[j]=0
for d in selectedoptions[j]:
aggregatedcontributionbystrike[j]+=d[3]
aggregatedcontributionbystrike[j]=(2/T[j])*aggregatedcontributionbystrike[j]
sigmasquared=[None, None]
for j in (0,1):
sigmasquared[j]=aggregatedcontributionbystrike[j] - (1/T[j])*(F[j]/k0[j] -1)*(F[j]/k0[j] -1)
if(verbose): print('sigmasquared:', sigmasquared)
#Step 3: Calculate the 30-day weighted average of sigmasquared[0] and sigmasquared[1] (p9)
N30=30*1440
N365=365*1440
VIX=100 * math.sqrt( ((T[0]*sigmasquared[0])*(Nt[1]-N30)/(Nt[1]-Nt[0]) + (T[1]*sigmasquared[1])*(N30-Nt[0])/(Nt[1]-Nt[0]))*N365/N30 )
print('VIX:', VIX)