-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.m
289 lines (240 loc) · 11.8 KB
/
main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
%%% Include Dependicies %%%
addpath(genpath('Measurements')) % Noiselet measurement mex file.
addpath(genpath('Wavelab850')) % https://statweb.stanford.edu/~wavelab/
%%%%%%%%%%%%%%%%%%%%%%%%%%%
addpath(genpath('utils')) % Functions...
numWorkers = 8; % Desired # of parallel workers.
%parpool(numWorkers);
rng(1);
path1 = 'C:\Users\ahishalm\Desktop\projects\pri_pre\YouTubeFaces\frame_images_DB'; % Dataset folder.
path2 = 'C:\Users\ahishalm\Desktop\projects\pri_pre\Results\measurement_'; % Results folder
txt_files = dir(fullfile(path1,'*txt'));
param.N = 2^16; % Max. length of the signal.
param.em_power = 0.15; % 0.085 % Embedding power, see the defination in the paper.
param.degradation = 'binary'; % 'binary' or 'gauss'
param.matrix = 0.9 + 0.1*randn(2^9, 2^9); % Gaussian matrix for binary masked Gaussian degradation option.
measurement_rate = 6; % MR = measurement_rate/10;
param.mratio = measurement_rate./10;
param.M = 30003; % Maximum leghts of the bits for embeding.
% Embed Face flag; True: use the reconstructed face locations, or
% False: use the ground-truth face locations in Type - B decoder.
param.emLOC = false;
% If the face region is larger compared to the image dimensions, the
% recovery of Type-II decoder decreases significantly. Hence, an option is
% provided to exlude frames with large faces from the performance evaluations.
param.bigInclude = 1; % Choose 1 to include or 0 to exclude.
IDcount = 0;
NoPersons = 100; % # of identities for the evaluation.
NofFrames = 30; % # of frames per identity for the evaluation.
param.y1 = [];
param.y2 = [];
param.x1 = [];
param.x2 = [];
for k=1:length(txt_files)
cordinates = importdata(fullfile(path1, txt_files(k).name));
% Search for identities that have at least NofFrames + 20 samples (20 samples for the face recognition trainset).
if isempty(cordinates) || length(cordinates.data) < NofFrames + 20
continue
end
IDcount = IDcount + 1;
ind = randperm(length(cordinates.data), NofFrames + 20); % Randomly select samples for this identity.
png_files = cordinates.textdata(ind); % Sample image names.
% Arrange face coordinates.
x1 = cordinates.data(:,2)+round(cordinates.data(:,4)./2);
y1 = cordinates.data(:,3)+round(cordinates.data(:,5)./2);
y2 = cordinates.data(:,3)-round(cordinates.data(:,5)./2);
x2 = cordinates.data(:,2)-round(cordinates.data(:,4)./2);
x1 = x1(ind); % Coors. for randomly selected samples.
x2 = x2(ind);
y1 = y1(ind);
y2 = y2(ind);
x1(x1 < 1) = 1;
x2(x2 < 1) = 1;
y1(y1 < 1) = 1;
y2(y2 < 1) = 1;
for i = 1:NofFrames % Allocate structs for the performance evaluations for User-A and User-B.
performanceA(i) = struct('PSNR', zeros(1), 'PSNR_insidemask', zeros(1), 'ssimVal', zeros(1), 'PSNR_outsidemask', zeros(1));
performanceB(i) = struct('PSNR', zeros(1), 'err', zeros(1), 'PSNR_insidemask', zeros(1), 'ssimVal', zeros(1), 'PSNR_outsidemask', zeros(1), 'fail', zeros(1), 'big', zeros(1));
end
parfor i = 1:NofFrames % Process frames
z = i;
[performanceA(i), performanceB(i)] = processFrame(measurement_rate, x1(i), x2(i), y1(i), y2(i), z, ...
png_files{i}, performanceA(i), performanceB(i), path1, path2, param);
end
%%% Save results. %%%
splits = strsplit(png_files{1},'\');
identity = splits{1};
outDir = fullfile(strcat(path2, int2str(measurement_rate)), identity);
ptt = strcat(outDir,'_results.mat');
save(ptt,'performanceA','performanceB','measurement_rate');
drawnow;
%%% Attack Type - I: Known Plain-text (original faces), known labels.%%%
%%% Save 20 non-overlapping training samples for the face recognition. %%%
trDir = fullfile(strcat(path2, int2str(measurement_rate)), 'train_facesAttackI', identity); % Directory for saving the train face images.
if ~exist(trDir, 'dir'); mkdir(trDir); end
for ii = NofFrames + 1:NofFrames + 20
% Read the image and crop the face part.
if ispc % If Windows OS.
splits = strsplit(png_files{ii}, '\');
else % Other OS.
png_files{ii} = strrep(png_files{ii}, '\', '/');
splits = strsplit(png_files{ii}, '/');
end
imagename = fullfile(path1, png_files{ii});
I0 = imread(imagename);
face = I0(y2(ii):y1(ii), x2(ii):x1(ii), :);
imwrite(face, fullfile(trDir, splits{3})) % Write the train sample.
end
%%% Attack Type - II: Known Plain-text (original faces), known anonymized and their labels.%%%
%%% Save 20 non-overlapping original faces + 10 Anonymized faces for the training of the face recognition. %%%
trDir2 = fullfile(strcat(path2, int2str(measurement_rate)), 'train_facesAttackII', identity); % Directory for saving the train face images.
UserADir = fullfile(strcat(path2, int2str(measurement_rate)), 'userA_faces', identity); % User-A directory (anonymized faces).
newUserADir = fullfile(strcat(path2, int2str(measurement_rate)), 'userA_faces_AttackII', identity); % New User-A directory.
if ~exist(trDir2, 'dir'); mkdir(trDir2); end
if ~exist(newUserADir, 'dir'); mkdir(newUserADir); end
copyfile(trDir, trDir2); % Copy the original faces.
copyfile(UserADir, newUserADir); % Copy the original faces.
for ii = 1:10 % Include 10 anonymized face samples to the query of face recognition.
if ispc % If Windows OS.
splits = strsplit(png_files{ii}, '\');
else % Other OS.
png_files{ii} = strrep(png_files{ii}, '\', '/');
splits = strsplit(png_files{ii}, '/');
end
imagename = fullfile(newUserADir, splits{3});
movefile(imagename, fullfile(trDir2, splits{3}));
end
if IDcount >= NoPersons % Check how many identities are processed.
fprintf("Run over %d identities is completed, results are saved to %s \n\n", IDcount, strcat(path2, int2str(measurement_rate)))
analyse(strcat(path2, int2str(measurement_rate)), param.bigInclude); % Calculate the average PSNRs, SSIMs over identities
break
end
end
function [performanceA, performanceB] = processFrame(measurement_rate, x1, x2, y1, y2, i, filename, performanceA, performanceB, path1, path2,param)
if ~ispc % If not Windows OS.
filename = strrep(filename, '\', '/');
end
param.y1 = y1;
param.y2 = y2;
param.x1 = x1;
param.x2 = x2;
% Read the image and crop or add some pixels to make sure it has width
% and height dimensions divisible by 2 for wavelet transform.
imagename = fullfile(path1, filename);
I0 = imread(imagename);
[S1_init, S2_init, ~]=size(I0);
I1 = imresize(I0,sqrt((param.N)/(S1_init*S2_init)));
param.S1 = size(I1,1);
param.S2 = size(I1,2);
% Re-arange the coardinates of the faces
param.x1 = round(x1.*((param.S1./S1_init)));
param.x2 = round(x2.*((param.S1./S1_init)));
param.y1 = round(y1.*((param.S2./S2_init)));
param.y2 = round(y2.*((param.S2./S2_init)));
ll=0;
while (param.S2*param.S1)>param.N
if mod(ll,2)
param.S1 = param.S1-1;
param.x1 = param.x1-1;
elseif mod(ll,2)
param.S2 = param.S2-1;
param.y1 = param.y1-1;
end
ll = ll+1;
end
if mod(param.S1,2)
param.S1=param.S1-1;
param.x1 = param.x1-1;
end
if mod(param.S2,2)
param.S2=param.S2-1;
param.x2 = param.x2-1;
end
I = I1(1:param.S1, 1:param.S2, :); % New cropped image.
clear I0, clear I1;
img1 = double(rgb2gray(I));
%re-arange the coardinates of the faces
param.x1 = round(x1.*((param.S1./S1_init)));
param.x2 = round(x2.*((param.S1./S1_init)));
param.y1 = round(y1.*((param.S2./S2_init)));
param.y2 = round(y2.*((param.S2./S2_init)));
param.x1(param.x1 < 1) = 1;
param.x2(param.x2 < 1) = 1;
param.y1(param.y1 < 1) = 1;
param.y2(param.y2 < 1) = 1;
y1 = param.y1;
y2 = param.y2;
x1 = param.x1;
x2 = param.x2;
% Create mask for the face.
mask = zeros(size(img1));
mask(param.y2:param.y1, param.x2:param.x1) = 1;
h.Position = [param.x2 param.y2 param.x1-param.x2 param.y1-param.y2];
if size(I, 1) ~= param.S1 || size(mask, 1) ~= param.S1 || size(I, 2) ~= param.S2 || size(mask, 2) ~= param.S2
return % Something went wrong.
end
if sum(mask(:)) > (param.M - 3)/2
performanceB.big = 1; % Too big face part.
end
[y_w, watermark_inf, smean]=transmitter(double(I), mask, param, i); % Transmitter implementation for compression + encription.
% User-A reconstruction
[solA] = userA(y_w, smean,param);
% User-B reconstruction
[solB, infor, fail] = userB(y_w, watermark_inf, smean, param);
%%% Performance Evaluations %%%:
% User-A
performanceA.PSNR = measerr((I),(solA)); % PSNR of the whole frame.
I1 = imcrop(I, h.Position);
I2 = imcrop(solA, h.Position);
performanceA.PSNR_insidemask = measerr(I1,I2); % PSNR of the privacy sensitive part.
performanceA.ssimVal = ssim(I1, I2); % SSIM of the privacy sensitive part.
performanceA.PSNR_outsidemask = measerr(I(repelem(mask, 1, 1, 3) == 0), solA(repelem(mask, 1, 1, 3) == 0)); % PSNR of the outside of the privacy sensitive part.
% User-B
performanceB.fail = fail; % Check if decoding of the face coordinates is failed.
performanceB.PSNR = measerr((I),(solB)); % PSNR of the whole frame.
performanceB.err = infor.total_error; % Total error.
I2 = imcrop(solB,h.Position); % Crop the face.
performanceB.PSNR_insidemask = measerr(I1,I2); % PSNR of the privacy sensite part.
performanceB.ssimVal = ssim(I1, I2); % SSIM of the privacy sensitive part.
performanceB.PSNR_outsidemask = measerr(I(repelem(mask, 1, 1, 3) == 0), solB(repelem(mask, 1, 1, 3) == 0)); % PSNR of the outside of the privacy sensitive part.
%%% Directories for saving original, User-A and User-B frames%%%
if ispc % If Windows OS.
splits = strsplit(filename, '\');
else
splits = strsplit(filename, '/');
end
pp1 = fullfile(strcat(path2, int2str(measurement_rate)), 'original', splits{1});
pp2 = fullfile(strcat(path2, int2str(measurement_rate)), 'userA', splits{1});
pp3 = fullfile(strcat(path2, int2str(measurement_rate)), 'userB', splits{1});
if ~exist(pp1, 'dir')
mkdir(pp1)
end
if ~exist(pp2, 'dir')
mkdir(pp2)
end
if ~exist(pp3, 'dir')
mkdir(pp3)
end
imwrite(I, fullfile(strcat(path2, int2str(measurement_rate)), 'original', splits{1}, splits{3})); % Write original frame.
imwrite(solA, fullfile(strcat(path2, int2str(measurement_rate)), 'userA', splits{1}, splits{3})); % Write User-A frame.
imwrite(solB, fullfile(strcat(path2,int2str(measurement_rate)), 'userB', splits{1}, splits{3})); % Write User-B frame.
%%% Write the faces for the face recognition evaluations.%%%
pp1 = fullfile(strcat(path2, int2str(measurement_rate)), 'original_faces', splits{1});
pp2 = fullfile(strcat(path2, int2str(measurement_rate)), 'userA_faces', splits{1});
pp3 = fullfile(strcat(path2, int2str(measurement_rate)), 'userB_faces', splits{1});
if ~exist(pp1, 'dir')
mkdir(pp1)
end
if ~exist(pp2, 'dir')
mkdir(pp2)
end
if ~exist(pp3, 'dir')
mkdir(pp3)
end
faceI = I(y2:y1, x2:x1, :); % Face from the original frame
faceA = solA(y2:y1, x2:x1, :); % Face from the User-A
faceB = solB(y2:y1, x2:x1, :); % Fce from the User-B
imwrite(faceI, fullfile(strcat(path2, int2str(measurement_rate)), 'original_faces', splits{1}, splits{3})); % Write original frame.
imwrite(faceA, fullfile(strcat(path2, int2str(measurement_rate)), 'userA_faces', splits{1}, splits{3})); % Write User-A frame.
imwrite(faceB, fullfile(strcat(path2, int2str(measurement_rate)), 'userB_faces', splits{1}, splits{3})); % Write User-B frame.
end