-
Notifications
You must be signed in to change notification settings - Fork 102
/
train.py
391 lines (331 loc) · 15.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# moveFace,黑白人脸训练脚本
# 同时支持使用换脸数据和风格化数据。这里会根据原视频GT的人脸检测框,来裁剪换脸数据或者是风格化数据
# 逻辑为:从数据集中获取两个,一个是原始视频,一个是换脸数据
# 如果没有换脸数据,换脸那个key将依然是原始视频
# 后续所有的人脸检测框均从原始视频获取,并将从换脸数据那个key获取到的value作为Condition进行裁剪
# 不论是否有换脸数据,均使用Condition增广
import os
import math
import random
import logging
import inspect
import argparse
import datetime
import threading
import subprocess
import importlib
from pathlib import Path
from tqdm.auto import tqdm
from einops import rearrange
from omegaconf import OmegaConf
from safetensors import safe_open
from typing import Dict, Optional, Tuple
from PIL import Image
import torch
import torchvision
import torch.nn.functional as F
import torch.distributed as dist
from torch.optim.swa_utils import AveragedModel
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import numpy as np
import diffusers
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.models import UNet2DConditionModel
from diffusers.pipelines import StableDiffusionPipeline
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
import transformers
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection, CLIPImageProcessor
# from ip_adapter import IPAdapterFull
# from animatediff.data.dataset import WebVid10M, PexelsDataset
from animate.utils.util import save_videos_grid, pad_image, generate_random_params, apply_transforms
from animate.utils.util import crop_move_face
from animate.utils.util import crop_and_resize_tensor, get_condition_face
from accelerate import Accelerator
from einops import repeat
from accelerate.utils import set_seed
import webdataset as wds
# from eval import eval
from face_dataset import VideosIterableDataset
import facer
from controlnet_resource.dense_dwpose.densedw import DenseDWposePredictor
def main(
origin_config,
name: str,
launcher: str,
output_dir: str,
size: list,
train_data: Dict,
validation_data: Dict,
context: Dict,
pretrained_model_path: str = "",
pretrained_appearance_encoder_path: str = "",
pretrained_controlnet_path: str = "",
pretrained_vae_path: str = "",
motion_module: str = "",
appearance_controlnet_motion_checkpoint_path: str = "",
pretrained_unet_path: str = "",
unet_additional_kwargs: Dict = {},
ema_decay: float = 0.9999,
noise_scheduler_kwargs=None,
max_train_epoch: int = -1,
max_train_steps: int = 100,
validation_steps: int = 100,
validation_steps_tuple: Tuple = (-1,),
learning_rate: float = 3e-5,
scale_lr: bool = False,
lr_warmup_steps: int = 0,
lr_scheduler: str = "constant",
trainable_modules: Tuple[str] = (None,),
grad_modules = None,
num_workers: int = 8,
train_batch_size: int = 1,
adam_beta1: float = 0.9,
adam_beta2: float = 0.999,
adam_weight_decay: float = 1e-2,
adam_epsilon: float = 1e-08,
max_grad_norm: float = 1.0,
gradient_accumulation_steps: int = 1,
gradient_checkpointing: bool = False,
checkpointing_epochs: int = 5,
checkpointing_steps: int = -1,
mixed_precision_training: bool = True,
enable_xformers_memory_efficient_attention: bool = True,
valid_seed: int = 42,
is_debug: bool = False,
dwpose_only_face = False,
ip_ckpt=None,
control_aux_type: str = 'dwpose',
controlnet_type: str = '2d',
controlnet_config: str = '',
model_type: str = "unet",
clip_image_type: str = '',
concat_noise_image_type: str = '',
do_classifier_free_guidance: bool = True,
inference_config: str = "",
pretrained_audio_encoder_path: str = "",
empty_str_embedding: str = "",
eval_path: str = "eval",
):
weight_type = torch.float16
# Accelerate
accelerator = Accelerator(
gradient_accumulation_steps=gradient_accumulation_steps,
)
# Logging folder
folder_name = "debug" if is_debug else name + datetime.datetime.now().strftime("-%Y-%m-%dT%H-%M-%S")
output_dir = os.path.join(output_dir, folder_name)
if is_debug and os.path.exists(output_dir):
os.system(f"rm -rf {output_dir}")
*_, config = inspect.getargvalues(inspect.currentframe())
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Handle the output folder creation
if accelerator.is_main_process:
os.makedirs(output_dir, exist_ok=True)
os.makedirs(f"{output_dir}/samples", exist_ok=True)
os.makedirs(f"{output_dir}/sanity_check", exist_ok=True)
os.makedirs(f"{output_dir}/checkpoints", exist_ok=True)
# OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
if accelerator.state.deepspeed_plugin is not None and \
accelerator.state.deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] == "auto":
accelerator.state.deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = train_batch_size
# Load tokenizer and models.
local_rank = accelerator.device
video_length = train_data["video_length"]
resolution = size
# load dwpose detector, see controlnet_aux: https://github.com/patrickvonplaten/controlnet_aux
# specify configs, ckpts and device, or it will be downloaded automatically and use cpu by default
if accelerator.is_main_process:
print("using mse_loss")
MagicAnimate = getattr(importlib.import_module(f'animate.{model_type}.animate'), 'MagicAnimate')
eval_func = getattr(importlib.import_module(f'{eval_path}'), 'eval')
model = MagicAnimate(config=config,
train_batch_size=train_batch_size,
device=local_rank,
unet_additional_kwargs=OmegaConf.to_container(unet_additional_kwargs),
mixed_precision_training=True,
trainable_modules=trainable_modules,
is_main_process=accelerator.is_main_process,
weight_type=weight_type,
)
# Load noise_scheduler
noise_scheduler = model.scheduler
# Set trainable parameters
model.requires_grad_(False)
if grad_modules is None:
grad_modules = trainable_modules
trainable_params = []
for name, param in model.named_parameters():
# print(name)
for trainable_module_name in trainable_modules:
if trainable_module_name in name:
trainable_params.append(param)
break
for grad_module_name in grad_modules:
if grad_module_name in name:
param.requires_grad = True
break
# trainable_params = list(filter(lambda p: p.requires_grad, model.parameters()))
if accelerator.is_main_process:
print('trainable_params', len(trainable_params))
print('untrainable_params', len(list(filter(lambda p: not p.requires_grad, model.parameters()))))
optimizer = torch.optim.AdamW(
trainable_params,
lr=learning_rate,
betas=(adam_beta1, adam_beta2),
weight_decay=adam_weight_decay,
eps=adam_epsilon,
)
if accelerator.is_main_process:
accelerator.print(f"trainable params number: {len(trainable_params)}")
accelerator.print(f"trainable params scale: {sum(p.numel() for p in trainable_params) / 1e6:.3f} M")
# Enable gradient checkpointing
if gradient_checkpointing:
model.unet.enable_gradient_checkpointing()
model.appearance_encoder.enable_gradient_checkpointing()
model.controlnet.enable_gradient_checkpointing()
model.to(local_rank)
train_dataset = VideosIterableDataset(
data_dirs = train_data['data_dirs'],
preprocess_function=train_data['preprocess_function'],
decode_function=train_data['decode_function'],
batch_size=train_batch_size,
video_length = video_length,
resolution = size,
frame_stride = train_data['frame_stride'],
dataset_length = 1000000,
shuffle = True,
resampled = True,
return_origin = True,
warp_rate=train_data['warp_rate'],
color_jit_rate=train_data['color_jit_rate'],
use_swap_rate=train_data['use_swap_rate'],
)
use_both_ratio=train_data['use_both_ratio']
use_audio_ratio=train_data['use_audio_ratio']
train_dataloader = wds.WebLoader(
train_dataset,
batch_size=train_batch_size,
shuffle=False,
num_workers=num_workers,
# this must be zeros since in mul GPU
collate_fn = None,
).with_length(len(train_dataset))
# Get the training iteration
if max_train_steps == -1:
assert max_train_epoch != -1
max_train_steps = max_train_epoch * len(train_dataloader)
if checkpointing_steps == -1:
assert checkpointing_epochs != -1
checkpointing_steps = checkpointing_epochs * len(train_dataloader)
if scale_lr:
learning_rate = (learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes)
# Scheduler
lr_scheduler = get_scheduler(
lr_scheduler,
optimizer=optimizer,
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
num_training_steps=max_train_steps * gradient_accumulation_steps,
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
# Afterwards we recalculate our number of training epochs
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
# Train!
total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps
num_processes = torch.cuda.device_count()
if accelerator.is_main_process:
print("***** Running training *****")
print(f" Num examples = {len(train_dataset)}")
print(f" Num Epochs = {num_train_epochs}")
print(f" Instantaneous batch size per device = {train_batch_size}")
print(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
print(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
print(f" Total optimization steps = {max_train_steps}")
print(f" num_processes = {num_processes}")
global_step = 0
first_epoch = 0
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
# Support mixed-precision training
model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
seed = 0
set_seed(seed)
for epoch in range(first_epoch, num_train_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(model):
input_dict = model.preprocess_train(batch, use_both_ratio=use_both_ratio, use_audio_ratio=use_audio_ratio)
with accelerator.autocast():
loss = model(
random_seed=seed,
**input_dict
)
accelerator.backward(loss)
model.module.clear_reference_control()
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(trainable_params, 1.0)
seed = global_step
set_seed(seed)
warp_params = generate_random_params(size[0], size[1])
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
global_step += 1
is_main_process = accelerator.is_main_process
if is_main_process and (global_step % checkpointing_steps == 0 or global_step in validation_steps_tuple or global_step % validation_steps == 0):
cur_save_path = f"{output_dir}/samples/sample_{global_step}"
os.makedirs(cur_save_path, exist_ok=True)
save_path = os.path.join(output_dir, f"checkpoints")
state_dict = {
"epoch": epoch,
"global_step": global_step,
"state_dict": model.state_dict(),
}
model_save_path = os.path.join(save_path, f"checkpoint-steps{global_step}.ckpt")
torch.save(state_dict, model_save_path)
for source, driver in tqdm(zip(validation_data['source_image'], validation_data['video_path'])):
eval_func(source, driver,
accelerator=accelerator,
config=None,
config_path=origin_config,
output_path=cur_save_path,
random_seed=valid_seed,
guidance_scale=validation_data['guidance_scale'],
weight_type=torch.float16,
num_steps=validation_data['num_inference_steps'],
device=local_rank,
model=accelerator.unwrap_model(model),
# model=model,accelerator.unwrap_model(model)
# image_processor=image_processor,
# image_encoder=image_encoder,
clip_image_type="background",
concat_noise_image_type="origin",
do_classifier_free_guidance=True,
show_progressbar=False,
contour_preserve_generation=True,
frame_sample_config=[0, -1, 1],
)
logging.info(f"Saved state to {save_path} (global_step: {global_step})")
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= max_train_steps:
break
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--launcher", type=str, choices=["pytorch", "slurm"], default="pytorch")
args = parser.parse_args()
name = Path(args.config).stem
config = OmegaConf.load(args.config)
main(name=name, launcher=args.launcher, origin_config=args.config, **config)