forked from dplab/MechMet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExport_2_VTK.m
190 lines (177 loc) · 5.8 KB
/
Export_2_VTK.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
function Export_2_VTK(f, crystal_type, microstructurefile, meshfile, solutionfile,graindatafile,grain4np)
% ExportVTKFepx - Export mesh and data to VTK format for plotting
%
%
%
% Export_2_VTK(basename, meshfile, microstructurefile, solutionfile)
%
% INPUT:
%
% basename of vtk file;
% microstructure file (from neper)
% meshfile (from neper) ;
% solutionfile structure array of results generated by elasticity_3D
%
% OUTPUT:
%
% vtk file suitable for use with VisIt or Paraview
%
% NOTES:
%
;
% * VTK arrays are 0-based
%
% ========================= Defaults and options.
%
%
% ========================= Constants
%
SUF = 'vtk';
VERSION = '# vtk DataFile Version 3.0';
FORMAT = 'ASCII';
DESCRIPTION = 'MechMet';
DSET_TYPE = 'DATASET UNSTRUCTURED_GRID';
DTYPE_I = 'int';
DTYPE_R = 'double';
PDATA = 'POINT_DATA';
CDATA = 'CELL_DATA';
POINTS = 'POINTS';
CELLS = 'CELLS';
CTYPES = 'CELL_TYPES';
CON_FMT = sprintf('%s%s\n', '%d ', repmat(' %d', [1, 10]) );
CTYPE_TET10 = 24; % VTK_QUADRATIC_TETRA
CON_ORDER = [1 3 5 10 2 4 6 7 8 9]; % corners, then midpoints
DAT_SCA = 'SCALARS';
DAT_VEC = 'VECTORS';
DAT_TEN = 'TENSORS';
LOOKUP_DFLT = 'LOOKUP_TABLE default';
VEC_FMT = '%e %e %e\n';
TEN_FMT = repmat('%e %e %e\n', [1 3]);
VEC_ORDER = [1 2 3];
TEN_ORDER = [1 6 4 6 2 5 4 5 3];
%TEN_ORDER = [1 2 3 2 4 5 3 5 6];
%
% ========================= Execution
%
% Open file, write header information
%
%f = fopen(sprintf('%s.%s', [basename], SUF), 'w');
fprintf(f, '%s\n', VERSION);
fprintf(f, '%s\n', DESCRIPTION);
fprintf(f, '%s\n', FORMAT);
%
% Write mesh first
%
fprintf(f, '%s\n', DSET_TYPE);
npts = size(meshfile.crd, 2);
fprintf(f, '%s %d %s\n', POINTS, npts, DTYPE_R);
fprintf(f, '%e %e %e\n', meshfile.crd);
nels = size(meshfile.con, 2);
fprintf(f, '%s %d %d\n', CELLS, nels, 11*nels);
fprintf(f, CON_FMT, [repmat(10, [1, nels]); meshfile.con(CON_ORDER, :) - 1]); % 0-based
fprintf(f, '%s %d\n', CTYPES, nels);
fprintf(f, '%d\n', repmat(CTYPE_TET10, [1, nels]));
%
% Write nodal data
%
fprintf(f, '%s %d\n', PDATA, npts);
label = sprintf('%s', 'Displacement');
fprintf(f, '%s %s %s\n', DAT_VEC, label, DTYPE_R);
fprintf(f, '%e %e %e\n', solutionfile.u(:));
label = sprintf('%s', 'ElasticStrain');
fprintf(f, '%s %s %s\n', DAT_TEN, label, DTYPE_R);
fprintf(f, TEN_FMT, solutionfile.epsilon(TEN_ORDER, :));
%
label = sprintf('%s', 'Stress');
fprintf(f, '%s %s %s\n', DAT_TEN, label, DTYPE_R);
fprintf(f, TEN_FMT, solutionfile.sigma(TEN_ORDER, :));
%
label = sprintf('%s', 'EmbeddedStiffness');
fprintf(f, '%s %s %s\n%s\n', DAT_SCA, label, DTYPE_R, LOOKUP_DFLT);
fprintf(f, '%e\n', solutionfile.embeddedstiffness(:));
%
label = sprintf('%s', 'SXStiffness');
fprintf(f, '%s %s %s\n%s\n', DAT_SCA, label, DTYPE_R, LOOKUP_DFLT);
fprintf(f, '%e\n', solutionfile.SXStiffness(:));
%
label = sprintf('%s', 'RE2SX');
fprintf(f, '%s %s %s\n%s\n', DAT_SCA, label, DTYPE_R, LOOKUP_DFLT);
fprintf(f, '%e\n', solutionfile.re2sx(:));
%
label = sprintf('%s', 'RelativeSchmidFactor');
fprintf(f, '%s %s %s\n%s\n', DAT_SCA, label, DTYPE_R, LOOKUP_DFLT);
fprintf(f, '%e\n', solutionfile.schmidfactors(:));
%
label = sprintf('%s', 'Directional_Y2E');
fprintf(f, '%s %s %s\n%s\n', DAT_SCA, label, DTYPE_R, LOOKUP_DFLT);
fprintf(f, '%e\n', solutionfile.rse(:));
%
% label = sprintf('%s', 'DeviatoricStress');
% fprintf(f, '%s %s %s\n', DAT_TEN, label, DTYPE_R);
% fprintf(f, TEN_FMT, solutionfile.dsigma(TEN_ORDER, :));
label = sprintf('%s','Grain4NPArray');
fprintf(f, '%s %s %s\n%s\n', DAT_SCA, label, DTYPE_R, LOOKUP_DFLT);
fprintf(f, '%e\n', grain4np(:));
% %
% %
%
% Write element data
%
fprintf(f, '%s %d\n', CDATA, nels);
label = sprintf('%s-%d', 'phases', 0);
fprintf(f, '%s %s %s\n%s\n', DAT_SCA, label, DTYPE_R, LOOKUP_DFLT);
fprintf(f, '%e\n', microstructurefile.phases(:));
label = sprintf('%s-%d', 'grains', 0);
fprintf(f, '%s %s %s\n%s\n', DAT_SCA, label, DTYPE_R, LOOKUP_DFLT);
fprintf(f, '%e\n', microstructurefile.grains(:));
label = sprintf('%s', 'ElAve_ElasticStrain');
fprintf(f, '%s %s %s\n', DAT_TEN, label, DTYPE_R);
fprintf(f, TEN_FMT, solutionfile.epsilon_ave(TEN_ORDER, :));
%
label = sprintf('%s', 'ElAve_Stress');
fprintf(f, '%s %s %s\n', DAT_TEN, label, DTYPE_R);
fprintf(f, TEN_FMT, solutionfile.sigma_ave(TEN_ORDER, :));
label = sprintf('%s', 'ElAve_EmbeddedStiffness');
fprintf(f, '%s %s %s\n%s\n', DAT_SCA, label, DTYPE_R, LOOKUP_DFLT);
fprintf(f, '%e\n', solutionfile.embeddedstiffness_ave(:));
%
label = sprintf('%s', 'ElAve_SXStiffness');
fprintf(f, '%s %s %s\n%s\n', DAT_SCA, label, DTYPE_R, LOOKUP_DFLT);
fprintf(f, '%e\n', solutionfile.SXStiffness_ave(:));
%
label = sprintf('%s', 'ElAve_RE2SX');
fprintf(f, '%s %s %s\n%s\n', DAT_SCA, label, DTYPE_R, LOOKUP_DFLT);
fprintf(f, '%e\n', solutionfile.re2sx_ave(:));
%
label = sprintf('%s', 'ElAve_RelativeSchmidFactor');
fprintf(f, '%s %s %s\n%s\n', DAT_SCA, label, DTYPE_R, LOOKUP_DFLT);
fprintf(f, '%e\n', solutionfile.schmidfactors_ave(:));
%
label = sprintf('%s', 'ElAve_Directional_Y2E');
fprintf(f, '%s %s %s\n%s\n', DAT_SCA, label, DTYPE_R, LOOKUP_DFLT);
fprintf(f, '%e\n', solutionfile.rse_ave(:));
%
quaterions = QuatOfRMat(microstructurefile.rotations);
if(crystal_type==3)
csym = CubSymmetries;
elseif(crystal_type==6)
csym = HexSymmetries;
end
rodrigues = ToFundamentalRegion(quaterions,csym);
eleori = zeros(3,nels);
elerod = zeros(3,nels);
for iele =1:1:nels
igrain = microstructurefile.grains(iele);
eleori(:,iele) = microstructurefile.orientations(:,igrain);
elerod(:,iele) = rodrigues(:,igrain);
end
label = sprintf('%s', 'angs');
fprintf(f, '%s %s %s\n', DAT_VEC, label, DTYPE_R);
fprintf(f, VEC_FMT, eleori(VEC_ORDER,:));
%
label = sprintf('%s', 'RodriguesVector');
fprintf(f, '%s %s %s\n', DAT_VEC, label, DTYPE_R);
fprintf(f, VEC_FMT, elerod(VEC_ORDER,:));
%
%
fclose(f);