-
Notifications
You must be signed in to change notification settings - Fork 42
/
Supplemental_R_script_1.R
423 lines (346 loc) · 14.9 KB
/
Supplemental_R_script_1.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
#----------------------------------------
# Kaplan-Meier plot script
#----------------------------------------
#
# Supplemental R script for following study:
# Zsuzsanna Mihaly, Mate Kormos, Andras Lanczky, Magdolna Dank, Jan Budczies, A. Marcell Szusz, Balazs Gyorffy
# A meta-analysis of gene expression based biomarkers predicting outcome after tamoxifen treatment in breast cancer
# Breast Cancer Res Treat. 2013 Jul;140(2):219-32. doi: 10.1007/s10549-013-2622-y.
#
# Input:
# - gene expression data:
# +-----------------------------------------
# | AffyId | Gene Expr 1 | Gene Expr 2 ...
# +-----------------------------------------
# - clinical data
# +-----------------------------------------
# | AffyId | Survival time | Survival event
# +-----------------------------------------
# Note: If there are other columns in the clinical table, you can specify
# which column has to be used for the survival data.
# Note: The ordering of the tables has to be same.
#
# Running the script:
# expr: expression data
# clin: clinical data
# event_index: column containing the survival event,
# time_index: column containing the survival time,
# affyid: if you are intrested in one Affymetrix probe ID,
# auto_cutoff: if this parameter is set to "true", the script finds
# the best cutoff value
# quartile: if the auto_cutoff is not set, you can use the quartile option.
# This parameter runs from 1 to 100 as a percentile, where the
# data has to be split into the two groups.
# 50 means the median, 25 the lower, 75 the upper quartile.
#
# Example 1:
# d = loadData(expr="@supplemental table 1_GEO expression data_sorted.txt", clin="@supplemental table 2_GEO clinical data_sorted.txt");
# kmplot(d$expr, d$clin, event_index=3, time_index=4, auto_cutoff="true")
#
# Example 2:
# d = loadData(expr="@supplemental table 1_GEO expression data_sorted.txt", clin="@supplemental table 2_GEO clinical data_sorted.txt");
# kmplot(d$expr, d$clin, event_index=3, time_index=4, affyid="213324_at", auto_cutoff="true")
#
# Example 3:
# d = loadData(expr="expression_table.txt", clin="clinical_table.txt");
# kmplot(d$expr, d$clin, event_index=2, time_index=3, auto_cutoff="false", quartile=50);
#
# Example 4:
# # Prepare expression data
# expr <- mtx$merged.dat[ , 4:ncol(mtx$merged.dat)] %>% as.matrix
# # Filter out low expressed genes
# # Should be more than 90% of non-zero values
# ff <- genefilter::pOverA(p = 0.9, A = 0, na.rm = TRUE)
# expr <- expr[, apply(expr, 2, ff)]
# expr <- data.frame(AffyID = mtx$merged.dat$bcr, expr, stringsAsFactors = FALSE)
# # Prepare clinical data
# clin <- mtx$merged.dat[, 1:3]
# colnames(clin)[1] <- "AffyID"
# # Run survival analysis for selected genes
# kmplot(expr, clin, event_index=2, time_index=3, affyid = c("SND1", "MTDH"), auto_cutoff="true", transform_to_log2 = TRUE)
# # Run survival analysis for all genes
# kmplot(expr, clin, event_index=2, time_index=3, affyid = "", auto_cutoff="true", transform_to_log2 = TRUE)
library(survival)
library(survplot)
library(survminer)
library(cowplot)
library(gridExtra)
# demo = getParameter(c_args, "demo");
demo = "false"
if(demo == "true"){
d = loadData();
kmplot(d$expr, d$clin, auto_cutoff="true")
}
checkData = function(expr, clin){
affyid_expr = as.character(expr[[1]]);
affyid_clin = as.character(clin[[1]]);
# check number of entries
if(length(affyid_expr) != length(affyid_clin)){
stop("The dimensions of data is not equal.");
}
for(i in 1:length(affyid_expr)){
if(affyid_expr[[i]] != affyid_clin[[i]]){
stop( paste("STOP: The ", i, "th ID of data is different.", sep="") )
}
}
}
auto_cutoff_surv = function(row, gene_db, time_index, event_index){
ordered_row = order(row);
q1 = round(length(ordered_row)*0.25);
q3 = round(length(ordered_row)*0.75);
# m = sortedrow[round(i)];
surv = Surv(gene_db[,time_index], gene_db[,event_index]);
p_values = vector(mode="numeric", length = q3-q1+1)
min_i = 0
min_pvalue=1
for(i in q1:q3){
gene_expr = vector(mode="numeric", length=length(row))
gene_expr[ordered_row[i:length(ordered_row)]] = 1
cox = summary(coxph(surv ~ gene_expr))
pvalue = cox$sctest['pvalue']
p_values[i-q1+1] = pvalue
if(pvalue < min_pvalue){
min_pvalue = pvalue
min_i = i
}
}
gene_expr = vector(mode="numeric", length=length(row))
gene_expr[ordered_row[min_i:length(ordered_row)]] = 1
# overwrite m (median) and gene_expr
m = row[ordered_row[min_i]]
m
}
loadData = function(exprFile="@supplemental table 1_GEO expression data_sorted.txt", clinFile="@supplemental table 2_GEO clinical data_sorted.txt"){
if(file.exists(exprFile)){
expr = read.table(exprFile, header=TRUE, sep="\t");
}else{
stop("The gene expression table is not exists!");
}
if(file.exists(clinFile)){
clin = read.table(clinFile, header=TRUE, sep="\t");
}else{
stop("The gene expression table is not exists!");
}
list("expr"=expr, "clin"=clin);
}
mySurvplot = function(survival_data, gene_expr, xlab="Time (days)", ylab="Probability", snames = c('low', 'high'), stitle = "Expression", hr.pos=NA, use_survminer = TRUE, fileNameOut = fileNameOut) {
# General calculations of p-value and hazard ratio
surv <- Surv(survival_data[,1], survival_data[,2]);
cox = summary(coxph(surv ~ gene_expr))
pvalue = cox$sctest['pvalue'];
hr = round(cox$conf.int[1],2)
hr_left = round(cox$conf.int[3],2)
hr_right = round(cox$conf.int[4],2)
conf_int = paste(" (", hr_left, " - ", hr_right, ")", sep="");
# Plot survival plot
if (use_survminer) {
surv_expr <- data.frame(time = survival_data[, 1], status = survival_data[, 2], gene = gene_expr)
fit <- survfit(Surv(time, status) ~ gene, data = surv_expr)
p <- ggsurvplot(fit, data = surv_expr, risk.table = TRUE, pval = TRUE, pval.method = TRUE, conf.int = FALSE, xlab = "Time (days)", palette = c("#67A9CF", "#EF8A62"), legend = "top", legend.title = "Expression", legend.labs = c("Low", "High"))
p <- grid.arrange(p$plot, p$table, ncol = 1, heights = c(3, 1))
plot(p)
# ggsave("res/text.png", plot = p$plot)
save_plot(fileNameOut, p, base_height = 5, base_width = 5)
} else {
png(filename = fileNameOut)
survplot(surv ~ gene_expr, xlab=xlab, ylab=ylab, snames = snames, stitle = stitle, hr.pos=hr.pos);
txt = paste("HR = ", hr, conf_int, "\nlogrank P = ", signif(pvalue, 2), sep="")
text(grconvertX(0.98, "npc"), grconvertY(.97, "npc"), labels=txt, adj=c(1, 1))
dev.off()
}
# Data to return
list(pvalue, hr, hr_left, hr_right)
}
createDirectory = function(base){
i="";
# while(file.exists(paste(base, i, sep=""))){
# if(i==""){
# i=1;
# }else{
# i=i+1;
# }
# }
# }
toDir = paste(base, i, sep="")
if (!file.exists(toDir)) {
dir.create(toDir)
}
toDir
}
getCutoff = function(quartile, median_row, manual_cutoff="false", verbose=FALSE){
sortedrow=order(median_row);
minValue = median_row[sortedrow[1]]
maxValue = median_row[sortedrow[length(sortedrow)]]
# if manual_cutoff is true, then the user can specify a discrete Cutoff value
#
if(manual_cutoff=="true"){
m = as.numeric(quartile);
indices = which(median_row>m)
}else{
quartile = as.numeric(quartile);
if(is.na(quartile) || !is.numeric(quartile)){
stop("The quartile parameter isn't numeric.")
}else if(quartile<5){
quartile = 5
} else if(quartile > 95){
quartile = 95
}
i=length(sortedrow)*quartile/100;
m=median_row[sortedrow[round(i)]];
indices = which(m<median_row)
#sortedrow[round(i):length(sortedrow)]
}
if(verbose){
print(m)
print(minValue)
print(maxValue)
}
list(m, minValue, maxValue, indices)
}
getParameter = function(c_args, id){
res = ""
for(i in 1:length(c_args)){
tmp = strsplit(c_args[i], "=")
filter_id = tmp[[1]][1]
value = tmp[[1]][2]
if(filter_id == paste("-", id, sep="")){
res = value
break
}
}
res
}
kmplot = function(expr, clin, event_index=2, time_index=3, affyid="", auto_cutoff="true", quartile=50, transform_to_log2 = FALSE, cancer_type = "BRCA", fileType = "png", use_survminer = TRUE){
# checks the input: if the expression data and clinical data don't match, the script will fail.
checkData(expr, clin);
survival_data = cbind(as.numeric(clin[[time_index]]), as.numeric(clin[[event_index]]));
toDir = createDirectory("res");
resTable=rbind();
# Prepare a file for global statistics
if (!file.exists(paste0(toDir, "/global_stats.txt"))) {
write.table( paste(c("Cancer", "Gene", "p-value", "HR", "HR_left", "HR_right", "Min.", "1st Qu.", "Median", "Mean", "3rd Qu.", "Max.", "Cutoff_type", "Cutoff_value"), collapse = "\t") , paste0(toDir, "/global_stats.txt"), sep = "\t", row.names = FALSE, col.names = FALSE, quote = FALSE)
}
index_arr = 2:dim(expr)[2];
if(affyid != ""){
index = which(colnames(expr) %in% affyid);
if(length(index) > 0){
index_arr = c(index);
}
}
for(j in 1:length(index_arr)){
i=index_arr[j]
print(paste("Processing...", colnames(expr)[i]));
if (transform_to_log2) {
row = log2(as.numeric(expr[[i]]) + 1)
} else {
row = as.numeric(expr[[i]]);
}
# Output expression summary statistics
row_summary <- summary(row)
row_summary <- data.frame(stats = names(row_summary), nums = as.vector(row_summary), stringsAsFactors = FALSE)
print(kable(row_summary))
# --------------------- CUTOFF ----------------------
if(auto_cutoff == "true"){
m <- NULL
m = auto_cutoff_surv(row, survival_data, 1, 2)
print(paste0("Automatic cutoff at ", m))
}else{
# calculates lower quartile, median, or upper quartile
tmp = getCutoff(quartile, row)
m = tmp[[1]]
minValue = tmp[[2]]
maxValue = tmp[[3]]
indices = tmp[[4]]
print(paste0("Median cutoff at ", m))
}
# gene_expr consists 1 if m smaller then the gene expression value,
# 0 if m bigger then the gene expression value
gene_expr <- NULL
gene_expr=vector(mode="numeric", length=length(row))
gene_expr[which(row > m)] = 1 # low/high
# --------------------- KMplot ----------------------
tryCatch({
# draws the KM plot into a file
fileNameOut <- paste0(toDir, "/", colnames(expr)[i], "_", cancer_type, ".", fileType)
res <- mySurvplot(survival_data, gene_expr, use_survminer = use_survminer, stitle = paste0(affyid, "\n", "Expression"), fileNameOut = fileNameOut)
# Save global statistics
pvalue = res[[1]];
hr = res[[2]]
hr_left = res[[3]]
hr_right = res[[4]]
resTable = rbind(resTable, c(pvalue, hr, hr_left, hr_right));
write.table( paste(c(cancer_type, colnames(expr)[i], formatC(pvalue, digits = 2, format = "e"), round(c(hr, hr_left, hr_right, row_summary$nums), digits = 2), ifelse(auto_cutoff == "true", "Automatic", "Manual"), round(m, digits = 2)), collapse = "\t") , paste0(toDir, "/global_stats.txt"), sep = "\t", row.names = FALSE, col.names = FALSE, quote = FALSE, append = TRUE)
}, interrupt = function(ex){
cat("Interrupt during the KM draw");
print(ex);
dim(gene_expr);
}, error = function(ex){
cat("Error during the KM draw");
print(ex);
dim(gene_expr);
}
);
}
}
#'
#' @param clin full clinical data merged with survival time and outcome.
#' @param event_index column number to use as as outcome
#' @param time_index column number to use for time
#' @param clinical_annotations name of the main clinical annotation category. Default: "pathologyMstage"
#' @param group1 name of the first clinical subcategory in the main catefory. Corresponds to "low" on the KM plot. Default: "m0"
#' @param group2 name of the second clinical subcategory in the main category. Corresponds to "high" on the KM plot. Default: "m1"
kmplot.clin = function(clin, event_index=2, time_index=3, clinical_annotations = "pathologyMstage", group1 = "m0", group2 = "m1", cancer_type = "BRCA", fileType = "png", use_survminer = TRUE) {
# Full survival data
survival_data = cbind(as.numeric(clin[[time_index]]), as.numeric(clin[[event_index]]));
# Subset clinical annotations to the subcategories of interest
clinical_index <- clin[, clinical_annotations] %in% c(group1, group2) # In the main category, select all subcategories
clinical_groups <- clin[, clinical_annotations][clinical_index] # Form a vector of labels of subcategories
#clinical_groups <- ifelse(clinical_groups == group1, 0, 1) # Convert it to 0/1 representation of subcategories
gene_expr <- clinical_groups # Assign to the variable traditionally used for survival analysis
# Subset survival data to the subcategories of interest
survival_data <- survival_data[clinical_index, ]
# Prepare output folder
toDir = createDirectory("res");
resTable=rbind();
# Prepare a file for global statistics
if (!file.exists(paste0(toDir, "/global_stats.txt"))) {
write.table( paste(c("Cancer", "Gene", "p-value", "HR", "HR_left", "HR_right", "Min.", "1st Qu.", "Median", "Mean", "3rd Qu.", "Max.", paste(group1, "counts"), paste(group2, "counts")), collapse = "\t") , paste0(toDir, "/global_stats.txt"), sep = "\t", row.names = FALSE, col.names = FALSE, quote = FALSE)
}
# # draws the KM plot into a file
# if (fileType == "png") {
# png(paste(toDir, "/", cancer_type, "_", clinical_annotations, "_", group1, "_", group2, ".png", sep=""));
# }
# if (fileType == "pdf") {
# pdf(paste(toDir, "/", cancer_type, "_", clinical_annotations, "_", group1, "_", group2, ".pdf", sep=""));
# }
#
# # Surv(time, event)
# surv <- NULL
# surv<-Surv(survival_data[,1], survival_data[,2]);
# if (use_survminer) {
# res <- mySurvplot(surv, gene_expr, use_survminer = use_survminer)
# pvalue <- res$plot$plot_env$pval
# hr <- hr_left <- hr_right <- NA
# print(res$plot)
# } else {
# res = mySurvplot(surv, gene_expr, snames = c(group1, group2), use_survminer = use_survminer)
# pvalue = res[[1]];
# hr = res[[2]]
# hr_left = res[[3]]
# hr_right = res[[4]]
# resTable = rbind(resTable, c(pvalue, hr, hr_left, hr_right));
# }
# dev.off();
# # Save global statistics
# write.table( paste(c(cancer_type, paste(clinical_annotations, group1, group2, sep = "-"), formatC(pvalue, digits = 2, format = "e"), round(c(hr, hr_left, hr_right), digits = 2), rep("", 6), sum(clinical_groups == group1), sum(clinical_groups == group2)), collapse = "\t") , paste0(toDir, "/global_stats.txt"), sep = "\t", row.names = FALSE, col.names = FALSE, quote = FALSE, append = TRUE)
# draws the KM plot into a file
fileNameOut <- paste0(toDir, "/", cancer_type, "_", clinical_annotations, "_", group1, "_", group2, ".", fileType)
res <- mySurvplot(survival_data, gene_expr, use_survminer = use_survminer, stitle = paste0(affyid, "\n", "Expression"), fileNameOut = fileNameOut)
# Save global statistics
pvalue = res[[1]];
hr = res[[2]]
hr_left = res[[3]]
hr_right = res[[4]]
resTable = rbind(resTable, c(pvalue, hr, hr_left, hr_right));
write.table( paste(c(cancer_type, paste(clinical_annotations, group1, group2, sep = "-"), formatC(pvalue, digits = 2, format = "e"), round(c(hr, hr_left, hr_right), digits = 2), rep("", 6), sum(clinical_groups == group1), sum(clinical_groups == group2)), collapse = "\t") , paste0(toDir, "/global_stats.txt"), sep = "\t", row.names = FALSE, col.names = FALSE, quote = FALSE, append = TRUE)
}