|
| 1 | +import numpy as np |
| 2 | +from sklearn.ensemble import RandomForestClassifier |
| 3 | +from scipy.spatial.distance import squareform |
| 4 | + |
| 5 | + |
| 6 | +class CorrClust(object): |
| 7 | + ''' |
| 8 | + class like an sklearn class, which can be trained to do correlation |
| 9 | + clustering on a new dataset |
| 10 | + ''' |
| 11 | + |
| 12 | + def __init__(self, balance_training=False, forest_params={}, |
| 13 | + num_random_starts=10, max_iters=100): |
| 14 | + self.forest_params = forest_params |
| 15 | + self.balance_training = balance_training |
| 16 | + self.num_random_starts = num_random_starts |
| 17 | + self.max_iters = max_iters |
| 18 | + |
| 19 | + def train(self, X, Y, subsample_length): |
| 20 | + ''' |
| 21 | + training the model |
| 22 | + unsure if parameters should go here or in the initialisation function |
| 23 | + ''' |
| 24 | + if self.balance_training: |
| 25 | + x_pairs, y_pairs = self._form_balanced_pairs(X, Y, subsample_length) |
| 26 | + else: |
| 27 | + x_pairs, y_pairs = self._form_pairs(X, Y, subsample_length) |
| 28 | + |
| 29 | + print "Training - there are %d +ve pairs and %d -ve ones" % \ |
| 30 | + ((y_pairs==0).sum(), (y_pairs==1).sum()) |
| 31 | + |
| 32 | + self.rf = RandomForestClassifier(**self.forest_params) |
| 33 | + self.rf.fit(x_pairs, y_pairs) |
| 34 | + |
| 35 | + def test(self, X): |
| 36 | + ''' |
| 37 | + running the model on test data |
| 38 | + TODO - allow for just a subset of edges to be formed, thus creating |
| 39 | + a sparse matrix of edge probabilities |
| 40 | + ''' |
| 41 | + x_pairwise = self._form_pairs(X) |
| 42 | + edge_probabilities = self.rf.predict_proba(x_pairwise)[:, 1] |
| 43 | + prob_matrix = squareform(edge_probabilities) |
| 44 | + y_prediction = self._correlation_clusterer(prob_matrix) |
| 45 | + return y_prediction |
| 46 | + |
| 47 | + def _form_pairs(self, X, Y=None, subsample_length=None): |
| 48 | + |
| 49 | + # here I shall be taking all pairs from the data |
| 50 | + idxs1, idxs2 = self._pair_idxs(X.shape[0]) |
| 51 | + |
| 52 | + if (subsample_length is not None) and (subsample_length < idxs1.shape[0]): |
| 53 | + print subsample_length, idxs1.shape[0] |
| 54 | + to_use = np.random.choice(idxs1.shape[0], subsample_length, replace=False) |
| 55 | + idxs1 = idxs1[to_use] |
| 56 | + idxs2 = idxs2[to_use] |
| 57 | + |
| 58 | + x_pairs = np.abs(X[idxs1] - X[idxs2]) |
| 59 | + |
| 60 | + if Y is not None: |
| 61 | + return x_pairs, Y[idxs1] == Y[idxs2] |
| 62 | + else: |
| 63 | + return x_pairs |
| 64 | + |
| 65 | + def _form_balanced_pairs(self, X, Y, subsample_length=None): |
| 66 | + ''' |
| 67 | + forming pairs with equal +ve and -ve edges |
| 68 | + must be given Y vector for this to work |
| 69 | + ''' |
| 70 | + idxs1, idxs2 = self._pair_idxs(X.shape[0]) |
| 71 | + classes = Y[idxs1] == Y[idxs2] |
| 72 | + |
| 73 | + # working out how many edges I can use in total |
| 74 | + max_edges = np.array(classes.sum(), (1-classes).sum()).min() |
| 75 | + |
| 76 | + if subsample_length is not None: |
| 77 | + max_edges = min(max_edges, subsample_length/2) |
| 78 | + |
| 79 | + # subsample each class in turn |
| 80 | + to_use = np.hstack([np.random.choice( |
| 81 | + np.where(classes==this_class)[0], max_edges, replace=False) |
| 82 | + for this_class in [0, 1]]) |
| 83 | + |
| 84 | + # print final_idxs1, final_idxs2 |
| 85 | + x_pairs = np.abs(X[idxs1[to_use]] - X[idxs2[to_use]]) |
| 86 | + y_pairs = classes[to_use] |
| 87 | + return x_pairs, y_pairs |
| 88 | + |
| 89 | + def _pair_idxs(self, num_data): |
| 90 | + |
| 91 | + A = np.outer(np.arange(num_data), np.ones(num_data)) |
| 92 | + idxs1 = squareform(A, force='to_vector', checks=False) |
| 93 | + idxs2 = squareform(A.T, force='to_vector', checks=False) |
| 94 | + return idxs1.astype(int), idxs2.astype(int) |
| 95 | + |
| 96 | + def _correlation_clusterer(self, edge_probabilities): |
| 97 | + ''' |
| 98 | + does the actual coorelation clustering, given edge probabilities |
| 99 | + edge_probabilities can be a sparse matrix. |
| 100 | + ''' |
| 101 | + |
| 102 | + # convert edge probabilities to weights |
| 103 | + edge_probabilities[edge_probabilities==0] = 0.0001 |
| 104 | + edge_probabilities[edge_probabilities==1] = 1.0 - 0.0001 |
| 105 | + weights = np.log(edge_probabilities / (1.0 - edge_probabilities)) |
| 106 | + np.fill_diagonal(weights, 0) |
| 107 | + |
| 108 | + self.weights = weights |
| 109 | + |
| 110 | + # form some different starting guesses |
| 111 | + # use: all in same cluster, all in own cluster, then random clusterings |
| 112 | + N = weights.shape[0] |
| 113 | + start_points = [np.ones(N), np.arange(N)] + \ |
| 114 | + [np.random.randint(0, N, N) for _ in range(self.num_random_starts)] |
| 115 | + |
| 116 | + # setting variables to keep track in the loop |
| 117 | + max_energy = -np.inf |
| 118 | + best_Y = None |
| 119 | + |
| 120 | + # for each starting point, run the solver |
| 121 | + for start_point in start_points: |
| 122 | + Y, energy = self._clustering_solver(weights, start_point.astype(int)) |
| 123 | + if energy > max_energy: |
| 124 | + max_energy = energy |
| 125 | + best_Y = Y |
| 126 | + |
| 127 | + return best_Y, max_energy |
| 128 | + |
| 129 | + def _clustering_solver(self, W, start_labels): |
| 130 | + ''' |
| 131 | + the actual code that does the clustering, using the AL_ICM algorithm |
| 132 | + trying to MAXIMISE the energy |
| 133 | +
|
| 134 | + This could probably be done in a much more efficient way, without the |
| 135 | + need for bincount on each inner loop |
| 136 | + ''' |
| 137 | + iteration = 0 |
| 138 | + labels = start_labels.copy() |
| 139 | + n_items = W.shape[0] |
| 140 | + old_energy = -np.inf |
| 141 | + |
| 142 | + for iteration in range(self.max_iters): |
| 143 | + |
| 144 | + # assign each item in turn to the best cluster |
| 145 | + for j in range(n_items): |
| 146 | + |
| 147 | + cluster_scores = np.bincount(labels, weights=W[j, :]) |
| 148 | + |
| 149 | + if np.all(cluster_scores < 0): |
| 150 | + # creating a new label |
| 151 | + labels[j] = labels.max() + 1 |
| 152 | + else: |
| 153 | + # assigning to the best exisiting label |
| 154 | + labels[j] = np.argmax(cluster_scores) |
| 155 | + |
| 156 | + if iteration % 15 == 0: |
| 157 | + # reasign labels for efficiency |
| 158 | + _, labels = np.unique(labels, return_inverse=True) |
| 159 | + |
| 160 | + energy = self._clustering_energy(W, labels) |
| 161 | + |
| 162 | + if energy < old_energy: |
| 163 | + raise Exception("This should never happen!") |
| 164 | + elif energy == old_energy: |
| 165 | + break |
| 166 | + |
| 167 | + old_energy = energy |
| 168 | + |
| 169 | + else: |
| 170 | + print "Reached max iters (%d), breaking" % iteration |
| 171 | + |
| 172 | + _, labels = np.unique(labels, return_inverse=True) |
| 173 | + return labels, energy |
| 174 | + |
| 175 | + def _clustering_energy(self, W, Y): |
| 176 | + ''' |
| 177 | + sums up all the edges between items which have been given the same |
| 178 | + class label |
| 179 | + ''' |
| 180 | + Y = Y.copy()[None, :] |
| 181 | + return (W * (Y==Y.T).astype(float)).sum() |
0 commit comments