-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathCh04.jl
198 lines (128 loc) · 4.48 KB
/
Ch04.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Chapter 4.3
# CDF of a Gaussian mixture
## Julia code to generate the PDF and CDF
using Distributions
using Plots
gmm = MixtureModel(Normal[Normal(0, 1), Normal(5, 1),], [0.3, 0.7])
p1 = plot(x -> 0, -5, 1, fillrange= x->pdf(gmm, x),
linealpha=0, fillcolor=RGB(0.8, 0.8, 1), alpha=0.5, label=false) # style
plot!(p1, x -> pdf(gmm, x), -5, 10,
color=1, linewidth=6, label="PDF") # style
p2 = plot(x -> cdf(gmm, x), -5, 10,
linewidth=6, label="CDF")
plot(p1, p2, layout=(1, 2),
size=(600, 300), legend=:topleft)
# CDF of a uniform random variable
# Julia code to generate the PDF and CDF of a uniform random variable
using Distributions
using Plots
u = Uniform(-3, 4)
# pdf
p1 = plot(x -> 0, -5:0.01:1, fillrange=x->pdf(u, x),
linealpha=0, fillcolor=RGB(0.8, 0.8, 1), alpha=0.5, label=false)
plot!(p1, x -> pdf(u, x), -5, 10,
color=1, linewidth=6, ylims=(0, 0.4), label="PDF")
# cdf
p2 = plot(x -> cdf(u, x), -5:0.01:10,
linewidth=6, label="CDF")
vline!(p2, [-3, 4],
linestyle=:dash, color=:green, label=false)
plot(p1, p2, layout=(1, 2),
size=(600, 300), legend=:topleft)
# CDF of an exponential random variable
# Julia code to generate the PDF and CDF of an exponential random variable
using Distributions
using Plots
u = Exponential(2)
# pdf
p1 = plot(x -> 0, -5:0.01:1, fillrange=x->pdf(u, x),
linealpha=0, fillcolor=RGB(0.8, 0.8, 1), alpha=0.5, label=false)
plot!(p1, x -> pdf(u, x), -5, 10,
color=1, linewidth=6, ylims=(0, 0.6), label="PDF")
# cdf
p2 = plot(x -> cdf(u, x), -5:0.01:10,
linewidth=6, label="CDF")
plot(p1, p2, layout=(1, 2),
size=(600, 300), legend=:topleft)
# Chapter 4.5
# Generate a uniform random variable
# Julia code to generate 1000 uniform random numbers
using Distributions
using Plots
u = Uniform(0, 1) # same as Uniform()
X = rand(u, 1000)
histogram(X)
# Mean, variance, median, mode of a uniform random variable
# Julia code to compute empirical mean, var, median, mode
using Distributions
u = Uniform(0, 1)
X = rand(u, 1000)
M = mean(X)
V = var(X)
Med = median(X)
Mod = mode(X)
# Probability of a uniform random variable
# Julia code to compute the probability P(0.2 < X < 0.3)
using Distributions
u = Uniform(0, 1)
F = cdf(u, 0.3) - cdf(u, 0.2)
# PDF of an exponential random variable
# Julia code to generate PDF and CDF of an exponential random variable
using Distributions
using Plots
exp1 = Exponential(1/2)
exp2 = Exponential(1/5)
# Plotting the pdfs
p1 = plot(x -> pdf(exp1, x), 0, 1,
linewidth=4, linestyle=:dashdot, color=RGB(0,0.2,0.8), label="λ = 2")
plot!(p1, x -> pdf(exp2, x), 0, 1,
linewidth=4, color=RGB(0.8,0.2,0), label="λ = 5")
# Plotting the cdfs
p2 = plot(x -> cdf(exp1, x), 0, 1,
linewidth=4, linestyle=:dashdot, color=RGB(0,0.2,0.8), label="λ = 2", legend=:topleft)
plot!(p2, x -> cdf(exp2, x), 0, 1,
linewidth=4, color=RGB(0.8,0.2,0), label="λ = 5")
# Figure with both plots
plot(p1, p2, layout=(1, 2),
size=(600, 400))
# Chapter 4.6
# PDF and CDF of a Gaussian random variable
# Julia code to generate standard Gaussian PDF and CDF
using Distributions
using Plots
normdist = Normal()
p1 = plot(x -> 0, -5:0.01:-1, fillrange=x->pdf(normdist, x),
linealpha=0, fillcolor=RGB(0.8, 0.8, 1), alpha=0.5, label=false)
plot!(p1, x -> pdf(normdist, x), -5, 5,
color=1, linewidth=6, ylims=(0, 0.6), label="PDF")
p2 = plot(x -> cdf(normdist, x), -5:0.01:5,
linewidth=6, label="CDF")
plot(p1, p2, layout=(1, 2),
size=(600, 300), legend=:topleft)
# Skewness and kurtosis of a random variable
# Julia code to plot a Gamma distribution
using Distributions
using Plots
θ = 1
p1 = plot(size=(600, 300))
plot!(p1, x -> pdf(Gamma(2, θ), x), 0, 30, lw=4, c=RGB(0,0,0), label="k = 2")
plot!(p1, x -> pdf(Gamma(5, θ), x), 0, 30, lw=4, c=RGB(0.2,0.2,0.2), label="k = 5")
plot!(p1, x -> pdf(Gamma(10, θ), x), 0, 30, lw=4, c=RGB(0.4,0.4,0.4), label="k = 10")
plot!(p1, x -> pdf(Gamma(15, θ), x), 0, 30, lw=4, c=RGB(0.6,0.6,0.6), label="k = 15")
plot!(p1, x -> pdf(Gamma(20, θ), x), 0, 30, lw=4, c=RGB(0.8,0.8,0.8), label="k = 20")
# Julia code to compute skewness and kurtosis
X = rand(Gamma(3, 5), 10_000)
s = skewness(X)
k = kurtosis(X)
# Chapter 4.8
# Generating Gaussians from uniform
# Julia code to generate Gaussian from uniform
using Distributions
using Plots
mu = 3
sigma = 2
U = rand(10_000)
gU = sigma * quantile(Normal(), U) .+ mu
p1 = histogram(U, label="U")
p2 = histogram(gU, label="gU")
plot(p1, p2, layout=(1, 2), size=(600, 300), legend=:topleft)