-
Notifications
You must be signed in to change notification settings - Fork 113
/
Manchester.cpp
653 lines (549 loc) · 18.3 KB
/
Manchester.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
/*
This code is based on the Atmel Corporation Manchester
Coding Basics Application Note.
http://www.atmel.com/dyn/resources/prod_documents/doc9164.pdf
Quotes from the application note:
"Manchester coding states that there will always be a transition of the message signal
at the mid-point of the data bit frame.
What occurs at the bit edges depends on the state of the previous bit frame and
does not always produce a transition. A logical '1' is defined as a mid-point transition
from low to high and a '0' is a mid-point transition from high to low.
We use Timing Based Manchester Decode.
In this approach we will capture the time between each transition coming from the demodulation
circuit."
Timer 2 is used with a ATMega328. Timer 1 is used for a ATtiny85.
This code gives a basic data rate as 1200 bauds. In manchester encoding we send 1 0 for a data bit 0.
We send 0 1 for a data bit 1. This ensures an average over time of a fixed DC level in the TX/RX.
This is required by the ASK RF link system to ensure its correct operation.
The data rate is then 600 bits/s.
*/
#include "Manchester.h"
static int8_t RxPin = 255;
volatile static int16_t rx_sample = 0;
volatile static int16_t rx_last_sample = 0;
volatile static uint8_t rx_count = 0;
volatile static uint8_t rx_sync_count = 0;
volatile static uint8_t rx_mode = RX_MODE_IDLE;
static uint16_t rx_manBits = 0; //the received manchester 32 bits
static uint8_t rx_numMB = 0; //the number of received manchester bits
static uint8_t rx_curByte = 0;
static uint8_t rx_maxBytes = 2;
static uint8_t rx_default_data[2];
static uint8_t* rx_data = rx_default_data;
Manchester::Manchester() //constructor
{
applyWorkAround1Mhz = 0;
}
void Manchester::setTxPin(uint8_t pin)
{
TxPin = pin; // user sets the digital pin as output
pinMode(TxPin, OUTPUT);
}
void Manchester::setRxPin(uint8_t pin)
{
::RxPin = pin; // user sets the digital pin as output
pinMode(::RxPin, INPUT);
}
void Manchester::workAround1MhzTinyCore(uint8_t a)
{
applyWorkAround1Mhz = a;
}
void Manchester::setupTransmit(uint8_t pin, uint8_t SF)
{
setTxPin(pin);
speedFactor = SF;
//we don't use exact calculation of passed time spent outside of transmitter
//because of high ovehead associated with it, instead we use this
//emprirically determined values to compensate for the time loss
#if F_CPU == 1000000UL
uint16_t compensationFactor = 88; //must be divisible by 8 for workaround
#elif F_CPU == 8000000UL
uint16_t compensationFactor = 12;
#else //16000000Mhz
uint16_t compensationFactor = 4;
#endif
#if (F_CPU == 80000000UL) || (F_CPU == 160000000) // ESP8266 80MHz or 160 MHz
delay1 = delay2 = (HALF_BIT_INTERVAL >> speedFactor) - 2;
#else
delay1 = (HALF_BIT_INTERVAL >> speedFactor) - compensationFactor;
delay2 = (HALF_BIT_INTERVAL >> speedFactor) - 2;
#if F_CPU == 1000000UL
delay2 -= 22; //22+2 = 24 is divisible by 8
if (applyWorkAround1Mhz) { //definition of micro delay is broken for 1MHz speed in tiny cores as of now (May 2013)
//this is a workaround that will allow us to transmit on 1Mhz
//divide the wait time by 8
delay1 >>= 3;
delay2 >>= 3;
}
#endif
#endif
}
void Manchester::setupReceive(uint8_t pin, uint8_t SF)
{
setRxPin(pin);
::MANRX_SetupReceive(SF);
}
void Manchester::setup(uint8_t Tpin, uint8_t Rpin, uint8_t SF)
{
setupTransmit(Tpin, SF);
setupReceive(Rpin, SF);
}
void Manchester::transmit(uint8_t data)
{
uint8_t byteData[2] = {2, data};
transmitArray(2, byteData);
}
/*
The 433.92 Mhz receivers have AGC, if no signal is present the gain will be set
to its highest level.
In this condition it will switch high to low at random intervals due to input noise.
A CRO connected to the data line looks like 433.92 is full of transmissions.
Any ASK transmission method must first sent a capture signal of 101010........
When the receiver has adjusted its AGC to the required level for the transmisssion
the actual data transmission can occur.
We send 14 0's 1010... It takes 1 to 3 10's for the receiver to adjust to
the transmit level.
The receiver waits until we have at least 10 10's and then a start pulse 01.
The receiver is then operating correctly and we have locked onto the transmission.
*/
void Manchester::transmitArray(uint8_t numBytes, uint8_t *data)
{
#if SYNC_BIT_VALUE
for( int8_t i = 0; i < SYNC_PULSE_DEF; i++) //send capture pulses
{
sendOne(); //end of capture pulses
}
sendZero(); //start data pulse
#else
for( int8_t i = 0; i < SYNC_PULSE_DEF; i++) //send capture pulses
{
sendZero(); //end of capture pulses
}
sendOne(); //start data pulse
#endif
// Send the user data
for (uint8_t i = 0; i < numBytes; i++)
{
uint16_t mask = 0x01; //mask to send bits
uint8_t d = data[i] ^ DECOUPLING_MASK;
for (uint8_t j = 0; j < 8; j++)
{
if ((d & mask) == 0)
sendZero();
else
sendOne();
mask <<= 1; //get next bit
}//end of byte
}//end of data
// Send 3 terminatings 0's to correctly terminate the previous bit and to turn the transmitter off
#if SYNC_BIT_VALUE
sendOne();
sendOne();
sendOne();
#else
sendZero();
sendZero();
sendZero();
#endif
}//end of send the data
void Manchester::sendZero(void)
{
delayMicroseconds(delay1);
digitalWrite(TxPin, HIGH);
delayMicroseconds(delay2);
digitalWrite(TxPin, LOW);
}//end of send a zero
void Manchester::sendOne(void)
{
delayMicroseconds(delay1);
digitalWrite(TxPin, LOW);
delayMicroseconds(delay2);
digitalWrite(TxPin, HIGH);
}//end of send one
//TODO use repairing codes perhabs?
//http://en.wikipedia.org/wiki/Hamming_code
/*
format of the message including checksum and ID
[0][1][2][3][4][5][6][7][8][9][a][b][c][d][e][f]
[ ID ][ checksum ][ data ]
checksum = ID xor data[7:4] xor data[3:0] xor 0b0011
*/
//decode 8 bit payload and 4 bit ID from the message, return true if checksum is correct, otherwise false
uint8_t Manchester::decodeMessage(uint16_t m, uint8_t &id, uint8_t &data)
{
//extract components
data = (m & 0xFF);
id = (m >> 12);
uint8_t ch = (m >> 8) & 0b1111; //checksum received
//calculate checksum
uint8_t ech = (id ^ data ^ (data >> 4) ^ 0b0011) & 0b1111; //checksum expected
return ch == ech;
}
//encode 8 bit payload, 4 bit ID and 4 bit checksum into 16 bit
uint16_t Manchester::encodeMessage(uint8_t id, uint8_t data)
{
uint8_t chsum = (id ^ data ^ (data >> 4) ^ 0b0011) & 0b1111;
uint16_t m = ((id) << 12) | (chsum << 8) | (data);
return m;
}
void Manchester::beginReceiveArray(uint8_t maxBytes, uint8_t *data)
{
::MANRX_BeginReceiveBytes(maxBytes, data);
}
void Manchester::beginReceive(void)
{
::MANRX_BeginReceive();
}
uint8_t Manchester::receiveComplete(void)
{
return ::MANRX_ReceiveComplete();
}
uint8_t Manchester::getMessage(void)
{
return ::MANRX_GetMessage();
}
void Manchester::stopReceive(void)
{
::MANRX_StopReceive();
}
//global functions
#if defined( ESP8266 )
volatile uint16_t ESPtimer = 0;
void timer0_ISR (void);
#endif
void MANRX_SetupReceive(uint8_t speedFactor)
{
pinMode(RxPin, INPUT);
//setup timers depending on the microcontroller used
#if defined( ESP8266 )
#if F_CPU == 80000000
ESPtimer = (512 >> speedFactor) * 80; // 8MHZ, 300us for MAN_300, 128us for MAN_1200
#elif F_CPU == 160000000
ESPtimer = (512 >> speedFactor) * 160;
#endif
noInterrupts();
timer0_isr_init();
timer0_attachInterrupt(timer0_ISR);
timer0_write(ESP.getCycleCount() + ESPtimer); //80Mhz -> 128us
interrupts();
#elif defined( __AVR_ATtiny25__ ) || defined( __AVR_ATtiny45__ ) || defined( __AVR_ATtiny85__ )
/*
Timer 1 is used with a ATtiny85.
http://www.atmel.com/Images/Atmel-2586-AVR-8-bit-Microcontroller-ATtiny25-ATtiny45-ATtiny85_Datasheet.pdf page 88
How to find the correct value: (OCRxA +1) = F_CPU / prescaler / 1953.125
OCR1C is 8 bit register
*/
#if F_CPU == 1000000UL
TCCR1 = _BV(CTC1) | _BV(CS12); // 1/8 prescaler
OCR1C = (64 >> speedFactor) - 1;
#elif F_CPU == 8000000UL
TCCR1 = _BV(CTC1) | _BV(CS12) | _BV(CS11) | _BV(CS10); // 1/64 prescaler
OCR1C = (64 >> speedFactor) - 1;
#elif F_CPU == 16000000UL
TCCR1 = _BV(CTC1) | _BV(CS12) | _BV(CS11) | _BV(CS10); // 1/64 prescaler
OCR1C = (128 >> speedFactor) - 1;
#elif F_CPU == 16500000UL
TCCR1 = _BV(CTC1) | _BV(CS12) | _BV(CS11) | _BV(CS10); // 1/64 prescaler
OCR1C = (132 >> speedFactor) - 1;
#else
#error "Manchester library only supports 1mhz, 8mhz, 16mhz, 16.5Mhz clock speeds on ATtiny85 chip"
#endif
OCR1A = 0; // Trigger interrupt when TCNT1 is reset to 0
TIMSK |= _BV(OCIE1A); // Turn on interrupt
TCNT1 = 0; // Set counter to 0
#elif defined( __AVR_ATtiny2313__ ) || defined( __AVR_ATtiny2313A__ ) || defined( __AVR_ATtiny4313__ )
/*
Timer 1 is used with a ATtiny2313.
http://www.atmel.com/Images/doc2543.pdf page 107
How to find the correct value: (OCRxA +1) = F_CPU / prescaler / 1953.125
OCR1A/B are 8 bit registers
*/
#if F_CPU == 1000000UL
TCCR1A = 0;
TCCR1B = _BV(WGM12) | _BV(CS11); // reset counter on match, 1/8 prescaler
OCR1A = (64 >> speedFactor) - 1;
#elif F_CPU == 8000000UL
TCCR1B = _BV(WGM12) | _BV(CS12) | _BV(CS11) | _BV(CS10); // 1/64 prescaler
OCR1A = (64 >> speedFactor) - 1;
#else
#error "Manchester library only supports 1mhz, 8mhz clock speeds on ATtiny2313 chip"
#endif
OCR1B = 0; // Trigger interrupt when TCNT1 is reset to 0
TIMSK |= _BV(OCIE1B); // Turn on interrupt
TCNT1 = 0; // Set counter to 0
#elif defined( __AVR_ATtiny24__ ) || defined( __AVR_ATtiny24A__ ) || defined( __AVR_ATtiny44__ ) || defined( __AVR_ATtiny44A__ ) || defined( __AVR_ATtiny84__ ) || defined( __AVR_ATtiny84A__ )
/*
Timer 1 is used with a ATtiny84.
http://www.atmel.com/Images/doc8006.pdf page 111
How to find the correct value: (OCRxA +1) = F_CPU / prescaler / 1953.125
OCR1A is 8 bit register
*/
TCCR1A = 0;
#if F_CPU == 1000000UL
TCCR1B = _BV(WGM12) | _BV(CS11); // 1/8 prescaler
OCR1A = (64 >> speedFactor) - 1;
#elif F_CPU == 8000000UL
TCCR1B = _BV(WGM12) | _BV(CS11) | _BV(CS10); // 1/64 prescaler
OCR1A = (64 >> speedFactor) - 1;
#elif F_CPU == 16000000UL
TCCR1B = _BV(WGM12) | _BV(CS11) | _BV(CS10); // 1/64 prescaler
OCR1A = (128 >> speedFactor) - 1;
#else
#error "Manchester library only supports 1mhz, 8mhz, 16mhz on ATtiny84"
#endif
TIMSK1 |= _BV(OCIE1A); // Turn on interrupt
TCNT1 = 0; // Set counter to 0
#elif defined(__AVR_ATmega32U4__)
/*
Timer 3 is used with a ATMega32U4.
http://www.atmel.com/Images/doc7766.pdf page 133
How to find the correct value: (OCRxA +1) = F_CPU / prescaler / 1953.125
OCR3A is 16 bit register
*/
TCCR3A = 0; // 2016, added, make it work for Leonardo
TCCR3B = 0; // 2016, added, make it work for Leonardo
TCCR3B = _BV(WGM32) | _BV(CS31); // 1/8 prescaler
#if F_CPU == 1000000UL
OCR3A = (64 >> speedFactor) - 1;
#elif F_CPU == 8000000UL
OCR3A = (512 >> speedFactor) - 1;
#elif F_CPU == 16000000UL
OCR3A = (1024 >> speedFactor) - 1;
#else
#error "Manchester library only supports 1mhz, 8mhz, 16mhz on ATMega32U4"
#endif
TCCR3A = 0; // reset counter on match
TIFR3 = _BV(OCF3A); // clear interrupt flag
TIMSK3 = _BV(OCIE3A); // Turn on interrupt
TCNT3 = 0; // Set counter to 0
#elif defined(__AVR_ATmega8__)
/*
Timer/counter 1 is used with ATmega8.
http://www.atmel.com/Images/Atmel-2486-8-bit-AVR-microcontroller-ATmega8_L_datasheet.pdf page 99
How to find the correct value: (OCRxA +1) = F_CPU / prescaler / 1953.125
OCR1A is 16 bit register
*/
TCCR1A = _BV(WGM12); // reset counter on match
TCCR1B = _BV(CS11); // 1/8 prescaler
#if F_CPU == 1000000UL
OCR1A = (64 >> speedFactor) - 1;
#elif F_CPU == 8000000UL
OCR1A = (512 >> speedFactor) - 1;
#elif F_CPU == 16000000UL
OCR1A = (1024 >> speedFactor) - 1;
#else
#error "Manchester library only supports 1Mhz, 8mhz, 16mhz on ATMega8"
#endif
TIFR = _BV(OCF1A); // clear interrupt flag
TIMSK = _BV(OCIE1A); // Turn on interrupt
TCNT1 = 0; // Set counter to 0
#else // ATmega328 is a default microcontroller
/*
Timer 2 is used with a ATMega328.
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf page 162
How to find the correct value: (OCRxA +1) = F_CPU / prescaler / 1953.125
OCR2A is only 8 bit register
*/
TCCR2A = _BV(WGM21); // reset counter on match
#if F_CPU == 1000000UL
TCCR2B = _BV(CS21); // 1/8 prescaler
OCR2A = (64 >> speedFactor) - 1;
#elif F_CPU == 8000000UL
TCCR2B = _BV(CS21) | _BV(CS20); // 1/32 prescaler
OCR2A = (128 >> speedFactor) - 1;
#elif F_CPU == 16000000UL
TCCR2B = _BV(CS22); // 1/64 prescaler
OCR2A = (128 >> speedFactor) - 1;
#else
#error "Manchester library only supports 8mhz, 16mhz on ATMega328"
#endif
TIMSK2 = _BV(OCIE2A); // Turn on interrupt
TCNT2 = 0; // Set counter to 0
#endif
} //end of setupReceive
void MANRX_BeginReceive(void)
{
rx_maxBytes = 2;
rx_data = rx_default_data;
rx_mode = RX_MODE_PRE;
}
void MANRX_BeginReceiveBytes(uint8_t maxBytes, uint8_t *data)
{
rx_maxBytes = maxBytes;
rx_data = data;
rx_mode = RX_MODE_PRE;
}
void MANRX_StopReceive(void)
{
rx_mode = RX_MODE_IDLE;
}
uint8_t MANRX_ReceiveComplete(void)
{
return (rx_mode == RX_MODE_MSG);
}
uint8_t MANRX_GetMessage(void)
{
return (((int16_t)rx_data[0]) << 8) | (int16_t)rx_data[1];
}
void MANRX_SetRxPin(uint8_t pin)
{
RxPin = pin;
pinMode(RxPin, INPUT);
}//end of set transmit pin
void AddManBit(uint16_t *manBits, uint8_t *numMB,
uint8_t *curByte, uint8_t *data,
uint8_t bit)
{
*manBits <<= 1;
*manBits |= bit;
(*numMB)++;
if (*numMB == 16)
{
uint8_t newData = 0;
for (int8_t i = 0; i < 8; i++)
{
// ManBits holds 16 bits of manchester data
// 1 = LO,HI
// 0 = HI,LO
// We can decode each bit by looking at the bottom bit of each pair.
newData <<= 1;
newData |= (*manBits & 1); // store the one
*manBits = *manBits >> 2; //get next data bit
}
data[*curByte] = newData ^ DECOUPLING_MASK;
(*curByte)++;
// added by caoxp @ https://github.com/caoxp
// compatible with unfixed-length data, with the data length defined by the first byte.
// at a maximum of 255 total data length.
if( (*curByte) == 1)
{
rx_maxBytes = data[0];
}
*numMB = 0;
}
}
#if defined( ESP8266 )
void ICACHE_RAM_ATTR timer0_ISR (void)
#elif defined( __AVR_ATtiny25__ ) || defined( __AVR_ATtiny45__ ) || defined( __AVR_ATtiny85__ )
ISR(TIMER1_COMPA_vect)
#elif defined( __AVR_ATtiny2313__ ) || defined( __AVR_ATtiny2313A__ ) || defined( __AVR_ATtiny4313__ )
ISR(TIMER1_COMPB_vect)
#elif defined( __AVR_ATtiny24__ ) || defined( __AVR_ATtiny24A__ ) || defined( __AVR_ATtiny44__ ) || defined( __AVR_ATtiny44A__ ) || defined( __AVR_ATtiny84__ ) || defined( __AVR_ATtiny84A__ )
ISR(TIM1_COMPA_vect)
#elif defined(__AVR_ATmega32U4__)
ISR(TIMER3_COMPA_vect)
#else
ISR(TIMER2_COMPA_vect)
#endif
{
if (rx_mode < RX_MODE_MSG) //receiving something
{
// Increment counter
rx_count += 8;
// Check for value change
//rx_sample = digitalRead(RxPin);
// caoxp@github,
// add filter.
// sample twice, only the same means a change.
static uint8_t rx_sample_0=0;
static uint8_t rx_sample_1=0;
rx_sample_1 = digitalRead(RxPin);
if( rx_sample_1 == rx_sample_0 )
{
rx_sample = rx_sample_1;
}
rx_sample_0 = rx_sample_1;
//check sample transition
uint8_t transition = (rx_sample != rx_last_sample);
if (rx_mode == RX_MODE_PRE)
{
// Wait for first transition to HIGH
if (transition && (rx_sample == 1))
{
rx_count = 0;
rx_sync_count = 0;
rx_mode = RX_MODE_SYNC;
}
}
else if (rx_mode == RX_MODE_SYNC)
{
// Initial sync block
if (transition)
{
if( ( (rx_sync_count < (SYNC_PULSE_MIN * 2) ) || (rx_last_sample == 1) ) &&
( (rx_count < MinCount) || (rx_count > MaxCount)))
{
// First 20 bits and all 1 bits are expected to be regular
// Transition was too slow/fast
rx_mode = RX_MODE_PRE;
}
else if((rx_last_sample == 0) &&
((rx_count < MinCount) || (rx_count > MaxLongCount)))
{
// 0 bits after the 20th bit are allowed to be a double bit
// Transition was too slow/fast
rx_mode = RX_MODE_PRE;
}
else
{
rx_sync_count++;
if((rx_last_sample == 0) &&
(rx_sync_count >= (SYNC_PULSE_MIN * 2) ) &&
(rx_count >= MinLongCount))
{
// We have seen at least 10 regular transitions
// Lock sequence ends with unencoded bits 01
// This is encoded and TX as HI,LO,LO,HI
// We have seen a long low - we are now locked!
rx_mode = RX_MODE_DATA;
rx_manBits = 0;
rx_numMB = 0;
rx_curByte = 0;
}
else if (rx_sync_count >= (SYNC_PULSE_MAX * 2) )
{
rx_mode = RX_MODE_PRE;
}
rx_count = 0;
}
}
}
else if (rx_mode == RX_MODE_DATA)
{
// Receive data
if (transition)
{
if((rx_count < MinCount) ||
(rx_count > MaxLongCount))
{
// wrong signal lenght, discard the message
rx_mode = RX_MODE_PRE;
}
else
{
if(rx_count >= MinLongCount) // was the previous bit a double bit?
{
AddManBit(&rx_manBits, &rx_numMB, &rx_curByte, rx_data, rx_last_sample);
}
if ((rx_sample == 1) &&
(rx_curByte >= rx_maxBytes))
{
rx_mode = RX_MODE_MSG;
}
else
{
// Add the current bit
AddManBit(&rx_manBits, &rx_numMB, &rx_curByte, rx_data, rx_sample);
rx_count = 0;
}
}
}
}
// Get ready for next loop
rx_last_sample = rx_sample;
}
#if defined( ESP8266 )
timer0_write(ESP.getCycleCount() + ESPtimer);
#endif
}
Manchester man;