-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHW6.py
173 lines (150 loc) · 4.33 KB
/
HW6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
import scipy.sparse as sp
import pickle
import time
class Node:
def __init__(self, index, nodes):
self.num = index
self.label = -1
self.dist = np.inf
self.parent = -1
self.td = np.inf
self.tf = np.inf
self.neighbors = nodes
class Graph:
def __init__(self, mat):
self.size = mat.shape[0]
self.nodes = [Node(i,np.nonzero(mat[i])[1]) for i in range(self.size)]
self.time = 0
def BFS(self, s):
for node in self.nodes:
node.parent = -1
node.dist = np.inf
node.label = -1
self.nodes[s].label+=1
self.nodes[s].dist=0
Q = [self.nodes[s]]
while Q:
u = Q[0]
ns = u.neighbors
for n in ns:
v = self.nodes[n]
if v.label == -1:
v.label+=1
v.dist = u.dist+1
v.parent = u.num
Q.append(v)
u.label+=1
Q.pop(0)
comp = np.array([ j for j in range(self.size) if self.nodes[j].label==1 ])
dists = np.array([ self.nodes[i].dist for i in comp ])
parents = np.array([ self.nodes[i].parent for i in comp ])
return (comp,dists,parents)
def matrix(self):
m = np.zeros((self.size,self.size))
for i in range(self.size):
m[i] = np.array([ a in self.nodes[i].neighbors for a in range(self.size)]).astype(int)
return m
def DFS(self):
comps = []
incomplete = True
unvisited = np.array([ i for i in range(self.size) if self.nodes[i].label==-1 ])
visited = []
while incomplete:
u = self.nodes[unvisited[0]]
self.DFS_Visit(u)
unvisited = np.array([ i for i in range(self.size) if self.nodes[i].label==-1 ])
visited = np.setdiff1d(np.arange(self.size),unvisited)
for c in comps:
visited = np.setdiff1d(visited,c)
comps.append(visited)
incomplete = len(unvisited)>0
return comps
def DFS_Visit(self, u):
self.time+=1
u.td=self.time
u.label+=1
for n in u.neighbors:
v = self.nodes[n]
if v.label==-1:
v.parent=u.num
self.DFS_Visit(v)
u.label+=1
self.time+=1
u.tf=self.time
def G(n,p):
graph = np.zeros((n,n))
for i in np.arange(n):
for j in np.arange(i+1,n):
graph[i,j] = int(np.random.rand()<p)
graph[j,i]=graph[i,j]
return sp.csr_matrix(graph)
# do problem 1
#should take around 200 min = 3.33 hr
#t0 = time.time()
#n = 1000
#r = 100
#k = 40
#zs = np.linspace(0.1,4,k)
#arr_fracS = np.zeros((k,r))
#list_smalls = [[0 for a in range(r)] for b in range(k)]
#for i,z in enumerate(zs):
# print('z='+str(z))
# print(time.time()-t0)
# p = z/(n-1)
# for j in range(r):
# mat = G(n,p)
# g = Graph(mat)
# comps = g.DFS()
# sizes = np.array([ len(c) for c in comps ])
# big = np.max(sizes)
# fracS = big/n
# smalls = np.array([ s for s in sizes if s!=big ])
# arr_fracS[i,j]=fracS
# list_smalls[i][j] = smalls
#
#av_fracS = np.mean(arr_fracS,axis=1)
#av_small_size = np.zeros(k)
#
#for i in range(k):
# small_sizes = []
# for j in range(r):
# for n in list_smalls[i][j]:
# small_sizes.append(n)
# if len(small_sizes)==0:
# av_small_size[i]=0
# else:
# av_small_size[i]=np.mean(small_sizes)
#
#dat = np.array([av_fracS, av_small_size])
#pickle.dump( dat, open( "p1dat.p", "wb" ) )
# do problem 2
# should take about 100 min = 1.66 hr
#t0 = time.time()
#z = 4
#qs = np.array([10,11,12,13])
#ns = 2**qs
#k = 100
#
#av_l = np.zeros(len(ns))
#
#for i,n in enumerate(ns):
# p = z/(n-1)
# mat = G(n,p)
# g = Graph(mat)
# inds = np.random.permutation(n)[:k]
# d = np.array([])
# for ind in inds:
# (comp,dists,parents)=g.BFS(ind)
# d = np.append(d,dists)
# av_l[i]=np.mean(d)
#
#pickle.dump( av_l, open( "p2dat.p", "wb" ) )
#print(time.time()-t0)
n = 2**10
z = 4
p = z/(n-1)
mat = G(n,p)
g = Graph(mat)
(comp,dists,parents)=g.BFS(0)
print(dists)