forked from apachecn/ailearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bayes.py
executable file
·356 lines (319 loc) · 14.3 KB
/
bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
#!/usr/bin/env python
# -*- coding:utf-8 -*-
'''
Created on Oct 19, 2010
Update on 2017-05-18
Author: Peter Harrington/羊三/小瑶
GitHub: https://github.com/apachecn/AiLearning
'''
from __future__ import print_function
from numpy import *
"""
p(xy)=p(x|y)p(y)=p(y|x)p(x)
p(x|y)=p(y|x)p(x)/p(y)
"""
# 项目案例1: 屏蔽社区留言板的侮辱性言论
def loadDataSet():
"""
创建数据集
:return: 单词列表postingList, 所属类别classVec
"""
postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], #[0,0,1,1,1......]
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0, 1, 0, 1, 0, 1] # 1 is abusive, 0 not
return postingList, classVec
def createVocabList(dataSet):
"""
获取所有单词的集合
:param dataSet: 数据集
:return: 所有单词的集合(即不含重复元素的单词列表)
"""
vocabSet = set([]) # create empty set
for document in dataSet:
# 操作符 | 用于求两个集合的并集
vocabSet = vocabSet | set(document) # union of the two sets
return list(vocabSet)
def setOfWords2Vec(vocabList, inputSet):
"""
遍历查看该单词是否出现,出现该单词则将该单词置1
:param vocabList: 所有单词集合列表
:param inputSet: 输入数据集
:return: 匹配列表[0,1,0,1...],其中 1与0 表示词汇表中的单词是否出现在输入的数据集中
"""
# 创建一个和词汇表等长的向量,并将其元素都设置为0
returnVec = [0] * len(vocabList)# [0,0......]
# 遍历文档中的所有单词,如果出现了词汇表中的单词,则将输出的文档向量中的对应值设为1
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else:
print("the word: %s is not in my Vocabulary!" % word)
return returnVec
def _trainNB0(trainMatrix, trainCategory):
"""
训练数据原版
:param trainMatrix: 文件单词矩阵 [[1,0,1,1,1....],[],[]...]
:param trainCategory: 文件对应的类别[0,1,1,0....],列表长度等于单词矩阵数,其中的1代表对应的文件是侮辱性文件,0代表不是侮辱性矩阵
:return:
"""
# 文件数
numTrainDocs = len(trainMatrix)
# 单词数
numWords = len(trainMatrix[0])
# 侮辱性文件的出现概率,即trainCategory中所有的1的个数,
# 代表的就是多少个侮辱性文件,与文件的总数相除就得到了侮辱性文件的出现概率
pAbusive = sum(trainCategory) / float(numTrainDocs)
# 构造单词出现次数列表
p0Num = zeros(numWords) # [0,0,0,.....]
p1Num = zeros(numWords) # [0,0,0,.....]
# 整个数据集单词出现总数
p0Denom = 0.0
p1Denom = 0.0
for i in range(numTrainDocs):
# 遍历所有的文件,如果是侮辱性文件,就计算此侮辱性文件中出现的侮辱性单词的个数
if trainCategory[i] == 1:
p1Num += trainMatrix[i] #[0,1,1,....]->[0,1,1,...]
p1Denom += sum(trainMatrix[i])
else:
# 如果不是侮辱性文件,则计算非侮辱性文件中出现的侮辱性单词的个数
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
# 类别1,即侮辱性文档的[P(F1|C1),P(F2|C1),P(F3|C1),P(F4|C1),P(F5|C1)....]列表
# 即 在1类别下,每个单词出现次数的占比
p1Vect = p1Num / p1Denom# [1,2,3,5]/90->[1/90,...]
# 类别0,即正常文档的[P(F1|C0),P(F2|C0),P(F3|C0),P(F4|C0),P(F5|C0)....]列表
# 即 在0类别下,每个单词出现次数的占比
p0Vect = p0Num / p0Denom
return p0Vect, p1Vect, pAbusive
def trainNB0(trainMatrix, trainCategory):
"""
训练数据优化版本
:param trainMatrix: 文件单词矩阵
:param trainCategory: 文件对应的类别
:return:
"""
# 总文件数
numTrainDocs = len(trainMatrix)
# 总单词数
numWords = len(trainMatrix[0])
# 侮辱性文件的出现概率
pAbusive = sum(trainCategory) / float(numTrainDocs)
# 构造单词出现次数列表
# p0Num 正常的统计
# p1Num 侮辱的统计
# 避免单词列表中的任何一个单词为0,而导致最后的乘积为0,所以将每个单词的出现次数初始化为 1
p0Num = ones(numWords)#[0,0......]->[1,1,1,1,1.....]
p1Num = ones(numWords)
# 整个数据集单词出现总数,2.0根据样本/实际调查结果调整分母的值(2主要是避免分母为0,当然值可以调整)
# p0Denom 正常的统计
# p1Denom 侮辱的统计
p0Denom = 2.0
p1Denom = 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
# 累加辱骂词的频次
p1Num += trainMatrix[i]
# 对每篇文章的辱骂的频次 进行统计汇总
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
# 类别1,即侮辱性文档的[log(P(F1|C1)),log(P(F2|C1)),log(P(F3|C1)),log(P(F4|C1)),log(P(F5|C1))....]列表
p1Vect = log(p1Num / p1Denom)
# 类别0,即正常文档的[log(P(F1|C0)),log(P(F2|C0)),log(P(F3|C0)),log(P(F4|C0)),log(P(F5|C0))....]列表
p0Vect = log(p0Num / p0Denom)
return p0Vect, p1Vect, pAbusive
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
"""
使用算法:
# 将乘法转换为加法
乘法: P(C|F1F2...Fn) = P(F1F2...Fn|C)P(C)/P(F1F2...Fn)
加法: P(F1|C)*P(F2|C)....P(Fn|C)P(C) -> log(P(F1|C))+log(P(F2|C))+....+log(P(Fn|C))+log(P(C))
:param vec2Classify: 待测数据[0,1,1,1,1...],即要分类的向量
:param p0Vec: 类别0,即正常文档的[log(P(F1|C0)),log(P(F2|C0)),log(P(F3|C0)),log(P(F4|C0)),log(P(F5|C0))....]列表
:param p1Vec: 类别1,即侮辱性文档的[log(P(F1|C1)),log(P(F2|C1)),log(P(F3|C1)),log(P(F4|C1)),log(P(F5|C1))....]列表
:param pClass1: 类别1,侮辱性文件的出现概率
:return: 类别1 or 0
"""
# 计算公式 log(P(F1|C))+log(P(F2|C))+....+log(P(Fn|C))+log(P(C))
# 使用 NumPy 数组来计算两个向量相乘的结果,这里的相乘是指对应元素相乘,即先将两个向量中的第一个元素相乘,然后将第2个元素相乘,以此类推。
# 我的理解是: 这里的 vec2Classify * p1Vec 的意思就是将每个词与其对应的概率相关联起来
# 可以理解为 1.单词在词汇表中的条件下,文件是good 类别的概率 也可以理解为 2.在整个空间下,文件既在词汇表中又是good类别的概率
p1 = sum(vec2Classify * p1Vec) + log(pClass1)
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec
def testingNB():
"""
测试朴素贝叶斯算法
"""
# 1. 加载数据集
listOPosts, listClasses = loadDataSet()
# 2. 创建单词集合
myVocabList = createVocabList(listOPosts)
# 3. 计算单词是否出现并创建数据矩阵
trainMat = []
for postinDoc in listOPosts:
# 返回m*len(myVocabList)的矩阵, 记录的都是0,1信息
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
# 4. 训练数据
p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
# 5. 测试数据
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
testEntry = ['stupid', 'garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
# ------------------------------------------------------------------------------------------
# 项目案例2: 使用朴素贝叶斯过滤垃圾邮件
# 切分文本
def textParse(bigString):
'''
Desc:
接收一个大字符串并将其解析为字符串列表
Args:
bigString -- 大字符串
Returns:
去掉少于 2 个字符的字符串,并将所有字符串转换为小写,返回字符串列表
'''
import re
# 使用正则表达式来切分句子,其中分隔符是除单词、数字外的任意字符串
listOfTokens = re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
def spamTest():
'''
Desc:
对贝叶斯垃圾邮件分类器进行自动化处理。
Args:
none
Returns:
对测试集中的每封邮件进行分类,若邮件分类错误,则错误数加 1,最后返回总的错误百分比。
'''
docList = []
classList = []
fullText = []
for i in range(1, 26):
# 切分,解析数据,并归类为 1 类别
wordList = textParse(open('data/4.NaiveBayes/email/spam/%d.txt' % i).read())
docList.append(wordList)
classList.append(1)
# 切分,解析数据,并归类为 0 类别
wordList = textParse(open('data/4.NaiveBayes/email/ham/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
# 创建词汇表
vocabList = createVocabList(docList)
trainingSet = range(50)
testSet = []
# 随机取 10 个邮件用来测试
for i in range(10):
# random.uniform(x, y) 随机生成一个范围为 x - y 的实数
randIndex = int(random.uniform(0, len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat = []
trainClasses = []
for docIndex in trainingSet:
trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses))
errorCount = 0
for docIndex in testSet:
wordVector = setOfWords2Vec(vocabList, docList[docIndex])
if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
errorCount += 1
print('the errorCount is: ', errorCount)
print('the testSet length is :', len(testSet))
print('the error rate is :', float(errorCount)/len(testSet))
def testParseTest():
print(textParse(open('data/4.NaiveBayes/email/ham/1.txt').read()))
# -----------------------------------------------------------------------------------
# 项目案例3: 使用朴素贝叶斯从个人广告中获取区域倾向
# 将文本文件解析成 词条向量
def setOfWords2VecMN(vocabList,inputSet):
returnVec=[0]*len(vocabList) # 创建一个其中所含元素都为0的向量
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)]+=1
return returnVec
#文件解析
def textParse(bigString):
import re
listOfTokens=re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok)>2]
#RSS源分类器及高频词去除函数
def calcMostFreq(vocabList,fullText):
import operator
freqDict={}
for token in vocabList: #遍历词汇表中的每个词
freqDict[token]=fullText.count(token) #统计每个词在文本中出现的次数
sortedFreq=sorted(freqDict.iteritems(),key=operator.itemgetter(1),reverse=True) #根据每个词出现的次数从高到底对字典进行排序
return sortedFreq[:30] #返回出现次数最高的30个单词
def localWords(feed1,feed0):
import feedparser
docList=[];classList=[];fullText=[]
minLen=min(len(feed1['entries']),len(feed0['entries']))
for i in range(minLen):
wordList=textParse(feed1['entries'][i]['summary']) #每次访问一条RSS源
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList=textParse(feed0['entries'][i]['summary'])
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList=createVocabList(docList)
top30Words=calcMostFreq(vocabList,fullText)
for pairW in top30Words:
if pairW[0] in vocabList:vocabList.remove(pairW[0]) #去掉出现次数最高的那些词
trainingSet=range(2*minLen);testSet=[]
for i in range(20):
randIndex=int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[];trainClasses=[]
for docIndex in trainingSet:
trainMat.append(bagOfWords2VecMN(vocabList,docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam=trainNB0(array(trainMat),array(trainClasses))
errorCount=0
for docIndex in testSet:
wordVector=bagOfWords2VecMN(vocabList,docList[docIndex])
if classifyNB(array(wordVector),p0V,p1V,pSpam)!=classList[docIndex]:
errorCount+=1
print('the error rate is:',float(errorCount)/len(testSet))
return vocabList,p0V,p1V
# 最具表征性的词汇显示函数
def getTopWords(ny,sf):
import operator
vocabList,p0V,p1V=localWords(ny,sf)
topNY=[];topSF=[]
for i in range(len(p0V)):
if p0V[i]>-6.0:topSF.append((vocabList[i],p0V[i]))
if p1V[i]>-6.0:topNY.append((vocabList[i],p1V[i]))
sortedSF=sorted(topSF,key=lambda pair:pair[1],reverse=True)
print("SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**")
for item in sortedSF:
print(item[0])
sortedNY=sorted(topNY,key=lambda pair:pair[1],reverse=True)
print("NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**")
for item in sortedNY:
print(item[0])
if __name__ == "__main__":
# testingNB()
spamTest()
# laTest()