forked from kahst/BirdNET-Analyzer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze.py
462 lines (357 loc) · 16.8 KB
/
analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import os
import sys
import json
import operator
import argparse
import datetime
import traceback
from multiprocessing import Pool, freeze_support
import numpy as np
import config as cfg
import audio
import model
def clearErrorLog():
if os.path.isfile(cfg.ERROR_LOG_FILE):
os.remove(cfg.ERROR_LOG_FILE)
def writeErrorLog(msg):
with open(cfg.ERROR_LOG_FILE, 'a') as elog:
elog.write(msg + '\n')
def parseInputFiles(path, allowed_filetypes=['wav', 'flac', 'mp3', 'ogg', 'm4a']):
# Add backslash to path if not present
if not path.endswith(os.sep):
path += os.sep
# Get all files in directory with os.walk
files = []
for root, dirs, flist in os.walk(path):
for f in flist:
if len(f.rsplit('.', 1)) > 1 and f.rsplit('.', 1)[1].lower() in allowed_filetypes:
files.append(os.path.join(root, f))
print('Found {} files to analyze'.format(len(files)))
return sorted(files)
def loadCodes():
with open(cfg.CODES_FILE, 'r') as cfile:
codes = json.load(cfile)
return codes
def loadLabels(labels_file):
labels = []
with open(labels_file, 'r', encoding='utf-8') as lfile:
for line in lfile.readlines():
labels.append(line.replace('\n', ''))
return labels
def loadSpeciesList(fpath):
slist = []
if not fpath == None:
with open(fpath, 'r', encoding='utf-8') as sfile:
for line in sfile.readlines():
species = line.replace('\r', '').replace('\n', '')
slist.append(species)
return slist
def predictSpeciesList():
l_filter = model.explore(cfg.LATITUDE, cfg.LONGITUDE, cfg.WEEK)
cfg.SPECIES_LIST_FILE = None
cfg.SPECIES_LIST = []
for s in l_filter:
if s[0] >= cfg.LOCATION_FILTER_THRESHOLD:
cfg.SPECIES_LIST.append(s[1])
def saveResultFile(r, path, afile_path):
# Make folder if it doesn't exist
if len(os.path.dirname(path)) > 0 and not os.path.exists(os.path.dirname(path)):
os.makedirs(os.path.dirname(path))
# Selection table
out_string = ''
if cfg.RESULT_TYPE == 'table':
# Raven selection header
header = 'Selection\tView\tChannel\tBegin Time (s)\tEnd Time (s)\tLow Freq (Hz)\tHigh Freq (Hz)\tSpecies Code\tCommon Name\tConfidence\n'
selection_id = 0
# Write header
out_string += header
# Extract valid predictions for every timestamp
for timestamp in getSortedTimestamps(r):
rstring = ''
start, end = timestamp.split('-')
for c in r[timestamp]:
if c[1] > cfg.MIN_CONFIDENCE and c[0] in cfg.CODES and (c[0] in cfg.SPECIES_LIST or len(cfg.SPECIES_LIST) == 0):
selection_id += 1
label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
rstring += '{}\tSpectrogram 1\t1\t{}\t{}\t{}\t{}\t{}\t{}\t{:.4f}\n'.format(
selection_id,
start,
end,
150,
12000,
cfg.CODES[c[0]],
label.split('_')[1],
c[1])
# Write result string to file
if len(rstring) > 0:
out_string += rstring
elif cfg.RESULT_TYPE == 'audacity':
# Audacity timeline labels
for timestamp in getSortedTimestamps(r):
rstring = ''
for c in r[timestamp]:
if c[1] > cfg.MIN_CONFIDENCE and c[0] in cfg.CODES and (c[0] in cfg.SPECIES_LIST or len(cfg.SPECIES_LIST) == 0):
label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
rstring += '{}\t{}\t{:.4f}\n'.format(
timestamp.replace('-', '\t'),
label.replace('_', ', '),
c[1])
# Write result string to file
if len(rstring) > 0:
out_string += rstring
elif cfg.RESULT_TYPE == 'r':
# Output format for R
header = 'filepath,start,end,scientific_name,common_name,confidence,lat,lon,week,overlap,sensitivity,min_conf,species_list,model'
out_string += header
for timestamp in getSortedTimestamps(r):
rstring = ''
start, end = timestamp.split('-')
for c in r[timestamp]:
if c[1] > cfg.MIN_CONFIDENCE and c[0] in cfg.CODES and (c[0] in cfg.SPECIES_LIST or len(cfg.SPECIES_LIST) == 0):
label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
rstring += '\n{},{},{},{},{},{:.4f},{:.4f},{:.4f},{},{},{},{},{},{}'.format(
afile_path,
start,
end,
label.split('_')[0],
label.split('_')[1],
c[1],
cfg.LATITUDE,
cfg.LONGITUDE,
cfg.WEEK,
cfg.SIG_OVERLAP,
(1.0 - cfg.SIGMOID_SENSITIVITY) + 1.0,
cfg.MIN_CONFIDENCE,
cfg.SPECIES_LIST_FILE,
os.path.basename(cfg.MODEL_PATH)
)
# Write result string to file
if len(rstring) > 0:
out_string += rstring
else:
# CSV output file
header = 'Start (s),End (s),Scientific name,Common name,Confidence\n'
# Write header
out_string += header
for timestamp in getSortedTimestamps(r):
rstring = ''
for c in r[timestamp]:
start, end = timestamp.split('-')
if c[1] > cfg.MIN_CONFIDENCE and c[0] in cfg.CODES and (c[0] in cfg.SPECIES_LIST or len(cfg.SPECIES_LIST) == 0):
label = cfg.TRANSLATED_LABELS[cfg.LABELS.index(c[0])]
rstring += '{},{},{},{},{:.4f}\n'.format(
start,
end,
label.split('_')[0],
label.split('_')[1],
c[1])
# Write result string to file
if len(rstring) > 0:
out_string += rstring
# Save as file
with open(path, 'w') as rfile:
rfile.write(out_string)
def getSortedTimestamps(results):
return sorted(results, key=lambda t: float(t.split('-')[0]))
def getRawAudioFromFile(fpath):
# Open file
sig, rate = audio.openAudioFile(fpath, cfg.SAMPLE_RATE)
# Split into raw audio chunks
chunks = audio.splitSignal(sig, rate, cfg.SIG_LENGTH, cfg.SIG_OVERLAP, cfg.SIG_MINLEN)
return chunks
def predict(samples):
# Prepare sample and pass through model
data = np.array(samples, dtype='float32')
prediction = model.predict(data)
# Logits or sigmoid activations?
if cfg.APPLY_SIGMOID:
prediction = model.flat_sigmoid(np.array(prediction), sensitivity=-cfg.SIGMOID_SENSITIVITY)
return prediction
def analyzeFile(item):
# Get file path and restore cfg
fpath = item[0]
cfg.setConfig(item[1])
# Start time
start_time = datetime.datetime.now()
# Status
print('Analyzing {}'.format(fpath), flush=True)
# Open audio file and split into 3-second chunks
chunks = getRawAudioFromFile(fpath)
# If no chunks, show error and skip
if len(chunks) == 0:
msg = 'Error: Cannot open audio file {}'.format(fpath)
print(msg, flush=True)
writeErrorLog(msg)
return False
# Process each chunk
try:
start, end = 0, cfg.SIG_LENGTH
results = {}
samples = []
timestamps = []
for c in range(len(chunks)):
# Add to batch
samples.append(chunks[c])
timestamps.append([start, end])
# Advance start and end
start += cfg.SIG_LENGTH - cfg.SIG_OVERLAP
end = start + cfg.SIG_LENGTH
# Check if batch is full or last chunk
if len(samples) < cfg.BATCH_SIZE and c < len(chunks) - 1:
continue
# Predict
p = predict(samples)
# Add to results
for i in range(len(samples)):
# Get timestamp
s_start, s_end = timestamps[i]
# Get prediction
pred = p[i]
# Assign scores to labels
p_labels = dict(zip(cfg.LABELS, pred))
# Sort by score
p_sorted = sorted(p_labels.items(), key=operator.itemgetter(1), reverse=True)
# Store top 5 results and advance indicies
results[str(s_start) + '-' + str(s_end)] = p_sorted
# Clear batch
samples = []
timestamps = []
except:
# Print traceback
print(traceback.format_exc(), flush=True)
# Write error log
msg = 'Error: Cannot analyze audio file {}.\n{}'.format(fpath, traceback.format_exc())
print(msg, flush=True)
writeErrorLog(msg)
return False
# Save as selection table
try:
# We have to check if output path is a file or directory
if not cfg.OUTPUT_PATH.rsplit('.', 1)[-1].lower() in ['txt', 'csv']:
rpath = fpath.replace(cfg.INPUT_PATH, '')
rpath = rpath[1:] if rpath[0] in ['/', '\\'] else rpath
# Make target directory if it doesn't exist
rdir = os.path.join(cfg.OUTPUT_PATH, os.path.dirname(rpath))
if not os.path.exists(rdir):
os.makedirs(rdir, exist_ok=True)
if cfg.RESULT_TYPE == 'table':
rtype = '.BirdNET.selection.table.txt'
elif cfg.RESULT_TYPE == 'audacity':
rtype = '.BirdNET.results.txt'
else:
rtype = '.BirdNET.results.csv'
saveResultFile(results, os.path.join(cfg.OUTPUT_PATH, rpath.rsplit('.', 1)[0] + rtype), fpath)
else:
saveResultFile(results, cfg.OUTPUT_PATH, fpath)
except:
# Print traceback
print(traceback.format_exc(), flush=True)
# Write error log
msg = 'Error: Cannot save result for {}.\n{}'.format(fpath, traceback.format_exc())
print(msg, flush=True)
writeErrorLog(msg)
return False
delta_time = (datetime.datetime.now() - start_time).total_seconds()
print('Finished {} in {:.2f} seconds'.format(fpath, delta_time), flush=True)
return True
if __name__ == '__main__':
# Freeze support for excecutable
freeze_support()
# Clear error log
#clearErrorLog()
# Parse arguments
parser = argparse.ArgumentParser(description='Analyze audio files with BirdNET')
parser.add_argument('--i', default='example/', help='Path to input file or folder. If this is a file, --o needs to be a file too.')
parser.add_argument('--o', default='example/', help='Path to output file or folder. If this is a file, --i needs to be a file too.')
parser.add_argument('--lat', type=float, default=-1, help='Recording location latitude. Set -1 to ignore.')
parser.add_argument('--lon', type=float, default=-1, help='Recording location longitude. Set -1 to ignore.')
parser.add_argument('--week', type=int, default=-1, help='Week of the year when the recording was made. Values in [1, 48] (4 weeks per month). Set -1 for year-round species list.')
parser.add_argument('--slist', default='', help='Path to species list file or folder. If folder is provided, species list needs to be named \"species_list.txt\". If lat and lon are provided, this list will be ignored.')
parser.add_argument('--sensitivity', type=float, default=1.0, help='Detection sensitivity; Higher values result in higher sensitivity. Values in [0.5, 1.5]. Defaults to 1.0.')
parser.add_argument('--min_conf', type=float, default=0.1, help='Minimum confidence threshold. Values in [0.01, 0.99]. Defaults to 0.1.')
parser.add_argument('--overlap', type=float, default=0.0, help='Overlap of prediction segments. Values in [0.0, 2.9]. Defaults to 0.0.')
parser.add_argument('--rtype', default='table', help='Specifies output format. Values in [\'table\', \'audacity\', \'r\', \'csv\']. Defaults to \'table\' (Raven selection table).')
parser.add_argument('--threads', type=int, default=4, help='Number of CPU threads.')
parser.add_argument('--batchsize', type=int, default=1, help='Number of samples to process at the same time. Defaults to 1.')
parser.add_argument('--locale', default='en', help='Locale for translated species common names. Values in [\'af\', \'de\', \'it\', ...] Defaults to \'en\'.')
parser.add_argument('--sf_thresh', type=float, default=0.03, help='Minimum species occurrence frequency threshold for location filter. Values in [0.01, 0.99]. Defaults to 0.03.')
args = parser.parse_args()
# Set paths relative to script path (requested in #3)
cfg.MODEL_PATH = os.path.join(os.path.dirname(os.path.abspath(sys.argv[0])), cfg.MODEL_PATH)
cfg.LABELS_FILE = os.path.join(os.path.dirname(os.path.abspath(sys.argv[0])), cfg.LABELS_FILE)
cfg.TRANSLATED_LABELS_PATH = os.path.join(os.path.dirname(os.path.abspath(sys.argv[0])), cfg.TRANSLATED_LABELS_PATH)
cfg.MDATA_MODEL_PATH = os.path.join(os.path.dirname(os.path.abspath(sys.argv[0])), cfg.MDATA_MODEL_PATH)
cfg.CODES_FILE = os.path.join(os.path.dirname(os.path.abspath(sys.argv[0])), cfg.CODES_FILE)
cfg.ERROR_LOG_FILE = os.path.join(os.path.dirname(os.path.abspath(sys.argv[0])), cfg.ERROR_LOG_FILE)
# Load eBird codes, labels
cfg.CODES = loadCodes()
cfg.LABELS = loadLabels(cfg.LABELS_FILE)
# Load translated labels
lfile = os.path.join(cfg.TRANSLATED_LABELS_PATH, os.path.basename(cfg.LABELS_FILE).replace('.txt', '_{}.txt'.format(args.locale)))
if not args.locale in ['en'] and os.path.isfile(lfile):
cfg.TRANSLATED_LABELS = loadLabels(lfile)
else:
cfg.TRANSLATED_LABELS = cfg.LABELS
### Make sure to comment out appropriately if you are not using args. ###
# Load species list from location filter or provided list
cfg.LATITUDE, cfg.LONGITUDE, cfg.WEEK = args.lat, args.lon, args.week
cfg.LOCATION_FILTER_THRESHOLD = max(0.01, min(0.99, float(args.sf_thresh)))
if cfg.LATITUDE == -1 and cfg.LONGITUDE == -1:
if len(args.slist) == 0:
cfg.SPECIES_LIST_FILE = None
else:
cfg.SPECIES_LIST_FILE = os.path.join(os.path.dirname(os.path.abspath(sys.argv[0])), args.slist)
if os.path.isdir(cfg.SPECIES_LIST_FILE):
cfg.SPECIES_LIST_FILE = os.path.join(cfg.SPECIES_LIST_FILE, 'species_list.txt')
cfg.SPECIES_LIST = loadSpeciesList(cfg.SPECIES_LIST_FILE)
else:
predictSpeciesList()
if len(cfg.SPECIES_LIST) == 0:
print('Species list contains {} species'.format(len(cfg.LABELS)))
else:
print('Species list contains {} species'.format(len(cfg.SPECIES_LIST)))
# Set input and output path
cfg.INPUT_PATH = args.i
cfg.OUTPUT_PATH = args.o
# Parse input files
if os.path.isdir(cfg.INPUT_PATH):
cfg.FILE_LIST = parseInputFiles(cfg.INPUT_PATH)
else:
cfg.FILE_LIST = [cfg.INPUT_PATH]
# Set confidence threshold
cfg.MIN_CONFIDENCE = max(0.01, min(0.99, float(args.min_conf)))
# Set sensitivity
cfg.SIGMOID_SENSITIVITY = max(0.5, min(1.0 - (float(args.sensitivity) - 1.0), 1.5))
# Set overlap
cfg.SIG_OVERLAP = max(0.0, min(2.9, float(args.overlap)))
# Set result type
cfg.RESULT_TYPE = args.rtype.lower()
if not cfg.RESULT_TYPE in ['table', 'audacity', 'r', 'csv']:
cfg.RESULT_TYPE = 'table'
# Set number of threads
if os.path.isdir(cfg.INPUT_PATH):
cfg.CPU_THREADS = max(1, int(args.threads))
cfg.TFLITE_THREADS = 1
else:
cfg.CPU_THREADS = 1
cfg.TFLITE_THREADS = max(1, int(args.threads))
# Set batch size
cfg.BATCH_SIZE = max(1, int(args.batchsize))
# Add config items to each file list entry.
# We have to do this for Windows which does not
# support fork() and thus each process has to
# have its own config. USE LINUX!
flist = []
for f in cfg.FILE_LIST:
flist.append((f, cfg.getConfig()))
# Analyze files
if cfg.CPU_THREADS < 2:
for entry in flist:
analyzeFile(entry)
else:
with Pool(cfg.CPU_THREADS) as p:
p.map(analyzeFile, flist)
# A few examples to test
# python3 analyze.py --i example/ --o example/ --slist example/ --min_conf 0.5 --threads 4
# python3 analyze.py --i example/soundscape.wav --o example/soundscape.BirdNET.selection.table.txt --slist example/species_list.txt --threads 8
# python3 analyze.py --i example/ --o example/ --lat 42.5 --lon -76.45 --week 4 --sensitivity 1.0 --rtype table --locale de