forked from ymtlab/table_recognition_tool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
image_process.py
121 lines (95 loc) · 4.36 KB
/
image_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# -*- coding: utf-8 -*-
import cv2
import numpy as np
from pathlib import Path, WindowsPath
from PyQt5 import QtGui
class ImageProcess(object):
def __init__(self, data):
self.data = self.load_data(data)
def cv_to_pixmap(self, cv_image):
shape_size = len(cv_image.shape)
if shape_size == 2:
rgb = cv2.cvtColor(cv_image, cv2.COLOR_GRAY2RGB)
elif shape_size == 3:
rgb = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)
height, width, bytesPerComponent = rgb.shape
bytesPerLine = bytesPerComponent * width
image = QtGui.QImage(rgb.data, width, height, bytesPerLine, QtGui.QImage.Format_RGB888)
qpixmap = QtGui.QPixmap.fromImage(image)
return qpixmap
def edge_image(self, size):
gray = cv2.cvtColor(self.data, cv2.COLOR_BGR2GRAY)
edge = cv2.Canny(gray, 1, 100, apertureSize=3)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, size)
dilate = cv2.dilate(edge, kernel)
return dilate
def edge_to_rects(self, edge, area_range):
contours, hierarchy = cv2.findContours(edge, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
rects = []
for contour, hierarchy in zip(contours, hierarchy[0]):
if not area_range[0] < cv2.contourArea(contour) < area_range[1]:
continue
curve = cv2.approxPolyDP(contour, 0.01 * cv2.arcLength(contour, True), True)
if len(curve) == 4:
p1, p3 = curve[0][0], curve[2][0]
x, y, w, h = p1[0], p1[1], p3[0] - p1[0], p3[1] - p1[1]
rect = [x, y, w, h]
if False in [ False for r in rect if r < 1 ]:
continue
if self.same_rect_is_in_rects(rect, rects, 10):
continue
rects.append(rect)
rects = sorted( rects, key=lambda x: (x[1], x[0]) )
return rects
def load_data(self, data):
data_type = type(data)
if data_type is str or data_type is WindowsPath:
return cv2.imread( str(data) )
if data_type is QtGui.QPixmap:
return self.qimage_to_cv( data.toImage() )
def qimage_to_cv(self, qimage):
w, h, d = qimage.size().width(), qimage.size().height(), qimage.depth()
bytes_ = qimage.bits().asstring(w * h * d // 8)
arr = np.frombuffer(bytes_, dtype=np.uint8).reshape((h, w, d // 8))
return arr
def recognize_table(self, area_range=(10, 1000), dilate_size=(6, 6)):
edge = self.edge_image(dilate_size)
rects = self.edge_to_rects(edge, area_range)
crops = self.rects_to_crops(rects)
edge = self.cv_to_pixmap(edge)
return edge, rects, crops
def rects_to_crops(self, rects, margin=10):
crops = []
for rect in rects:
x, y, w, h = rect[0], rect[1], rect[2], rect[3]
cropped = self.data[ y : y + h, x : x + w ]
gray = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY)
threshold = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)[1]
contours = cv2.findContours(threshold, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[0]
rects_in_cropped = [ cv2.boundingRect(contour) for contour in contours[1:] ]
if len(rects_in_cropped) == 0:
continue
x1 = min([ r[0] for r in rects_in_cropped ]) - margin
y1 = min([ r[1] for r in rects_in_cropped ]) - margin
x2 = max([ r[0] + r[2] for r in rects_in_cropped ]) + margin
y2 = max([ r[1] + r[3] for r in rects_in_cropped ]) + margin
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 > cropped.shape[1]:
x2 = cropped.shape[1]
if y2 > cropped.shape[0]:
y2 = cropped.shape[0]
crops.append([x + x1, y + y1, x2 - x1, y2 - y1])
return crops
def same_rect_is_in_rects(self, rect1, rects, tolerance=5):
for rect2 in rects:
frag = True
for r1, r2 in zip(rect1, rect2):
if not r2 - tolerance < r1 < r2 + tolerance:
frag = False
break
if frag:
return True
return False