-
Notifications
You must be signed in to change notification settings - Fork 0
/
dpo.py
213 lines (193 loc) · 7.54 KB
/
dpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# flake8: noqa
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
# regular:
python examples/scripts/dpo.py \
--dataset_name=DownwardSpiral33/gpt2-imdb-16-token-pref-pairs \
--model_name_or_path=lvwerra/gpt2-imdb \
--per_device_train_batch_size 256 \
--learning_rate 1e-3 \
--gradient_accumulation_steps 1 \
--logging_steps 10 \
--eval_steps 500 \
--warmup_steps 150 \
--report_to wandb \
--logging_first_step \
--no_remove_unused_columns
# peft:
python examples/scripts/dpo.py \
--dataset_name=trl-internal-testing/hh-rlhf-helpful-base-trl-style \
--model_name_or_path=gpt2 \
--per_device_train_batch_size 4 \
--learning_rate 1e-3 \
--gradient_accumulation_steps 1 \
--logging_steps 10 \
--eval_steps 500 \
--output_dir="dpo_anthropic_hh" \
--optim rmsprop \
--warmup_steps 150 \
--report_to wandb \
--bf16 \
--logging_first_step \
--no_remove_unused_columns \
--use_peft \
--lora_r=16 \
--lora_alpha=16
"""
import logging
import multiprocessing
import os
from contextlib import nullcontext
import ppo
TRL_USE_RICH = os.environ.get("TRL_USE_RICH", False)
from trl.commands.cli_utils import DPOScriptArguments, init_zero_verbose, TrlParser
if TRL_USE_RICH:
init_zero_verbose()
FORMAT = "%(message)s"
from rich.console import Console
from rich.logging import RichHandler
import torch
from datasets import load_dataset, load_from_disk, DatasetDict, Dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
import subprocess
from trl import (
DPOConfig,
DPOTrainer,
ModelConfig,
RichProgressCallback,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
)
if TRL_USE_RICH:
logging.basicConfig(format=FORMAT, datefmt="[%X]", handlers=[RichHandler()], level=logging.INFO)
if __name__ == "__main__":
parser = TrlParser((DPOScriptArguments, DPOConfig, ModelConfig))
args, training_args, model_config = parser.parse_args_and_config()
full_name = f"{training_args.output_dir}-{training_args.start_time}"
training_args.output_dir = full_name
# Force use our print callback
if TRL_USE_RICH:
training_args.disable_tqdm = True
console = Console()
################
# Model & Tokenizer
################
torch_dtype = (
model_config.torch_dtype
if model_config.torch_dtype in ["auto", None]
else getattr(torch, model_config.torch_dtype)
)
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
revision=model_config.model_revision,
trust_remote_code=model_config.trust_remote_code,
# attn_implementation=model_config.attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
model = AutoModelForCausalLM.from_pretrained(model_config.model_name_or_path, **model_kwargs)
print(f"Load model ", model_config.model_name_or_path)
peft_config = get_peft_config(model_config)
if peft_config is None:
model_ref = AutoModelForCausalLM.from_pretrained(model_config.model_name_or_path, **model_kwargs)
print(f"Load ref model ", model_config.model_name_or_path)
else:
model_ref = None
tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# if tokenizer.chat_template is None:
# tokenizer.chat_template = "{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\n\n'}}{% endfor %}{{ eos_token }}"
if args.ignore_bias_buffers:
# torch distributed hack
model._ddp_params_and_buffers_to_ignore = [
name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool
]
################
# Optional rich context managers
###############
init_context = nullcontext() if not TRL_USE_RICH else console.status("[bold green]Initializing the DPOTrainer...")
save_context = (
nullcontext()
if not TRL_USE_RICH
else console.status(f"[bold green]Training completed! Saving the model to {training_args.output_dir}")
)
################
# Dataset
################
if args.dataset_name[-4:] == '.csv':
ds = Dataset.from_csv(args.dataset_name)
else:
ds = load_from_disk(args.dataset_name) if not args.tokenize else load_dataset(args.dataset_name)
if args.sanity_check:
for key in ds:
ds[key] = ds[key].select(range(50))
def process(row):
# row["chosen"] = tokenizer.apply_chat_template(row["chosen"], tokenize=False)
# row["rejected"] = tokenizer.apply_chat_template(row["rejected"], tokenize=False)
return row
if not args.tokenize:
if isinstance(ds, DatasetDict):
ds = ds['train']
print('ds len', len(ds))
ds = ds.train_test_split(test_size=0.05, shuffle=True, seed=42)
# print(len(ds), type(ds))
# ds.map(
# process,
# num_proc=multiprocessing.cpu_count(),
# load_from_cache_file=False,
# )
train_dataset = ds[args.dataset_train_split]
eval_dataset = ds[args.dataset_test_split]
################
# Training
################
with init_context:
trainer = DPOTrainer(
model,
model_ref,
args=training_args,
train_dataset=ds if args.tokenize else train_dataset,
eval_dataset=None if args.tokenize else eval_dataset,
tokenizer=tokenizer,
peft_config=get_peft_config(model_config),
callbacks=[RichProgressCallback] if TRL_USE_RICH else None,
tokenize=args.tokenize,
)
if args.tokenize:
trainer.train_dataset.save_to_disk(f"{args.dataset_name.split('.csv')[0]}_tokenized", max_shard_size='90MB')
else:
trainer.train()
with save_context:
trainer.save_model(training_args.output_dir)
steps = len(trainer.get_train_dataloader())
last_eval_epoch = int(training_args.num_train_epochs)
first_eval_epoch = int(training_args.num_train_epochs - training_args.save_total_limit)
eval_epochs = list(range(last_eval_epoch, first_eval_epoch, -1))
print(f"Evaling epochs {eval_epochs}")
results = []
for epoch in eval_epochs:
checkpoint = f"{training_args.output_dir}/checkpoint-{epoch*steps}"
print(f"Loading from {checkpoint}")
stat = ppo.eval(checkpoint, f"epoch {epoch}")
results.append([training_args.output_dir, training_args.beta, f"epoch {epoch}", *stat])
for result in results:
print(",".join([str(r) for r in result]))
with open('results/toplevel.csv', 'a') as f:
for result in results:
print(",".join([str(r) for r in result]))