diff --git a/.github/workflows/docs.yml b/.github/workflows/docs.yml new file mode 100644 index 00000000..7ace4355 --- /dev/null +++ b/.github/workflows/docs.yml @@ -0,0 +1,33 @@ +name: Docs + +on: [push, pull_request] + + +defaults: + run: + shell: bash -l {0} +jobs: + build: + runs-on: ubuntu-20.04 + steps: + - uses: actions/checkout@v2 + - name: Setup conda + uses: conda-incubator/setup-miniconda@v2 + with: + activate-environment: ipympl-dev + environment-file: dev-environment.yml + python-version: ${{ matrix.python-version }} + mamba-version: "*" + auto-activate-base: false + channels: conda-forge + - name: Install + run: python -m pip install -v .[docs] + - name: Build + run: make -C docs html + - name: Publish + if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/main' }} + uses: peaceiris/actions-gh-pages@v3 + with: + github_token: ${{ secrets.GITHUB_TOKEN }} + publish_dir: ./docs/_build/html + force_orphan: true diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index a03391bd..b75187c1 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -3,10 +3,10 @@ name: Tests on: push: branches: - - master + - main pull_request: branches: - - master + - main defaults: run: diff --git a/.github/workflows/mpl-latest.yml b/.github/workflows/mpl-latest.yml index 68f1355d..bb12725d 100644 --- a/.github/workflows/mpl-latest.yml +++ b/.github/workflows/mpl-latest.yml @@ -5,10 +5,10 @@ on: - cron: "0 12 * * 1" # monday at noon UTC push: branches: - - master + - main pull_request: branches: - - master + - main jobs: run: diff --git a/.gitignore b/.gitignore index 7e9a87e9..70907701 100644 --- a/.gitignore +++ b/.gitignore @@ -32,3 +32,6 @@ ipympl/labextension # OS specific items .DS_Store + +# sphinx build dir +docs/_build diff --git a/README.md b/README.md index cd5ddf92..a20f3dff 100644 --- a/README.md +++ b/README.md @@ -4,7 +4,7 @@ [![Latest PyPI version](https://img.shields.io/pypi/v/ipympl?logo=pypi)](https://pypi.python.org/pypi/ipympl) [![Latest conda-forge version](https://img.shields.io/conda/vn/conda-forge/ipympl?logo=conda-forge)](https://anaconda.org/conda-forge/ipympl) [![Latest npm version](https://img.shields.io/npm/v/jupyter-matplotlib?logo=npm)](https://www.npmjs.com/package/jupyter-matplotlib) -[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/matplotlib/ipympl/stable?urlpath=retro/notebooks/examples/ipympl.ipynb) +[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/matplotlib/ipympl/stable?urlpath=retro/notebooks/docs/examples/full-example.ipynb) [![Gitter](https://img.shields.io/badge/gitter-Join_chat-blue?logo=gitter)](https://gitter.im/jupyter-widgets/Lobby) Leveraging the Jupyter interactive widgets framework, `ipympl` enables the interactive features of matplotlib in the Jupyter notebook and in JupyterLab. @@ -21,7 +21,7 @@ magic: ``` ## Example -See the [example notebook](https://github.com/matplotlib/ipympl/blob/master/examples/ipympl.ipynb) for more! +See the [example notebook](https://github.com/matplotlib/ipympl/blob/master/docs/examples/ipympl.ipynb) for more! ![matplotlib screencast](matplotlib.gif) diff --git a/dev-environment.yml b/dev-environment.yml index df8e89e6..92b5725a 100644 --- a/dev-environment.yml +++ b/dev-environment.yml @@ -13,5 +13,14 @@ dependencies: - flake8 - pytest - nbval + - pre-commit - pip: - build + - myst-nb + - Sphinx >= 1.5 + - sphinx-copybutton + - sphinx-panels + - sphinx-thebe + - sphinx-togglebutton + - sphinx-book-theme + - sphinx-autobuild diff --git a/docs/Makefile b/docs/Makefile new file mode 100644 index 00000000..6ff62d75 --- /dev/null +++ b/docs/Makefile @@ -0,0 +1,23 @@ +# Minimal makefile for Sphinx documentation +# + +# You can set these variables from the command line, and also +# from the environment for the first two. +SPHINXOPTS ?= -T --color +SPHINXBUILD ?= sphinx-build +SOURCEDIR = . +BUILDDIR = _build + +# Put it first so that "make" without argument is like "make help". +help: + @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) + +.PHONY: help Makefile + +# Catch-all target: route all unknown targets to Sphinx using the new +# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). +%: Makefile + @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) + +watch: + sphinx-autobuild . _build/html --open-browser --watch examples diff --git a/docs/_static/basic.apng b/docs/_static/basic.apng new file mode 100644 index 00000000..cab7d75d Binary files /dev/null and b/docs/_static/basic.apng differ diff --git a/docs/_static/custom.css b/docs/_static/custom.css new file mode 100644 index 00000000..4ded2176 --- /dev/null +++ b/docs/_static/custom.css @@ -0,0 +1,12 @@ +/* Fix numpydoc format delimiters */ +.classifier:before { + font-style: normal; + margin: 0.5em; + content: ":"; +} + +/* override table no-wrap */ +.wy-table-responsive table td, +.wy-table-responsive table th { + white-space: normal; +} diff --git a/docs/conf.py b/docs/conf.py new file mode 100644 index 00000000..b7766a70 --- /dev/null +++ b/docs/conf.py @@ -0,0 +1,181 @@ +# Configuration file for the Sphinx documentation builder. +# +# This file only contains a selection of the most common options. For a full +# list see the documentation: +# https://www.sphinx-doc.org/en/master/usage/configuration.html + +# -- Path setup -------------------------------------------------------------- + +import inspect + +# If extensions (or modules to document with autodoc) are in another directory, +# add these directories to sys.path here. If the directory is relative to the +# documentation root, use os.path.abspath to make it absolute, like shown here. +# +import os +import sys + +try: + from ipympl import __version__ as release +except ImportError: + release = "unknown" + + +# -- Project information ----------------------------------------------------- + +project = "ipympl" +copyright = "2022, Matplotlib Development Team" +author = "Matplotlib Development Team" + + +# -- General configuration --------------------------------------------------- + +# Add any Sphinx extension module names here, as strings. They can be +# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom +# ones. +extensions = [ + "myst_nb", + "sphinx.ext.intersphinx", + "sphinx.ext.linkcode", + "sphinx.ext.mathjax", + "sphinx_copybutton", + "sphinx_thebe", + "sphinx_togglebutton", +] + + +# Cross-referencing configuration +default_role = "py:obj" +primary_domain = "py" +nitpicky = True # warn if cross-references are missing + +# Intersphinx settings +intersphinx_mapping = { + "ipywidgets": ("https://ipywidgets.readthedocs.io/en/stable", None), + "matplotlib": ("https://matplotlib.org/stable", None), + "numpy": ("https://numpy.org/doc/stable", None), + "python": ("https://docs.python.org/3", None), +} + + +# Settings for copybutton +copybutton_prompt_is_regexp = True +copybutton_prompt_text = r">>> |\.\.\. " # doctest + +# Settings for linkcheck +linkcheck_anchors = False +linkcheck_ignore = [] # type: ignore + +execution_timeout = -1 +jupyter_execute_notebooks = "off" +if "EXECUTE_NB" in os.environ: + print("\033[93;1mWill run Jupyter notebooks!\033[0m") + jupyter_execute_notebooks = "force" + +# Settings for myst-parser +myst_enable_extensions = [ + "amsmath", + "colon_fence", + "dollarmath", + "smartquotes", + "substitution", +] +suppress_warnings = [ + "myst.header", +] + +# Add any paths that contain templates here, relative to this directory. +templates_path = ["_templates"] + +# List of patterns, relative to source directory, that match files and +# directories to ignore when looking for source files. +# This pattern also affects html_static_path and html_extra_path. +exclude_patterns = [ + "**ipynb_checkpoints", + ".DS_Store", + "Thumbs.db", + "_build", +] + + +# -- Options for HTML output ------------------------------------------------- + +# The theme to use for HTML and HTML Help pages. See the documentation for +# a list of builtin themes. +# +html_copy_source = True # needed for download notebook button +html_css_files = [ + "custom.css", +] +html_sourcelink_suffix = "" +html_static_path = ["_static"] +html_theme = "sphinx_book_theme" +html_theme_options = { + "launch_buttons": { + "binderhub_url": "https://mybinder.org", + "colab_url": "https://colab.research.google.com", + "notebook_interface": "jupyterlab", + "thebe": True, + "thebelab": True, + }, + "path_to_docs": "docs", + "repository_branch": "main", + "repository_url": "https://github.com/matplotlib/ipympl", + "use_download_button": True, + "use_edit_page_button": True, + "use_issues_button": True, + "use_repository_button": True, +} +html_title = "ipympl" + +master_doc = "index" +thebe_config = { + "repository_url": html_theme_options["repository_url"], + "repository_branch": html_theme_options["repository_branch"], +} + + +# based on pandas/doc/source/conf.py +def linkcode_resolve(domain, info): + """ + Determine the URL corresponding to Python object + """ + if domain != "py": + return None + + modname = info["module"] + fullname = info["fullname"] + + submod = sys.modules.get(modname) + if submod is None: + return None + + obj = submod + for part in fullname.split("."): + try: + obj = getattr(obj, part) + except AttributeError: + return None + + try: + fn = inspect.getsourcefile(inspect.unwrap(obj)) + except TypeError: + fn = None + if not fn: + return None + + try: + source, lineno = inspect.getsourcelines(obj) + except OSError: + lineno = None + + if lineno: + linespec = f"#L{lineno}-L{lineno + len(source) - 1}" + else: + linespec = "" + + fn = os.path.relpath(fn, start=os.path.dirname("../ipympl")) + + return ( + f"https://github.com/matplotlib/ipympl/blob/main/ipympl/{fn}{linespec}" # noqa + ) diff --git a/docs/contributing.md b/docs/contributing.md new file mode 100644 index 00000000..c8be4e35 --- /dev/null +++ b/docs/contributing.md @@ -0,0 +1,92 @@ +# Contributing + +Thanks for thinking of a way to help improve this library! Remember that contributions come in all shapes and sizes beyond writing bug fixes. Contributing to [documentation](#documentation), opening new [issues](https://github.com/matplotlib/ipympl/issues) for bugs, asking for clarification on things you find unclear, and requesting new features, are all super valuable contributions. + +## Code Improvements + +All development for this library happens on GitHub [here](https://github.com/matplotlib/ipympl). We recommend you work with a [Conda](https://www.anaconda.com/products/individual) environment (or an alternative virtual environment like [`venv`](https://docs.python.org/3/library/venv.html)). + +The below instructions use [Mamba](https://github.com/mamba-org/mamba#the-fast-cross-platform-package-manager) which is a very fast implementation of `conda`. + +```bash +git clone +cd ipympl +mamba env create --file dev-environment.yml +conda activate ipympl-dev +pre-commit install +``` + +Install the Python Packge +```bash +pip install -e . +``` + +When developing your extensions, you need to manually enable your extensions with the +notebook / lab frontend. For lab, this is done by the command: + +```bash +jupyter labextension develop --overwrite . +yarn run build +``` + +For classic notebook, you need to run: +```bash +jupyter nbextension install --py --symlink --sys-prefix --overwrite ipympl +jupyter nbextension enable --py --sys-prefix ipympl +``` + + + +### How to see your changes + +**Typescript**: + +If you use JupyterLab to develop then you can watch the source directory and run JupyterLab at the same time in different terminals to watch for changes in the extension's source and automatically rebuild the widget. + +```bash +# Watch the source directory in one terminal, automatically rebuilding when needed +yarn run watch +# Run JupyterLab in another terminal +jupyter lab +``` + +After a change wait for the build to finish and then refresh your browser and the changes should take effect. + +**Python:** + +If you make a change to the python code then you will need to restart the notebook kernel to have it take effect. + + +## Documentation + +Our documentation is built with [Sphinx](https://www.sphinx-doc.org) from the notebooks in the `docs` folder. It contains both Markdown files and Jupyter notebooks. + +Examples are best written as Jupyter notebooks. To write a new example, create in a notebook in the `docs/examples` directory and list its path under one of the [`toctree`s](https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-toctree) in the `index.ipynb` file. When the docs are generated, they will be rendered as static html pages by [myst-nb](https://myst-nb.readthedocs.io). + +If you have installed all developer dependencies (see [above](#contributing)), you can rebuild the docs with the following `make` command run from inside the `docs` folder: + +``` +make html +``` + +Then you can open the `_build/index.html` file in your browser you should now be able to see the rendered documentation. + +Alternatively, you can use [sphinx-autobuild](https://github.com/executablebooks/sphinx-autobuild) to continuously watch source files for changes and rebuild the documentation for you. Sphinx-autobuild will be installed automatically in the dev environment you created earlier so all you need to do is run + +```bash +make watch +``` +from inside the `docs` folder + +In a few seconds your web browser should open up the documentation. Now whenever you save a file the documentation will automatically regenerate and the webpage will refresh for you! + +## Working with Git + +Using Git/GitHub can confusing (), so if you're new to Git, you may find it helpful to use a program like [GitHub Desktop](https://desktop.github.com) and to follow a [guide](https://github.com/firstcontributions/first-contributions#first-contributions). + +Also feel free to ask for help/advice on the relevant GitHub [issue](https://github.com/matplotlib/ipympl/issues). + + +## Getting Help contributing + +Feel free to ask questions about how to contribute on any Github Issue. You can also ask shorter questions on the [gitter chatroom](https://gitter.im/jupyter-widgets/Lobby). diff --git a/docs/examples/full-example.ipynb b/docs/examples/full-example.ipynb new file mode 100644 index 00000000..d036785c --- /dev/null +++ b/docs/examples/full-example.ipynb @@ -0,0 +1,477 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Comprehensive Example" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Enabling the `widget` backend.\n", + "# This requires jupyter-matplotlib a.k.a. ipympl.\n", + "# ipympl can be install via pip or conda.\n", + "%matplotlib widget\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Testing matplotlib interactions with a simple plot\n", + "fig = plt.figure()\n", + "plt.plot(np.sin(np.linspace(0, 20, 100)));" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Always hide the toolbar\n", + "fig.canvas.toolbar_visible = False" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Put it back to its default\n", + "fig.canvas.toolbar_visible = 'fade-in-fade-out'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Change the toolbar position\n", + "fig.canvas.toolbar_position = 'top'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Hide the Figure name at the top of the figure\n", + "fig.canvas.header_visible = False" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Hide the footer\n", + "fig.canvas.footer_visible = False" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Disable the resizing feature\n", + "fig.canvas.resizable = False" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# If true then scrolling while the mouse is over the canvas will not move the entire notebook\n", + "fig.canvas.capture_scroll = True" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also call `display` on `fig.canvas` to display the interactive plot anywhere in the notebooke" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig.canvas.toolbar_visible = True\n", + "display(fig.canvas)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Or you can `display(fig)` to embed the current plot as a png" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "display(fig)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3D plotting" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mpl_toolkits.mplot3d import axes3d\n", + "\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot(111, projection='3d')\n", + "\n", + "# Grab some test data.\n", + "X, Y, Z = axes3d.get_test_data(0.05)\n", + "\n", + "# Plot a basic wireframe.\n", + "ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Subplots" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# A more complex example from the matplotlib gallery\n", + "np.random.seed(0)\n", + "\n", + "n_bins = 10\n", + "x = np.random.randn(1000, 3)\n", + "\n", + "fig, axes = plt.subplots(nrows=2, ncols=2)\n", + "ax0, ax1, ax2, ax3 = axes.flatten()\n", + "\n", + "colors = ['red', 'tan', 'lime']\n", + "ax0.hist(x, n_bins, density=1, histtype='bar', color=colors, label=colors)\n", + "ax0.legend(prop={'size': 10})\n", + "ax0.set_title('bars with legend')\n", + "\n", + "ax1.hist(x, n_bins, density=1, histtype='bar', stacked=True)\n", + "ax1.set_title('stacked bar')\n", + "\n", + "ax2.hist(x, n_bins, histtype='step', stacked=True, fill=False)\n", + "ax2.set_title('stack step (unfilled)')\n", + "\n", + "# Make a multiple-histogram of data-sets with different length.\n", + "x_multi = [np.random.randn(n) for n in [10000, 5000, 2000]]\n", + "ax3.hist(x_multi, n_bins, histtype='bar')\n", + "ax3.set_title('different sample sizes')\n", + "\n", + "fig.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig.canvas.toolbar_position = 'right'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig.canvas.toolbar_visible = False" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Interactions with other widgets and layouting\n", + "\n", + "When you want to embed the figure into a layout of other widgets you should call `plt.ioff()` before creating the figure otherwise `plt.figure()` will trigger a display of the canvas automatically and outside of your layout. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Without using `ioff`\n", + "\n", + "Here we will end up with the figure being displayed twice. The button won't do anything it just placed as an example of layouting." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import ipywidgets as widgets\n", + "\n", + "# ensure we are interactive mode \n", + "# this is default but if this notebook is executed out of order it may have been turned off\n", + "plt.ion()\n", + "\n", + "fig = plt.figure()\n", + "ax = fig.gca()\n", + "ax.imshow(Z)\n", + "\n", + "widgets.AppLayout(\n", + " center=fig.canvas,\n", + " footer=widgets.Button(icon='check'),\n", + " pane_heights=[0, 6, 1]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fixing the double display with `ioff`\n", + "\n", + "If we make sure interactive mode is off when we create the figure then the figure will only display where we want it to.\n", + "\n", + "There is ongoing work to allow usage of `ioff` as a context manager, see the [ipympl issue](https://github.com/matplotlib/ipympl/issues/220) and the [matplotlib issue](https://github.com/matplotlib/matplotlib/issues/17013)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.ioff()\n", + "fig = plt.figure()\n", + "plt.ion()\n", + "\n", + "ax = fig.gca()\n", + "ax.imshow(Z)\n", + "\n", + "widgets.AppLayout(\n", + " center=fig.canvas,\n", + " footer=widgets.Button(icon='check'),\n", + " pane_heights=[0, 6, 1]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Interacting with other widgets\n", + "\n", + "## Changing a line plot with a slide" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# When using the `widget` backend from ipympl,\n", + "# fig.canvas is a proper Jupyter interactive widget, which can be embedded in\n", + "# an ipywidgets layout. See https://ipywidgets.readthedocs.io/en/stable/examples/Layout%20Templates.html\n", + "\n", + "# One can bound figure attributes to other widget values.\n", + "from ipywidgets import AppLayout, FloatSlider\n", + "\n", + "plt.ioff()\n", + "\n", + "slider = FloatSlider(\n", + " orientation='horizontal',\n", + " description='Factor:',\n", + " value=1.0,\n", + " min=0.02,\n", + " max=2.0\n", + ")\n", + "\n", + "slider.layout.margin = '0px 30% 0px 30%'\n", + "slider.layout.width = '40%'\n", + "\n", + "fig = plt.figure()\n", + "fig.canvas.header_visible = False\n", + "fig.canvas.layout.min_height = '400px'\n", + "plt.title('Plotting: y=sin({} * x)'.format(slider.value))\n", + "\n", + "x = np.linspace(0, 20, 500)\n", + "\n", + "lines = plt.plot(x, np.sin(slider.value * x))\n", + "\n", + "def update_lines(change):\n", + " plt.title('Plotting: y=sin({} * x)'.format(change.new))\n", + " lines[0].set_data(x, np.sin(change.new * x))\n", + " fig.canvas.draw()\n", + " fig.canvas.flush_events()\n", + "\n", + "slider.observe(update_lines, names='value')\n", + "\n", + "AppLayout(\n", + " center=fig.canvas,\n", + " footer=slider,\n", + " pane_heights=[0, 6, 1]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Update image data in a performant manner\n", + "\n", + "Two useful tricks to improve performance when updating an image displayed with matplolib are to:\n", + "1. Use the `set_data` method instead of calling imshow\n", + "2. Precompute and then index the array" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# precomputing all images\n", + "x = np.linspace(0,np.pi,200)\n", + "y = np.linspace(0,10,200)\n", + "X,Y = np.meshgrid(x,y)\n", + "parameter = np.linspace(-5,5)\n", + "example_image_stack = np.sin(X)[None,:,:]+np.exp(np.cos(Y[None,:,:]*parameter[:,None,None]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.ioff()\n", + "fig = plt.figure()\n", + "plt.ion()\n", + "im = plt.imshow(example_image_stack[0])\n", + "\n", + "def update(change):\n", + " im.set_data(example_image_stack[change['new']])\n", + " fig.canvas.draw_idle()\n", + " \n", + " \n", + "slider = widgets.IntSlider(value=0, min=0, max=len(parameter)-1)\n", + "slider.observe(update, names='value')\n", + "widgets.VBox([slider, fig.canvas])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Debugging widget updates and matplotlib callbacks\n", + "\n", + "If an error is raised in the `update` function then will not always display in the notebook which can make debugging difficult. This same issue is also true for matplotlib callbacks on user events such as mousemovement, for example see [issue](https://github.com/matplotlib/ipympl/issues/116). There are two ways to see the output:\n", + "1. In jupyterlab the output will show up in the Log Console (View > Show Log Console)\n", + "2. using `ipywidgets.Output`\n", + "\n", + "Here is an example of using an `Output` to capture errors in the update function from the previous example. To induce errors we changed the slider limits so that out of bounds errors will occur:\n", + "\n", + "From: `slider = widgets.IntSlider(value=0, min=0, max=len(parameter)-1)`\n", + "\n", + "To: `slider = widgets.IntSlider(value=0, min=0, max=len(parameter)+10)`\n", + "\n", + "If you move the slider all the way to the right you should see errors from the Output widget" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.ioff()\n", + "fig = plt.figure()\n", + "plt.ion()\n", + "im = plt.imshow(example_image_stack[0])\n", + "\n", + "out = widgets.Output()\n", + "@out.capture()\n", + "def update(change):\n", + " with out:\n", + " if change['name'] == 'value':\n", + " im.set_data(example_image_stack[change['new']])\n", + " fig.canvas.draw_idle\n", + " \n", + " \n", + "slider = widgets.IntSlider(value=0, min=0, max=len(parameter)+10)\n", + "slider.observe(update)\n", + "display(widgets.VBox([slider, fig.canvas]))\n", + "display(out)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.6" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/docs/index.ipynb b/docs/index.ipynb new file mode 100644 index 00000000..31e273e5 --- /dev/null +++ b/docs/index.ipynb @@ -0,0 +1,118 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "0bd21c1d-fda2-455d-b70d-e8b7ad0611f4", + "metadata": {}, + "source": [ + "# ipympl\n", + "\n", + "`ipympl` enables using the interactive features of matplotlib in Jupyter Notebooks, Jupyter Lab, Google Colab, VSCode notebooks, Google Colab\n", + "\n", + "Matplotlib requires a live Python kernel to have interactive plots so by default the outputs on this page will not be interactive. To try things out yourself you can either use [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/matplotlib/ipympl/stable?urlpath=retro/notebooks/examples/ipympl.ipynb) or make these docs interactive by clicking on the rocket icon in the top right of the page.\n", + "\n", + "\n", + "## Installation\n", + "The quickest way to install is either:\n", + "\n", + "```bash\n", + "pip install ipympl\n", + "```\n", + "or `conda install -c conda-forge ipympl`\n", + "\n", + "\n", + "For more detailed instructions see [Installing](installing.md).\n", + "\n", + "\n", + "## Basic Example\n", + "To activate the `ipympl` backend all you need to do is include the `%matplotlib ipympl` magic in the notebook. Alternatively you can use `%matplotlib widget` which will have have the same effect." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2d7b9433-94df-4742-970e-7d9dbb1f6785", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "%matplotlib ipympl\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "fig, ax = plt.subplots()\n", + "\n", + "\n", + "x = np.linspace(0, 2*np.pi, 100)\n", + "y = np.sin(3*x)\n", + "ax.plot(x, y)\n" + ] + }, + { + "cell_type": "markdown", + "id": "52696782-2ecb-4fac-9d90-d5c8f81dac10", + "metadata": {}, + "source": [ + "With a working Kernel that simple example will give a plot with interactivity enabled in the notebook!\n", + "![A plot of sine wave, the user pans and zooms with the mouse](_static/basic.apng)" + ] + }, + { + "cell_type": "markdown", + "id": "eb0bcca2-f967-46a3-a0aa-9503312acd85", + "metadata": {}, + "source": [ + "## Install\n", + "\n", + "```bash\n", + "pip install ipympl\n", + "```\n", + "\n", + "\n", + "\n", + "```{toctree}\n", + ":maxdepth: 2\n", + "\n", + "installing.md\n", + "contributing.md\n", + "```\n", + "\n", + "```{toctree}\n", + ":caption: Examples\n", + ":maxdepth: 1\n", + "\n", + "examples/full-example.ipynb\n", + "```\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.6" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/installing.md b/docs/installing.md new file mode 100644 index 00000000..c02b5b45 --- /dev/null +++ b/docs/installing.md @@ -0,0 +1,66 @@ +# Installing + +In most cases all you need to do is +```bash +pip install ipympl +``` +or alternatively with `mamba`/`conda` + +```bash +mamba install -c conda-forge ipympl +``` + +and then restart Jupyter. + + +### Jupyterlab < 3 +If you use JupyterLab 2, you still need to install the labextension manually: + +```bash +conda install -c conda-forge nodejs +jupyter labextension install @jupyter-widgets/jupyterlab-manager jupyter-matplotlib +``` + + + + +### Google Colab + +To use `ipympl` in colab run these lines: + +```python +from google.colab import output +output.enable_custom_widget_manager() +``` + +## Mixing Frontend and Backend Versions + +`ipympl` provides both a Frontend (in javascript) which handles displaying the plots and handling interaction events, as well as a backend (in Python) that renders the plots and interfaces with user code. These two parts need to be able to communicate with each other for everything to work. In the most common situation that your frontend and backend are from the same Python environment then installing `ipympl` should have given you compatible versions. + +However, there are situations when you may have different versions of ipympl in the frontend and the backend. In this case you need to ensure that you have compatible versions of the frontend and backend. For details and an initial compatibility table see the discussion on this [Github issue](https://github.com/matplotlib/ipympl/issues/416). + + +## Compatibility Table + +Not all versions of `ipympl` are compatible with different version of Jupyterlab or all versions of Matplotlib. The below table provides a reference for which versions are compatible. + +| `ipympl` | `jupyter-matplotlib` | `JupyterLab` | `Matplotlib` | +|----------|----------------------|--------------|--------------| +| 0.8.8 | 0.10.x | 3 or 2 | 3.3.1>= | +| 0.8.0-7 | 0.10.x | 3 or 2 | 3.3.1>=, <3.6| +| 0.7.0 | 0.9.0 | 3 or 2 | 3.3.1>= | +| 0.6.x | 0.8.x | 3 or 2 | 3.3.1>=, <3.4| +| 0.5.8 | 0.7.4 | 1 or 2 | 3.3.1>=, <3.4| +| 0.5.7 | 0.7.3 | 1 or 2 | 3.2.* | +| ... | ... | ... | | +| 0.5.3 | 0.7.2 | 1 or 2 | | +| 0.5.2 | 0.7.1 | 1 | | +| 0.5.1 | 0.7.0 | 1 | | +| 0.5.0 | 0.6.0 | 1 | | +| 0.4.0 | 0.5.0 | 1 | | +| 0.3.3 | 0.4.2 | 1 | | +| 0.3.2 | 0.4.1 | 1 | | +| 0.3.1 | 0.4.0 | 0 or 1 | | diff --git a/docs/make.bat b/docs/make.bat new file mode 100644 index 00000000..922152e9 --- /dev/null +++ b/docs/make.bat @@ -0,0 +1,35 @@ +@ECHO OFF + +pushd %~dp0 + +REM Command file for Sphinx documentation + +if "%SPHINXBUILD%" == "" ( + set SPHINXBUILD=sphinx-build +) +set SOURCEDIR=. +set BUILDDIR=_build + +if "%1" == "" goto help + +%SPHINXBUILD% >NUL 2>NUL +if errorlevel 9009 ( + echo. + echo.The 'sphinx-build' command was not found. Make sure you have Sphinx + echo.installed, then set the SPHINXBUILD environment variable to point + echo.to the full path of the 'sphinx-build' executable. Alternatively you + echo.may add the Sphinx directory to PATH. + echo. + echo.If you don't have Sphinx installed, grab it from + echo.http://sphinx-doc.org/ + exit /b 1 +) + +%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% +goto end + +:help +%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% + +:end +popd diff --git a/examples/ipympl.ipynb b/examples/ipympl.ipynb deleted file mode 100644 index 7fb5fcea..00000000 --- a/examples/ipympl.ipynb +++ /dev/null @@ -1,980 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Matplotlib Jupyter Widget Backend\n", - "\n", - "Enabling interaction with matplotlib charts in the Jupyter notebook and JupyterLab\n", - "\n", - "https://github.com/matplotlib/ipympl" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Enabling the `widget` backend.\n", - "# This requires jupyter-matplotlib a.k.a. ipympl.\n", - "# ipympl can be install via pip or conda.\n", - "%matplotlib widget\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Testing matplotlib interactions with a simple plot\n", - "fig = plt.figure()\n", - "plt.plot(np.sin(np.linspace(0, 20, 100)));" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Always hide the toolbar\n", - "fig.canvas.toolbar_visible = False" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Put it back to its default\n", - "fig.canvas.toolbar_visible = 'fade-in-fade-out'" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Change the toolbar position\n", - "fig.canvas.toolbar_position = 'top'" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Hide the Figure name at the top of the figure\n", - "fig.canvas.header_visible = False" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Hide the footer\n", - "fig.canvas.footer_visible = False" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Disable the resizing feature\n", - "fig.canvas.resizable = False" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# If true then scrolling while the mouse is over the canvas will not move the entire notebook\n", - "fig.canvas.capture_scroll = True" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can also call `display` on `fig.canvas` to display the interactive plot anywhere in the notebooke" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fig.canvas.toolbar_visible = True\n", - "display(fig.canvas)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Or you can `display(fig)` to embed the current plot as a png" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "display(fig)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3D plotting" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from mpl_toolkits.mplot3d import axes3d\n", - "\n", - "fig = plt.figure()\n", - "ax = fig.add_subplot(111, projection='3d')\n", - "\n", - "# Grab some test data.\n", - "X, Y, Z = axes3d.get_test_data(0.05)\n", - "\n", - "# Plot a basic wireframe.\n", - "ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Subplots" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# A more complex example from the matplotlib gallery\n", - "np.random.seed(0)\n", - "\n", - "n_bins = 10\n", - "x = np.random.randn(1000, 3)\n", - "\n", - "fig, axes = plt.subplots(nrows=2, ncols=2)\n", - "ax0, ax1, ax2, ax3 = axes.flatten()\n", - "\n", - "colors = ['red', 'tan', 'lime']\n", - "ax0.hist(x, n_bins, density=1, histtype='bar', color=colors, label=colors)\n", - "ax0.legend(prop={'size': 10})\n", - "ax0.set_title('bars with legend')\n", - "\n", - "ax1.hist(x, n_bins, density=1, histtype='bar', stacked=True)\n", - "ax1.set_title('stacked bar')\n", - "\n", - "ax2.hist(x, n_bins, histtype='step', stacked=True, fill=False)\n", - "ax2.set_title('stack step (unfilled)')\n", - "\n", - "# Make a multiple-histogram of data-sets with different length.\n", - "x_multi = [np.random.randn(n) for n in [10000, 5000, 2000]]\n", - "ax3.hist(x_multi, n_bins, histtype='bar')\n", - "ax3.set_title('different sample sizes')\n", - "\n", - "fig.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fig.canvas.toolbar_position = 'right'" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fig.canvas.toolbar_visible = False" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Interactions with other widgets and layouting\n", - "\n", - "When you want to embed the figure into a layout of other widgets you should call `plt.ioff()` before creating the figure otherwise `plt.figure()` will trigger a display of the canvas automatically and outside of your layout. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Without using `ioff`\n", - "\n", - "Here we will end up with the figure being displayed twice. The button won't do anything it just placed as an example of layouting." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import ipywidgets as widgets\n", - "\n", - "# ensure we are interactive mode \n", - "# this is default but if this notebook is executed out of order it may have been turned off\n", - "plt.ion()\n", - "\n", - "fig = plt.figure()\n", - "ax = fig.gca()\n", - "ax.imshow(Z)\n", - "\n", - "widgets.AppLayout(\n", - " center=fig.canvas,\n", - " footer=widgets.Button(icon='check'),\n", - " pane_heights=[0, 6, 1]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Fixing the double display with `ioff`\n", - "\n", - "If we make sure interactive mode is off when we create the figure then the figure will only display where we want it to.\n", - "\n", - "There is ongoing work to allow usage of `ioff` as a context manager, see the [ipympl issue](https://github.com/matplotlib/ipympl/issues/220) and the [matplotlib issue](https://github.com/matplotlib/matplotlib/issues/17013)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "plt.ioff()\n", - "fig = plt.figure()\n", - "plt.ion()\n", - "\n", - "ax = fig.gca()\n", - "ax.imshow(Z)\n", - "\n", - "widgets.AppLayout(\n", - " center=fig.canvas,\n", - " footer=widgets.Button(icon='check'),\n", - " pane_heights=[0, 6, 1]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Interacting with other widgets\n", - "\n", - "## Changing a line plot with a slide" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# When using the `widget` backend from ipympl,\n", - "# fig.canvas is a proper Jupyter interactive widget, which can be embedded in\n", - "# an ipywidgets layout. See https://ipywidgets.readthedocs.io/en/stable/examples/Layout%20Templates.html\n", - "\n", - "# One can bound figure attributes to other widget values.\n", - "from ipywidgets import AppLayout, FloatSlider\n", - "\n", - "plt.ioff()\n", - "\n", - "slider = FloatSlider(\n", - " orientation='horizontal',\n", - " description='Factor:',\n", - " value=1.0,\n", - " min=0.02,\n", - " max=2.0\n", - ")\n", - "\n", - "slider.layout.margin = '0px 30% 0px 30%'\n", - "slider.layout.width = '40%'\n", - "\n", - "fig = plt.figure()\n", - "fig.canvas.header_visible = False\n", - "fig.canvas.layout.min_height = '400px'\n", - "plt.title('Plotting: y=sin({} * x)'.format(slider.value))\n", - "\n", - "x = np.linspace(0, 20, 500)\n", - "\n", - "lines = plt.plot(x, np.sin(slider.value * x))\n", - "\n", - "def update_lines(change):\n", - " plt.title('Plotting: y=sin({} * x)'.format(change.new))\n", - " lines[0].set_data(x, np.sin(change.new * x))\n", - " fig.canvas.draw()\n", - " fig.canvas.flush_events()\n", - "\n", - "slider.observe(update_lines, names='value')\n", - "\n", - "AppLayout(\n", - " center=fig.canvas,\n", - " footer=slider,\n", - " pane_heights=[0, 6, 1]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Update image data in a performant manner\n", - "\n", - "Two useful tricks to improve performance when updating an image displayed with matplolib are to:\n", - "1. Use the `set_data` method instead of calling imshow\n", - "2. Precompute and then index the array" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# precomputing all images\n", - "x = np.linspace(0,np.pi,200)\n", - "y = np.linspace(0,10,200)\n", - "X,Y = np.meshgrid(x,y)\n", - "parameter = np.linspace(-5,5)\n", - "example_image_stack = np.sin(X)[None,:,:]+np.exp(np.cos(Y[None,:,:]*parameter[:,None,None]))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "plt.ioff()\n", - "fig = plt.figure()\n", - "plt.ion()\n", - "im = plt.imshow(example_image_stack[0])\n", - "\n", - "def update(change):\n", - " im.set_data(example_image_stack[change['new']])\n", - " fig.canvas.draw_idle()\n", - " \n", - " \n", - "slider = widgets.IntSlider(value=0, min=0, max=len(parameter)-1)\n", - "slider.observe(update, names='value')\n", - "widgets.VBox([slider, fig.canvas])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Debugging widget updates and matplotlib callbacks\n", - "\n", - "If an error is raised in the `update` function then will not always display in the notebook which can make debugging difficult. This same issue is also true for matplotlib callbacks on user events such as mousemovement, for example see [issue](https://github.com/matplotlib/ipympl/issues/116). There are two ways to see the output:\n", - "1. In jupyterlab the output will show up in the Log Console (View > Show Log Console)\n", - "2. using `ipywidgets.Output`\n", - "\n", - "Here is an example of using an `Output` to capture errors in the update function from the previous example. To induce errors we changed the slider limits so that out of bounds errors will occur:\n", - "\n", - "From: `slider = widgets.IntSlider(value=0, min=0, max=len(parameter)-1)`\n", - "\n", - "To: `slider = widgets.IntSlider(value=0, min=0, max=len(parameter)+10)`\n", - "\n", - "If you move the slider all the way to the right you should see errors from the Output widget" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "plt.ioff()\n", - "fig = plt.figure()\n", - "plt.ion()\n", - "im = plt.imshow(example_image_stack[0])\n", - "\n", - "out = widgets.Output()\n", - "@out.capture()\n", - "def update(change):\n", - " with out:\n", - " if change['name'] == 'value':\n", - " im.set_data(example_image_stack[change['new']])\n", - " fig.canvas.draw_idle\n", - " \n", - " \n", - "slider = widgets.IntSlider(value=0, min=0, max=len(parameter)+10)\n", - "slider.observe(update)\n", - "display(widgets.VBox([slider, fig.canvas]))\n", - "display(out)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.0" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "state": { - "0f81ff97e38a42bc817642be40a5b088": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "1d8e39aba26f489797103338f306e335": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "1efdc4bda5354ce6bcbc85ca819d73b8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "24e2ab8df2aa4054a422b6eb7d7859e9": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.10.2", - "model_name": "ToolbarModel", - "state": { - "layout": "IPY_MODEL_c4d45a8399c743b7add76e74f0adb826", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "279f0e40c16545c5bcb022a49094102e": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.10.2", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 2", - "_size": [ - 849, - 404 - ], - "layout": "IPY_MODEL_552f3b6b01fd4b5a895043ef5cfaacab", - "toolbar": "IPY_MODEL_94887f7e218d4b04a2040405c07a7b9c", - "toolbar_position": "left" - } - }, - "2d24739c972445bab6f70b2faf60468e": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.10.2", - "model_name": "ToolbarModel", - "state": { - "layout": "IPY_MODEL_d6ca011c6b4848fca4f54792db6e1810", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "322845d53bbf41e48fff2d7e910aa7d9": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.10.2", - "model_name": "ToolbarModel", - "state": { - "layout": "IPY_MODEL_1d8e39aba26f489797103338f306e335", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "39cbc3da16394333823008a783e060fb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "3b60471eb1f8480fa0db1c7145d1c494": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "457678d86f794e3b9a39e9a2bfa11201": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "4941d1b8f23b49f7813b632ce98ac519": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "552f3b6b01fd4b5a895043ef5cfaacab": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "5da46e39b572491aa1e6500e6d05caa5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "648ad64458ab4dc584554cbc380d1275": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "666fb982887b40cb9f1a64df448b19cc": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.10.2", - "model_name": "ToolbarModel", - "state": { - "layout": "IPY_MODEL_39cbc3da16394333823008a783e060fb", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "7617b334eb8a4b56873315ec91fd5c0f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "7feed35324274f078384bd8b165dc7da": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.10.2", - "model_name": "ToolbarModel", - "state": { - "layout": "IPY_MODEL_1efdc4bda5354ce6bcbc85ca819d73b8", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "843c2da8ec7a4705a73d6bd933ce34cc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "89d3126f60b24c718efe76975c7c79e0": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.10.2", - "model_name": "ToolbarModel", - "state": { - "layout": "IPY_MODEL_3b60471eb1f8480fa0db1c7145d1c494", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "8f46a27a21324c5baac56bd42b7bda15": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "94887f7e218d4b04a2040405c07a7b9c": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.10.2", - "model_name": "ToolbarModel", - "state": { - "layout": "IPY_MODEL_0f81ff97e38a42bc817642be40a5b088", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "9ff732c97a084d2c80f06df8d8605102": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.10.2", - "model_name": "ToolbarModel", - "state": { - "layout": "IPY_MODEL_5da46e39b572491aa1e6500e6d05caa5", - "toolitems": [ - [ - "Home", - "Reset original view", - "home", - "home" - ], - [ - "Back", - "Back to previous view", - "arrow-left", - "back" - ], - [ - "Forward", - "Forward to next view", - "arrow-right", - "forward" - ], - [ - "Pan", - "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", - "arrows", - "pan" - ], - [ - "Zoom", - "Zoom to rectangle\nx/y fixes axis", - "square-o", - "zoom" - ], - [ - "Download", - "Download plot", - "floppy-o", - "save_figure" - ] - ] - } - }, - "b58647fae52d456c9c18a2eb9881afe9": { - "model_module": "jupyter-matplotlib", - "model_module_version": "^0.10.2", - "model_name": "MPLCanvasModel", - "state": { - "_cursor": "default", - "_data_url": "", - "_figure_label": "Figure 1", - "_size": [ - 932, - 409 - ], - "layout": "IPY_MODEL_8f46a27a21324c5baac56bd42b7bda15", - "toolbar": "IPY_MODEL_7feed35324274f078384bd8b165dc7da", - "toolbar_position": "left" - } - }, - "c4d45a8399c743b7add76e74f0adb826": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "cc665d7c08fd495fa15fd9c6b72149db": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - }, - "d6ca011c6b4848fca4f54792db6e1810": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": {} - } - }, - "version_major": 2, - "version_minor": 0 - } - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/pyproject.toml b/pyproject.toml index 02ab5bca..234fd2ab 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -5,7 +5,7 @@ build-backend = "setuptools.build_meta" [tool.pytest.ini_options] testpaths = [ - "examples", + "docs/examples", ] norecursedirs = [ "node_modules", diff --git a/setup.py b/setup.py index 5360058a..43481296 100644 --- a/setup.py +++ b/setup.py @@ -66,6 +66,16 @@ 'ipywidgets>=7.6.0,<8', 'matplotlib>=2.0.0,<4', ], + extras_require={ + "docs": [ + "myst-nb", + "Sphinx >= 1.5", + "sphinx-copybutton", + "sphinx-thebe", + "sphinx-togglebutton", + "sphinx-book-theme", + ] + }, packages=find_packages(), zip_safe=False, cmdclass=cmdclass,