Skip to content

Latest commit

 

History

History
280 lines (181 loc) · 9.74 KB

api-propagators.md

File metadata and controls

280 lines (181 loc) · 9.74 KB

Propagators API

Table of Contents

Overview

Cross-cutting concerns send their state to the next process using Propagators, which are defined as objects used to read and write context data to and from messages exchanged by the applications. Each concern creates a set of Propagators for every supported Propagator type.

Propagators leverage the Context to inject and extract data for each cross-cutting concern, such as traces and correlation context.

Propagation is usually implemented via a cooperation of library-specific request interceptors and Propagators, where the interceptors detect incoming and outgoing requests and use the Propagator's extract and inject operations respectively.

The Propagators API is expected to be leveraged by users writing instrumentation libraries.

Propagator Types

A Propagator type defines the restrictions imposed by a specific transport and is bound to a data type, in order to propagate in-band context data across process boundaries.

The Propagators API currently defines one Propagator type:

  • HTTPTextPropagator is a type that inject values into and extracts values from carriers as string key/value pairs.

A binary Propagator type will be added in the future (see #437).

Carrier

A carrier is the medium used by Propagators to read values from and write values to. Each specific Propagator type defines its expected carrier type, such as a string map or a byte array.

Carriers used at Inject are expected to be mutable.

Operations

Propagators MUST define Inject and Extract operations, in order to write values to and read values from carriers respectively. Each Propagator type MUST define the specific carrier type and CAN define additional parameters.

Inject

Injects the value into a carrier. For example, into the headers of an HTTP request.

Required arguments:

  • A Context. The Propagator MUST retrieve the appropriate value from the Context first, such as SpanContext, CorrelationContext or another cross-cutting concern context.
  • The carrier that holds the propagation fields. For example, an outgoing message or HTTP request.

Extract

Extracts the value from an incoming request. For example, from the headers of an HTTP request.

If a value can not be parsed from the carrier for a cross-cutting concern, the implementation MUST NOT throw an exception and MUST NOT store a new value in the Context, in order to preserve any previously existing valid value.

Required arguments:

  • A Context.
  • The carrier that holds the propagation fields. For example, an incoming message or http response.

Returns a new Context derived from the Context passed as argument, containing the extracted value, which can be a SpanContext, CorrelationContext or another cross-cutting concern context.

HTTPText Propagator

HTTPTextPropagator performs the injection and extraction of a cross-cutting concern value as string key/values pairs into carriers that travel in-band across process boundaries.

The carrier of propagated data on both the client (injector) and server (extractor) side is usually an HTTP request.

Getter and Setter are optional helper components used for extraction and injection respectively, and are defined as separate objects from the carrier to avoid runtime allocations, by removing the need for additional interface-implementing-objects wrapping the carrier in order to access its contents.

Getter and Setter MUST be stateless and allowed to be saved as constants, in order to effectively avoid runtime allocations.

Fields

The propagation fields defined. If your carrier is reused, you should delete the fields here before calling inject.

Fields are defined as string keys identifying format-specific components in a carrier.

For example, if the carrier is a single-use or immutable request object, you don't need to clear fields as they couldn't have been set before. If it is a mutable, retryable object, successive calls should clear these fields first.

The use cases of this are:

  • allow pre-allocation of fields, especially in systems like gRPC Metadata
  • allow a single-pass over an iterator

Returns list of fields that will be used by the HttpTextPropagator.

Inject

Injects the value into a carrier. The required arguments are the same as defined by the base Inject operation.

Optional arguments:

  • A Setter invoked for each propagation key to add or remove. This is an additional argument that languages are free to define to help inject data into the carrier.

Setter argument

Setter is an argument in Inject that sets values into given fields.

Setter allows a HttpTextPropagator to set propagated fields into a carrier.

One of the ways to implement it is Setter class with Set method as described below.

Set

Replaces a propagated field with the given value.

Required arguments:

  • the carrier holding the propagation fields. For example, an outgoing message or an HTTP request.
  • the key of the field.
  • the value of the field.

The implementation SHOULD preserve casing (e.g. it should not transform Content-Type to content-type) if the used protocol is case insensitive, otherwise it MUST preserve casing.

Extract

Extracts the value from an incoming request. The required arguments are the same as defined by the base Extract operation.

Optional arguments:

  • A Getter invoked for each propagation key to get. This is an additional argument that languages are free to define to help extract data from the carrier.

Returns a new Context derived from the Context passed as argument.

Getter argument

Getter is an argument in Extract that get value from given field

Getter allows a HttpTextPropagator to read propagated fields from a carrier.

One of the ways to implement it is Getter class with Get method as described below.

Get

The Get function MUST return the first value of the given propagation key or return null if the key doesn't exist.

Required arguments:

  • the carrier of propagation fields, such as an HTTP request.
  • the key of the field.

The Get function is responsible for handling case sensitivity. If the getter is intended to work with a HTTP request object, the getter MUST be case insensitive.

Injectors and Extractors as Separate Interfaces

Languages can choose to implement a Propagator type as a single object exposing Inject and Extract methods, or they can opt to divide the responsibilities further into individual Injectors and Extractors. A Propagator can be implemented by composing individual Injectors and Extractors.

Composite Propagator

Implementations MUST offer a facility to group multiple Propagators from different cross-cutting concerns in order to leverage them as a single entity.

A composite propagator can be built from a list of propagators, or a list of injectors and extractors. The resulting composite Propagator will invoke the Propagators, Injectors, or Extractors, in the order they were specified.

Each composite Propagator will implement a specific Propagator type, such as HttpTextPropagator, as different Propagator types will likely operate on different data types.

There MUST be functions to accomplish the following operations.

  • Create a composite propagator
  • Extract from a composite propagator
  • Inject into a composite propagator

Create a Composite Propagator

Required arguments:

  • A list of Propagators or a list of Injectors and Extractors.

Returns a new composite Propagator with the specified Propagators.

Extract

Required arguments:

  • A Context.
  • The carrier that holds propagation fields.
  • The instance of Getter invoked for each propagation key to get.

Inject

Required arguments:

  • A Context.
  • The carrier that holds propagation fields.
  • The Setter invoked for each propagation key to add or remove.

Global Propagators

Implementations MAY provide global Propagators for each supported Propagator type.

If offered, the global Propagators should default to a composite Propagator containing the W3C Trace Context Propagator and the Correlation Context Propagator specified in api-correlationcontext.md, in order to provide propagation even in the presence of no-op OpenTelemetry implementations.

Get Global Propagator

This method MUST exist for each supported Propagator type.

Returns a global Propagator. This usually will be composite instance.

Set Global Propagator

This method MUST exist for each supported Propagator type.

Sets the global Propagator instance.

Required parameters:

  • A Propagator. This usually will be a composite instance.

Propagators Distribution

Propagators implementing officially supported protocols such as B3 Propagation Specification MUST be maintained by the OpenTelemetry organization and MUST be distributed as OpenTelemetry extension packages.

Additional Propagators implementing vendor-specific protocols such as AWS X-Ray trace header protocol are encouraged to be maintained and distributed by their respective vendors.