diff --git a/lectures/notebooks/3_gaussians.txt b/lectures/notebooks/3_gaussians.txt index 57e067d..2403c99 100644 --- a/lectures/notebooks/3_gaussians.txt +++ b/lectures/notebooks/3_gaussians.txt @@ -1,300 +1,300 @@ --6.408041473555980971e-01 -5.723186502007835408e-01 --3.177219323597087475e-01 -7.122090632834823243e-01 --3.385578727432826396e-01 9.620902545395271233e-01 --7.260297750315267695e-01 -1.396713471713835641e+00 -2.285416048902957908e-01 -6.277431346781449373e-02 --3.878808370611541712e-01 7.146056889859534467e-01 --4.963341353858031768e-01 -2.262725429199375360e-01 -2.161313589296431359e-01 -2.196571405352865103e-01 --8.684619551749402089e-02 -6.118942192229204213e-01 -1.190223688586738549e+00 1.503387319592821347e+00 --2.928474425299609774e-01 -2.798150425280272469e-01 -1.013011738613936785e+00 8.209097861168821453e-01 -1.008338893949728643e+00 6.809791792981340075e-01 -9.094322012865321270e-01 1.692364378417013704e+00 -8.206133756406386315e-01 6.339135759330729591e-01 -8.610980147295193010e-01 -6.750129499754211615e-01 -1.123779588270359842e+00 -8.939309773963797015e-03 -8.853960114730201336e-02 3.390964444155341040e-01 -3.201392406518741574e-01 1.985978030960283691e-01 --8.670765876245098425e-02 -4.964692915360982006e-01 -4.553731632010700192e-01 5.919155646587814790e-01 -5.121197755915014582e-01 2.984434590884296190e-01 -9.964915972624677210e-01 -6.624587420076770705e-01 --1.227936137764220170e+00 -7.617662263918394405e-01 -7.155168076569021762e-01 -3.003397605897275002e-01 --1.428892071271190334e+00 -6.448987046098220155e-01 -1.414317947047397661e+00 2.248193268501294251e-01 -5.174290402737349304e-01 1.215342786207385783e+00 --6.360666639252124943e-01 1.456627101000614911e-02 -1.525669504670348897e-01 -7.822504137775108113e-01 -3.626908097818493104e-01 -4.702251479725595429e-01 -4.507170194634831928e-01 1.462136238475875816e+00 --5.445787081571757948e-01 -7.456356438939066855e-01 --9.063601676219872338e-01 1.194499797895654858e+00 --1.026504759475637574e+00 -1.001105729493385166e+00 -1.247210438685572714e-01 -9.955902190823731068e-01 --3.800032588640454012e-01 5.252528743973879921e-01 -1.633741730385646074e-01 -3.038771044979770020e-01 -2.569753285315885538e-01 -1.184898692489647409e+00 -7.492497684077627229e-02 2.180707723133218923e-01 --2.492918938437772569e-01 -7.836292684038193013e-01 -1.520355829841733564e-01 -1.183595312088840501e+00 --4.715885041323120141e-01 1.064409344730929963e+00 --5.339632044493822782e-01 3.087583066711279134e-01 -1.166391408047619871e+00 -1.001541713100876141e+00 --8.370283093205581615e-01 2.734715336673719799e-01 --1.041410263146149484e+00 -6.916346021944335121e-01 -1.151913186125315569e+00 -1.345439411576001554e+00 --1.401988337358314185e-01 -2.131821797988703304e-01 --6.022117190039364409e-01 6.512450532073704723e-02 --6.630514422174943467e-02 2.373535283745858426e-01 -2.121416398482486587e-01 8.161571162335524710e-01 --2.366258975840639933e-01 -9.749041003962223562e-02 -7.984749813158465992e-01 -5.537529860863409092e-02 --7.064557056819717462e-02 -6.758681695342549922e-01 --1.148715695846798668e-01 7.873358218829461519e-01 --6.539440935375667729e-01 9.462216214285521509e-01 --1.658411929296333409e-01 1.994977994785594455e-01 -3.649284083394973566e-01 -1.869857705618931165e+00 --3.580848459797971173e-01 -9.069448574667984264e-01 -4.208105304825214832e-01 1.673078518287541172e+00 --2.362495228506946154e-01 -5.247729832229037772e-01 --5.660064368577710781e-01 1.165157452338811517e+00 -5.614252766509946202e-01 6.534720815174480668e-01 -1.736865826562995485e-01 -2.408108957900636712e-02 -1.404941222670985868e+00 1.136445253299502189e+00 -6.897436877584603998e-01 -4.232731918759755629e-01 -7.919036130484360392e-01 -3.943164234936453738e-01 --6.963282246314409507e-01 -1.093422940457716486e+00 --1.161134031651647192e+00 1.651282427891438975e-01 --8.266978891366278948e-01 -2.518010988540546613e-01 --1.707151322690721340e+00 -3.096468347110686858e-01 -1.060375927978268962e+00 1.441648627465661192e-01 -8.213682443917863507e-02 -9.784509713902025396e-01 -1.230355155451348381e-01 9.569860152140205467e-02 --3.651616635588893489e-01 -7.995990611659996583e-01 -1.108364377200654616e+00 9.580394135842234052e-03 --1.576700667577362047e+00 -2.463861091495957167e-02 -7.356255777471362167e-01 -9.586700818306976846e-01 -1.009834357959656037e+00 -1.214431032994655713e+00 --7.849850872983159256e-02 7.702481529893759893e-01 -1.499933052526013499e+00 4.821031556147688524e-01 -8.804276665823820291e-01 1.001138203453138864e+00 --1.053028557387536146e-01 -4.212226735612092932e-01 -6.827234341102830784e-02 -2.020309391674582344e-01 -3.889226762403236171e-01 -4.511942535371203933e-01 -6.184950991710014279e-01 1.454373099235881650e-01 -3.832047158231330908e-01 -1.505169070656390495e+00 -9.321813385258795881e-01 -5.395871805683519207e-02 --8.618089766682266450e-01 1.288922775603257742e+00 --6.101550654274520147e-01 8.313212174852315783e-01 -3.314170897496203638e-01 6.249662902547835630e-01 -7.037239179844015924e-01 -6.212510102397221790e-01 --5.698442718688858655e-01 2.505652833510200184e-01 --4.933715321791944941e-01 3.256397378765181760e-01 --6.510500378588560677e-01 1.001016285550178742e+00 --6.213214853680824046e-01 -8.823205715711215369e-01 --1.712454216712821775e-01 9.027451350320468693e-02 --1.046681459912000678e+00 -1.742585909482057271e-01 --1.276744245030570823e+00 -2.648917435794514441e-01 -5.655735418994624730e+00 1.419878863514432432e-01 -4.424770632636267464e+00 2.360078962981766004e+00 -3.435045082451789966e+00 -8.916415980586110956e-01 -5.024149569546542793e+00 -1.899559681792065968e-01 -4.095522917387169670e+00 -9.832045159520002020e-01 -5.118657402747903262e+00 3.852901941503491523e-01 -4.407195385291583278e+00 -1.450495541385343312e+00 -3.514127833888601060e+00 -7.808943166241970602e-01 -6.470632962453056081e+00 7.325079972450582178e-01 -4.853157531970778038e+00 1.434874637086337668e+00 -4.274736857480418095e+00 7.096888318798479922e-01 -4.983093482609332270e+00 1.044551623490827641e+00 -4.187023049835542743e+00 -4.486611946094916092e-01 -4.306585721031397362e+00 -9.092268120146880239e-01 -6.657004376122815259e+00 -5.438915584175648688e-01 -5.581631908429643296e+00 1.398314966074518217e+00 -4.452662174458279054e+00 2.395050431230338062e-01 -5.229270441200950970e+00 -1.434935492817613137e-03 -4.149121144812591311e+00 -8.960565191038692978e-01 -6.200551925926562014e+00 -3.431747944967256658e-01 -5.366374824165280444e+00 -2.369601355947497379e-01 -5.963849058244840684e+00 -1.875117972383493870e+00 -3.931031722188297550e+00 -9.686892764382120102e-01 -6.136434216235612915e+00 -1.061608969825216936e-01 -4.043260337624431600e+00 -1.274392366593165571e+00 -4.805384707287966961e+00 8.959321705503039412e-01 -6.151251912786754872e+00 -3.837202157352349180e-02 -4.579328372500341970e+00 5.024141543378605190e-01 -5.209794714501210677e+00 -4.589703219336787043e-01 -5.175033710906149054e+00 -2.063087672818599838e+00 -5.599127495476644789e+00 -4.630019230762642546e-01 -6.016410363179538479e+00 3.899413450939400588e-02 -5.036657127250163235e+00 -1.416057491761148368e+00 -4.155270881896250046e+00 -1.758033970092516829e-01 -4.256957192570199666e+00 -1.927005037774302432e+00 -6.088612735695940970e+00 -3.088006791536713203e-01 -3.872310653070839770e+00 1.378765044874454559e-01 -6.522735161773104196e+00 5.071243795033382185e-01 -5.586169195343981819e+00 5.340142579025016767e-01 -3.487708128792090800e+00 -1.059120757961297787e+00 -5.719122610162529874e+00 1.898622445879795118e+00 -5.622135970450760745e+00 1.981488250322128997e-02 -5.239538735438908468e+00 -8.515001867839746552e-01 -4.835772318728976060e+00 -4.523634232700378122e-01 -4.512450005116203755e+00 -2.314295916868838732e-01 -3.988295060456095165e+00 3.880234470825401627e-01 -5.507930242556188460e+00 -6.253651997452246425e-01 -6.551369620957479434e+00 -8.001331742703395866e-01 -3.842652903679137477e+00 2.257224968696487810e+00 -4.434594332270359374e+00 -2.060718529188338421e-01 -4.203611063286999183e+00 7.273502510387411801e-01 -4.537394979799880268e+00 -1.265172341743581619e+00 -5.607524443133717007e+00 2.754213312053804263e-01 -5.078449257098088587e+00 2.458212945155222040e-01 -4.219330772029390886e+00 -8.498713331988484720e-02 -3.373171078436539183e+00 8.464309674844407994e-01 -5.242850159682653555e+00 6.347233875875817333e-01 -5.920553857809698783e+00 1.932491362093448350e-01 -4.137565231321143067e+00 -8.095905419810789372e-01 -5.638932284011509921e+00 7.905226729437282718e-03 -3.620778872164971407e+00 -4.407213144940819866e-03 -6.141765209601397046e+00 -7.906663400198774005e-02 -6.045189738432201310e+00 1.919981116950344679e+00 -5.036794061125054789e+00 -1.574124246326911170e+00 -5.895007787029158841e+00 -9.184705370639117961e-01 -7.257885282319366915e+00 4.483069491503796078e-01 -6.755778654269247951e+00 2.031207630708648626e+00 -6.211302587180766110e+00 -8.490377245895868175e-01 -4.896717379240343782e+00 5.667728037292446563e-01 -4.603993676367781340e+00 -4.705621452773195990e-01 -4.457386531321426482e+00 7.558604689680629152e-01 -5.653479423842571627e+00 2.765273011141983206e-01 -6.102354383478779454e+00 -5.258995357573811313e-01 -3.277754077841977143e+00 -5.707922635697167957e-01 -4.714972587290576556e+00 -1.795453936734775713e+00 -5.385038058417413787e+00 -2.970029739411816361e-01 -2.786261295944397087e+00 1.029642775285009249e+00 -4.934047963143933124e+00 1.373729659697241923e+00 -4.048256473654202381e+00 1.036678802899005047e+00 -7.803376673530841856e+00 -1.625169505717790175e+00 -5.190420365704110139e+00 8.834736505326691303e-01 -5.262515643410594635e+00 2.374494376640856164e+00 -3.039449538897549097e+00 -7.098852834567195291e-01 -4.296423697923515306e+00 -2.356380625396959638e-01 -4.754861370956680489e+00 -4.399197197873461196e-01 -4.829461148029906781e+00 -9.771859436619956263e-01 -4.399876084214512595e+00 2.987798478209390818e-01 -4.825968616553938162e+00 -7.609415788055912122e-01 -4.867065267456601063e+00 -2.090382672522858309e-01 -3.926770809328356204e+00 6.902156379494076566e-01 -5.199827547570948560e+00 -5.362119479396088018e-01 -3.805741214160208052e+00 4.340464332347687137e-01 -4.682977924437791373e+00 8.906735498172647647e-01 -7.171129584902691256e+00 1.019927827175377777e+00 -3.618160124177295156e+00 -1.044114637352312913e+00 -5.706612347147967057e+00 -1.100597512562615510e+00 -5.215266336448981299e+00 2.493278156845246951e-01 -5.678991223339176386e+00 -5.082930516435599788e-01 -3.624429848323825976e+00 1.489448135109004312e+00 -5.946466410322903684e+00 7.565666615926847083e-01 -1.357834253513078071e+00 6.349929930309006210e+00 --1.859160415725991777e+00 4.438568620160327605e+00 -1.047616790002660059e+00 3.481047158586690671e+00 --1.244814906625478779e+00 3.466094338614492454e+00 -6.667913663553753922e-01 5.519500893772931960e+00 -1.410043291064762006e+00 7.169190653149559722e+00 -1.798191340665200144e+00 6.104015807130878102e+00 -1.552752736547155232e-01 3.152004608027161758e+00 -2.011003023116130439e+00 5.037342520073042174e+00 -2.684015667140933203e+00 3.619947687316598106e+00 -2.772287233168803766e+00 5.790166301554860340e+00 --6.276815964966147021e-01 6.310601950779343383e+00 --5.359721165038444646e-02 4.730183134231566555e+00 --3.973529225434513368e-01 2.879455122615831364e+00 -1.791886791284634572e+00 4.156243965469524682e+00 -2.597070650834204519e-01 6.142073241779116621e+00 --5.669333478078788513e-01 5.250143671665943756e+00 -1.613085256255043232e-01 3.657019477606851421e+00 -7.588050767939942265e-01 3.975848035397514302e+00 -7.145818925000526622e-01 6.479969285705966087e+00 --2.163188264572113884e+00 2.680692582162421012e+00 -9.829382659671672684e-01 2.780408365877376831e+00 -9.504926367495829254e-02 4.999415796373192222e+00 --8.398004478161416597e-02 5.010954156421218109e+00 -2.563272653364666809e+00 5.219708124327659071e+00 -6.456794622422812324e-01 2.639624990647580383e+00 -3.884919913162457883e-01 6.165732837505601083e+00 -6.552992065093925511e-01 3.602269685136235466e+00 --8.504373277709653678e-01 3.960381778447890522e+00 --2.754372488541565467e+00 4.452341994974171158e+00 -2.665364113424983472e+00 7.904118326444639742e+00 --1.256084860775125378e+00 5.181625234303636418e+00 -1.802068398309595532e+00 7.174867850681335923e+00 -1.160239762636074090e+00 6.788875630402632311e+00 -2.546541426897630078e+00 6.625402999281167382e+00 -1.611882994417850323e+00 5.661006609674691603e+00 -2.197996536829606384e+00 3.565212547413993072e+00 -1.940567378894232586e+00 6.393224569084885900e+00 --9.187921137383894266e-01 3.339424334214037504e+00 --1.091949842418131311e+00 6.547223757892608020e+00 -2.417605963717390227e-01 5.486625821098044753e+00 --2.381991543548592105e+00 5.081036339717089234e+00 --1.281938383774756884e+00 3.232049505936029021e+00 --3.401949669525205500e-01 5.919751190685899722e+00 --1.643876560825825894e+00 7.350518974422676877e+00 -7.223638234256719581e-01 5.009497085587033105e+00 --5.252282075389880234e-01 7.713356004690105294e+00 --2.332740035424467340e-01 3.652637595658695613e+00 --2.563411256001655314e-01 5.149476475532330788e+00 --5.423681608026853507e-01 6.893958338565525423e+00 -6.429836824271824014e-01 8.657687623087090500e+00 -5.482777835517396170e-01 4.050416973988038016e+00 --4.168311335196693834e-01 1.959776459788121095e+00 -5.518508896129624697e-01 4.715495668042012589e+00 -1.291821646180984162e+00 4.315427716452219897e+00 --1.391005857243526656e+00 5.013936687450413210e+00 --4.445366711500757240e-01 4.459847124030055454e+00 --2.198379237229760100e-02 6.100727014586794894e+00 -1.998559584655831278e-01 1.637958587667646349e+00 -1.442301700561739342e+00 7.054476091540110794e+00 --1.549555987985409278e+00 3.277992028178077000e+00 -1.544199013339853988e+00 3.296632289677984051e+00 --4.996924929211898347e-01 2.107046699030079129e+00 --1.077794601666330454e+00 5.399574362871305766e+00 --5.683325176585686256e-01 5.442815367979907393e+00 -3.505214556648636459e-01 3.225353478503488969e+00 -2.478639259150230978e-01 6.418750861648444328e+00 -2.081047912096281038e+00 5.120570227804615016e+00 --2.853686720967732349e+00 4.985372915759545442e+00 --3.109817852770959234e+00 7.135764634435759035e+00 -8.657057410594639624e-01 4.342513764736574799e+00 -1.582595397751267896e+00 3.782570785737568109e+00 --2.778441537365298863e+00 3.189654197136899683e+00 --1.340054254309404058e-01 4.625050383529399234e+00 --2.251679333728416665e+00 6.096010283080041781e+00 --1.512203686418549520e+00 6.797138223687846370e+00 --4.427374314032423985e-01 5.691098680933100340e+00 --7.686795425751904443e-01 4.532042354890521985e+00 --3.283915502052404456e+00 6.515593289315075864e+00 --2.265654224529854766e+00 6.308759257848164381e+00 --3.183867689203891960e-01 5.466736137338860324e+00 -4.280711360989969405e-01 6.167650773016095656e+00 -1.839504174505443679e+00 3.590370630927946394e+00 -1.753138866733246370e+00 6.154674655760467239e+00 -6.331062695539272367e-01 5.829203187309961898e+00 -1.723725743922986053e+00 5.414644335975276057e+00 --1.372347566185728729e+00 5.731215792576320744e+00 -2.558190104957348332e+00 5.264232358298543524e+00 -1.802757117891321759e+00 6.572717044255272256e+00 --3.118733963508278695e+00 6.245964861528905843e+00 --2.738758006258600108e+00 7.003151705913198910e+00 --4.257646540744246533e-01 4.966842702189190994e+00 --7.691887305419562448e-01 7.513371779093297675e+00 -2.982179924033722784e+00 6.281136290321219562e+00 --2.051796834369506772e+00 4.421025336277946138e+00 --2.485896332065118397e+00 6.389821500008386224e+00 --1.854065117337617696e+00 3.950564447644030697e+00 -1.572359765496450734e+00 3.939749225156149226e+00 --1.495696863091270146e+00 1.918323003780621150e+00 --1.984057050267490352e-02 4.934971457626676106e+00 +7.557267793765780617e-01 -8.768105698982137097e-01 +3.468822066337313298e-02 1.207281028433848657e+00 +1.122180986869723451e+00 7.348971348187318675e-01 +-1.499749629051811695e-01 4.344217570745372292e-01 +-1.332416125474237489e+00 3.085301249352730979e-01 +4.616923963612721282e-01 -7.283912395993594191e-02 +-3.012219983736267870e-01 1.511052514200629249e-01 +-2.459636334294540427e-01 1.280203001340275870e+00 +7.582885279366624598e-01 -5.814911977326465697e-01 +-7.499666994330507208e-01 9.805949667480327037e-01 +8.971011288698167441e-01 -7.212982292411725949e-01 +-1.284712073818885081e+00 5.195874448090483932e-01 +4.641317193037102773e-01 -6.174991948066630432e-01 +-4.399977522957432274e-01 -4.941404006722116549e-01 +3.029245531093543997e-01 6.459757792321039194e-01 +-2.331248216164651110e-01 4.525721922679309395e-01 +1.332126270177070415e+00 -7.159160797461070480e-01 +-3.560737470380576086e-01 -1.990644308753747871e-01 +3.031735150199389994e-01 1.383275520499393174e+00 +1.814274781927026847e+00 -2.176174969193125919e-01 +3.092407441977733651e-01 -3.362858529036749089e-01 +2.568981855926985025e-01 4.009653895995882733e-01 +-1.227661920799434370e+00 -3.028940369913294961e-01 +3.801914312310200605e-01 -7.050020376160530677e-01 +-4.516431666711208104e-01 -1.110893665590769741e+00 +9.385246702705223321e-01 7.864004116044214232e-01 +6.929293543435313119e-01 1.726811837736690058e-02 +-6.249553666548524067e-01 9.756166900058485525e-02 +-2.126863821717266123e-01 3.159086976197771346e-01 +8.105732021358931227e-01 1.218464065981102795e+00 +-3.758993146310466438e-01 8.429083381233202221e-01 +1.380313285368957033e+00 -3.297564335926515822e-02 +-6.845231101213858915e-01 -1.254915325176083618e+00 +-1.661112101830802268e-01 -5.777163493872549127e-01 +7.853885001698110990e-01 -1.808117622913261613e+00 +1.460322382796496177e+00 1.232909213998570896e+00 +-4.987315553338736995e-01 9.109296262154911727e-02 +5.443877767415011837e-01 1.157592833188918202e-02 +-2.475271611656037485e-01 6.806656472823606752e-01 +1.741035759618858592e+00 -8.754526855921351824e-01 +1.233670787922654721e+00 2.662520031480195004e-01 +6.134141379400745997e-01 -1.120477143785505003e+00 +9.822016955879106503e-02 4.556423895363987953e-01 +2.148335273531938039e-01 -6.989777415412568029e-01 +3.278385567550337054e-01 1.367348790472627140e+00 +-4.551693716329145711e-02 5.201093672175307603e-01 +-1.105015839396456645e+00 -5.991770375368532520e-01 +8.706584361754376999e-01 -8.688770742011753256e-02 +3.650159592718512647e-01 -1.681488789542405105e+00 +-2.961643784043232336e-02 -5.141185038321652648e-03 +5.087137844887265059e-01 -5.173391255072219419e-01 +3.968803580325881986e-01 -8.323219815086985163e-01 +6.480068443811762280e-02 8.697911453798734538e-01 +-4.168049663907341662e-01 -8.763486231760205802e-01 +-3.754126072322859775e-01 -1.220332746614024799e+00 +4.516236997693084954e-01 5.962590239077226739e-01 +-9.664726390328524097e-01 9.364614492105952093e-02 +-3.357469026739312579e-01 -2.113583751507014108e-01 +-4.542559369661258173e-01 6.456246989154774685e-01 +5.253410733171591795e-01 -3.481119374271079425e-01 +5.988014943093254716e-02 2.028403410512920613e-01 +5.706283862307565125e-01 8.083789102925020842e-01 +-6.402193688274740446e-02 8.515774404248693807e-02 +-1.903486186462005625e-01 8.301544479566045354e-01 +-4.094699778004006196e-01 2.246110876174867710e-01 +4.673635148496950720e-01 1.123541045262624882e+00 +6.687801689421759566e-01 9.753255573977384074e-01 +-4.025769061894290957e-01 -1.046097949018912482e-01 +3.033497532056526058e-01 -4.349375860929722837e-01 +-2.448537602823421255e-01 4.244766628760568983e-01 +-4.545720072498306008e-01 8.471541454546949179e-01 +8.101095804286064794e-01 -4.792112095103516767e-01 +1.777439744548365841e-01 1.354878281419008346e+00 +-1.299110580473845922e-02 1.586659565303569774e-01 +7.106862676402561085e-01 -7.860254770324219820e-01 +-1.174690480749855048e+00 1.232384529478407487e+00 +8.505095660887891373e-01 4.043400784819907445e-02 +4.659677055050725492e-01 5.512707027759347067e-01 +1.099640913932225850e+00 2.616400252613951261e-01 +-3.821685958435192543e-01 -6.294308170175016981e-01 +-2.043564490098432884e+00 -2.634690370454283864e-02 +-5.539487343250455442e-01 2.257447701538762286e-01 +-2.735195014462501462e-01 -3.346316000820955261e-01 +-9.481364575265651684e-01 -3.660927549241825285e-01 +6.547581318400768069e-01 9.044998524793284034e-01 +-1.891698542292435392e-01 3.313216607431080929e-01 +-8.745405375176577845e-02 1.107095540983905169e+00 +2.576958140165009348e-01 -1.086923415583784136e+00 +1.172596430706959847e+00 -8.535363861384965833e-01 +2.156308945190163820e-02 -7.873618957196895640e-02 +6.461623223641725644e-02 -1.100965430376566578e+00 +1.472914193524202497e+00 5.850013137244265693e-02 +4.608653790264574113e-01 -9.138234215028570584e-02 +9.667913396474001608e-01 3.259886366225488996e-01 +-1.475651928454026596e+00 3.569482902817857073e-01 +-7.060209171136955231e-01 -6.526169960413041871e-01 +-5.932403089392885853e-01 -7.897816983917770317e-01 +-4.511792079275795952e-01 1.128225547091385117e+00 +1.689492652468044476e+00 3.124675481927550735e-01 +-5.265265336659026921e-03 8.267813191576478538e-01 +4.640521857210806012e+00 1.853516787328877591e+00 +5.454898122570686958e+00 2.394570533655168698e-01 +5.542811864465420513e+00 2.142462487233342205e+00 +4.544891526141400462e+00 -6.631593518983852631e-01 +3.453009412213203788e+00 -1.674947765755936180e+00 +5.896287086057689919e+00 -1.229146027238318117e+00 +4.679845284301274333e+00 -4.055386490715960357e-01 +5.632386871319785548e+00 -1.652639027558392648e+00 +7.409701673088882501e+00 8.532763795753848246e-01 +5.603872762558140153e+00 3.160800929870847403e-02 +5.252053802605494148e+00 -2.079140030245266946e+00 +6.023708324818079163e+00 -3.722363639035480842e-01 +5.551913652990618786e+00 1.015403690247872692e+00 +4.074480739725122369e+00 8.551858686186041281e-01 +5.428805459581476534e+00 -3.158262867536894974e-02 +4.940022020269450920e+00 -2.564982632309035226e-01 +5.421380276943335019e+00 3.906489979848922212e-01 +5.007871112527678470e+00 3.048414332375630753e-01 +4.623866560399314984e+00 1.974246006583723734e+00 +4.683962932543097146e+00 2.270129664682625781e-01 +4.625552549552446990e+00 -3.206327121328638174e-01 +5.503190453872748300e+00 1.990557465438549611e+00 +5.435186726761609854e+00 -2.034693508300492726e-01 +2.143024497403485107e+00 -1.650248549388406427e-01 +5.767110686073542603e+00 3.236024584930518033e-01 +6.465344822428876981e+00 1.048886523482046029e-01 +4.767764296628221210e+00 -2.940000064623110809e+00 +6.268156727044292609e+00 8.538134069550002980e-01 +5.212757783392522271e+00 -7.694002545875165966e-01 +4.539658806246455569e+00 -1.032408513249151838e+00 +5.799320355566067065e+00 4.674640458017186861e-01 +4.975523494718832040e+00 -9.109260836551564822e-01 +4.957860127370337544e+00 1.423209590006340619e+00 +4.222052711412701775e+00 4.961245862080504443e-02 +4.297711681985439292e+00 -3.188104264497839679e-01 +5.086062278119722002e+00 -1.231117724835559368e+00 +4.634068528278272758e+00 2.316505226701297104e+00 +5.059085443946885086e+00 -1.464955029322819957e+00 +5.477254938621487490e+00 1.202540739862674180e+00 +4.209821108041193582e+00 8.053414212741095979e-02 +3.256450360468098992e+00 9.771919848471116721e-01 +4.329371108215202213e+00 6.421893380399369411e-01 +5.582145844576817950e+00 1.993316653652622561e+00 +4.446212558599153652e+00 -7.675301039343722653e-01 +3.383104913388295998e+00 -8.226350479701864948e-01 +5.741664282555619003e+00 2.213993879352665894e-01 +4.032256721147060574e+00 4.280338602986013541e-01 +5.452392306439742597e+00 -1.767266861534980138e-01 +5.174428606565705913e+00 8.356586675740216297e-01 +5.070923015505861109e+00 2.224479716458990508e-01 +3.936461354610344188e+00 -8.006339627172422979e-01 +5.337385693053555258e+00 9.289470585695633886e-01 +6.159033445600660350e+00 1.954744654542195592e+00 +2.805705369178012276e+00 1.169509996459573209e+00 +5.502215292884041098e+00 6.601769422167429457e-01 +5.351947366231499359e+00 7.428655231355500987e-01 +5.469046279349850437e+00 -8.665117414908896087e-01 +6.547573333418455377e+00 -1.898889501996127160e-01 +3.784518902678691621e+00 1.603575420957190634e+00 +5.282399538852990517e+00 3.447891140473124949e-01 +5.149813456513170351e+00 -2.386979936252507928e-01 +6.346207134792604343e+00 4.429354976637543961e-01 +4.503762704556217855e+00 -6.326339556778732831e-01 +5.064476476067227395e+00 1.078775218593809981e+00 +3.831865369473595351e+00 1.002682633924818933e+00 +6.155848562312000283e+00 -8.344176472937085975e-01 +6.954470356283866117e+00 9.004124722469970532e-01 +6.323993538930480440e+00 1.441847983067951366e+00 +4.304719981317834510e+00 2.627345453897489413e-02 +6.083121022978084547e+00 -8.478965089322531012e-01 +4.283712413132494845e+00 -1.907085822850303591e+00 +4.248039781717802832e+00 -1.818800449596107149e-01 +3.691958204284150558e+00 -6.430831905046310304e-01 +5.594690381453509609e+00 -1.770338610129275070e+00 +5.780613421013052644e+00 1.223459990379212492e+00 +4.542326056601295292e+00 1.297090090690235231e-01 +5.357736301548761126e+00 -4.505949152791957624e-01 +3.557726487720457964e+00 9.317200817834190296e-01 +3.834523361759408555e+00 1.530892484396596531e+00 +4.565139612124286650e+00 2.115771468181387061e+00 +4.924935041580636330e+00 -1.394677025214436483e+00 +6.002646359541151000e+00 1.025732141395323677e-01 +5.740885236024360516e+00 -4.873775787091195744e-01 +4.117905812242269370e+00 3.525011890015939953e-01 +4.631574131527623095e+00 -6.638349022673765143e-01 +5.797647859503167744e+00 9.084424854902958257e-01 +4.717753673508918943e+00 1.865424946604613554e+00 +3.568604050587075527e+00 1.130684460566723226e+00 +4.724269526025370425e+00 2.661536814828258102e-01 +2.673408979610603087e+00 -3.185959955656073039e-01 +6.560139262782320735e+00 4.466510897991469164e-01 +5.086352353129239390e+00 -1.118206802571512393e+00 +4.410790577006430624e+00 -2.579811251391909144e-01 +5.581313269768150676e+00 -4.379049760301441663e-01 +5.848504030585087499e+00 -6.389692384252732005e-01 +5.257751010637918831e+00 7.249746360553794844e-01 +5.489004293800026524e+00 2.813751195306610775e-01 +7.622058328260225224e+00 -1.958339598876432941e-01 +3.846735705199963995e+00 -4.752739638217734486e-01 +6.456949613122698217e+00 -1.459108588643154070e+00 +9.588273384338609137e-03 5.385817995447188089e+00 +-2.105445018346348895e+00 6.072759764117171777e+00 +-1.733148972596500137e+00 5.037816620774586696e+00 +-1.106050936557581910e+00 7.922485424240335306e+00 +1.762474692619639960e+00 6.233124131747164398e+00 +2.891767008125939675e+00 4.913065687669261550e+00 +-1.865194772135930545e+00 6.191938552638914572e+00 +-1.492056308746425586e-01 3.884838959369783851e+00 +-1.378084802343420342e-03 4.056404099638868388e+00 +-1.934863162884538079e+00 5.376349924447403339e+00 +3.919135262142254827e-01 8.014780153154031694e+00 +-5.769994159679187051e-01 7.154102985011315141e+00 +-1.605098312561022755e+00 5.701967548172695466e+00 +-1.022941531013908945e+00 1.916863338904270631e+00 +-1.230711826944603793e+00 6.187366846814255084e+00 +-1.106296446598554084e+00 5.339390993625807269e+00 +-7.851031182740673131e-01 6.515521248835431933e+00 +-2.670765094166828835e+00 5.820062871554177342e+00 +1.798722168029497082e-01 4.870750675793821927e+00 +-1.656326983163181055e-01 5.893297180772000488e+00 +-5.453198967750515491e-01 5.667957277861896515e+00 +-8.004299321495856878e-01 6.317311015761054804e+00 +-1.710758995678710870e-01 6.475480143330132776e+00 +9.292013700247008234e-01 6.085560733327698202e+00 +1.479774809090448340e+00 5.346497484221376162e+00 +1.150132287844887413e+00 5.444274948814986637e+00 +-1.240868842672992578e+00 3.546517162145085056e+00 +6.253635892737496871e-01 2.948231371926383293e+00 +1.399013668487510409e-01 6.274186841177157525e+00 +4.856568418793543174e-01 5.998245060772084969e+00 +-1.100448269478869534e+00 2.605860213472301901e+00 +8.791817800390994142e-01 4.292107659457357727e+00 +4.594566334090108839e+00 5.810664557250984075e+00 +6.411551574746792159e-01 4.481996988094694601e+00 +-4.931458502202874100e-02 6.061990394417994921e+00 +-1.854475809074571435e+00 3.802436362753732535e+00 +6.839673674189773456e-01 5.378949812284198551e+00 +-1.269477843471402023e+00 5.800607683988816987e+00 +-2.153909002699096131e+00 4.662964127226786992e+00 +-1.968088655840404932e+00 6.428370402175901610e+00 +-1.493142178270345344e+00 6.325098050082044843e+00 +-5.544259227337815510e-01 5.495851775903694225e+00 +3.554601190143836242e-01 5.719418452330917724e+00 +-1.373788295152876149e+00 3.808842674211910140e+00 +-1.235527758128234899e+00 4.505442915601467035e+00 +-1.230396543536104392e+00 3.655990513909650463e+00 +6.347758013736128913e-01 4.006832374208113556e+00 +-8.948908327306370758e-01 2.645577076946756812e+00 +1.330839183050253061e+00 5.513222955212466303e+00 +2.386042336552836318e-01 5.304345758105146302e+00 +-1.113279955773690544e+00 6.922598813220792735e+00 +7.849850370366990848e-01 6.131996456832293774e+00 +-2.150509113083900470e-01 5.022578779563458440e+00 +-1.107807552967885467e+00 6.822982154463447912e+00 +1.679034853592737964e+00 5.576550386015960648e+00 +1.304615081118507991e+00 6.845987102518645173e+00 +1.141602951923557763e+00 5.783094337055796785e+00 +5.894454960776110752e+00 3.435836304630186078e+00 +-2.081275691583444942e+00 5.449068351273912647e+00 +2.806234667900205371e-01 3.975223874495363408e+00 +-1.560300737992996178e-01 5.235660983893713372e+00 +-7.543717756697039534e-02 4.227482198560820414e+00 +-1.203664618835215971e-01 8.067844507353397532e+00 +-5.732246220261758007e-02 5.952056640983134805e+00 +-2.251492103675702516e+00 3.914173553472222622e+00 +-1.307905859889915423e-01 7.465341797065473628e+00 +2.462334581352846996e+00 5.006969643783768298e+00 +4.965080864106061753e-01 7.265703472177731825e+00 +-3.744605524316005907e-01 5.153969836769904944e+00 +5.528434593934691277e-01 5.493658828773329006e+00 +-8.018378685320627364e-01 4.906497326688858074e+00 +-5.621487468740409277e-01 5.324346835961431879e+00 +-8.403500765300164765e-01 5.012074458349619732e+00 +-2.305440597449502249e+00 4.513947126089611572e+00 +-2.075221017141861246e+00 5.828119412278985223e+00 +-1.531784177693952531e-01 5.213664932154583376e+00 +9.128483383373171556e-01 3.291317127527400466e+00 +-5.917214100665973975e-01 4.893640013652365006e+00 +3.618467552957421729e-01 6.087946190604963448e+00 +2.977935692965887782e+00 4.052021014264484577e+00 +-2.508478600755388310e+00 4.354972230473854289e+00 +-1.819137145192899485e+00 5.389636413259433212e+00 +-5.248336337268598717e-01 6.799495817125883690e+00 +-1.717227430014370559e-01 3.183215416700917899e+00 +1.286713598732099006e+00 4.756245244560081353e+00 +-7.807094519053201509e-01 3.370821677697747543e+00 +-3.273803792766034615e-01 5.214674691226583114e+00 +1.294254877411066262e-01 2.185766770285489269e+00 +-6.677181859334625491e-01 2.962392870995959715e+00 +1.442893625250589063e+00 4.366235727728723148e+00 +4.704941279675886601e-01 6.375513274061547442e+00 +-1.965626122888245897e+00 5.574036477791884714e+00 +1.051055424318282361e+00 6.816339992909849599e+00 +-1.397415968676916753e+00 5.403537770696733133e+00 +7.653545917314132918e-01 3.439789990338300019e+00 +-7.267640989378740812e-01 3.702461447331659272e+00 +1.278253870472029874e+00 3.533638467376157166e+00 +-1.052482232933473760e+00 7.244744872311546402e+00 +1.872261159212900594e+00 6.329748530512413041e+00 +-2.103118527858815145e+00 6.212204096527337072e+00 diff --git a/lectures/notebooks/Lecture 09 - Neural Networks.ipynb b/lectures/notebooks/Lecture 09 - Neural Networks.ipynb index a1efcb6..45d92c3 100644 --- a/lectures/notebooks/Lecture 09 - Neural Networks.ipynb +++ b/lectures/notebooks/Lecture 09 - Neural Networks.ipynb @@ -42,10 +42,6 @@ "sns.set(rc=rcparams)\n", "mpl.rcParams.update(rcparams)\n", "\n", - "%matplotlib inline\n", - "%config InlineBackend.figure_format ='retina'\n", - "\n", - "\n", "from sklearn.neural_network import MLPClassifier, MLPRegressor\n", "from sklearn.metrics import mean_squared_error, accuracy_score, roc_curve, roc_auc_score\n", "from sklearn.model_selection import train_test_split, GridSearchCV, KFold" @@ -173,15 +169,10 @@ " value_name=\"score\",\n", " )\n", " fig, ax = plt.subplots(figsize=(16, 8))\n", - " if plot_type == \"bar\":\n", - " ax = sns.barplot(x=x, y=\"score\", hue=\"type\", data=results)\n", - " else:\n", - " ax = sns.scatterplot(x=x, y=\"score\", hue=\"type\", data=results)\n", + " ax = sns.barplot(x=[str(m) for m in results[x]], y=results[\"score\"])\n", " plt.xlabel(x)\n", " if ylim:\n", " plt.ylim(ylim)\n", - " return fig\n", - "\n", "\n", "kfold = KFold(n_splits=5, shuffle=True, random_state=42)" ] @@ -204,11 +195,11 @@ "name": "stderr", "output_type": "stream", "text": [ - "/Users/shyue/miniconda3/envs/mavrl/lib/python3.9/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.\n", + "/Users/shyue/miniconda3/envs/mavrl/lib/python3.11/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.\n", " warnings.warn(\n", - "/Users/shyue/miniconda3/envs/mavrl/lib/python3.9/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.\n", + "/Users/shyue/miniconda3/envs/mavrl/lib/python3.11/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.\n", " warnings.warn(\n", - "/Users/shyue/miniconda3/envs/mavrl/lib/python3.9/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.\n", + "/Users/shyue/miniconda3/envs/mavrl/lib/python3.11/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.\n", " warnings.warn(\n" ] }, @@ -264,48 +255,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACsQAAAWMCAYAAACTOnFJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzde5jVZbk//nutWXNgZkBmABERQTyRB1Izz6l5wqK2ZVZb3KV2uTNTo2yXmduyMsnaed6V9vVQ39xmJ88imLnFlFTwiJWJgiKgKAyHYU5r1lq/P/rJ13ENMLNmhjXL9XpdV1d5f57n/tzjB3nqut49JHK5XC4AAAAAAAAAAAAAoEQliz0AAAAAAAAAAAAAAPSFQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpAnEAgAAAAAAAAAAAFDSBGIBAAAAAAAAAAAAKGkCsQAAAAAAAAAAAACUNIFYAAAAAAAAAAAAAEqaQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpAnEAgAAAAAAAAAAAFDSBGIBAAAAAAAAAAAAKGkCsQAAAAAAAAAAAACUNIFYAAAAAAAAAAAAAEqaQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpKWKPQBQfGvXtkUmky32GPTSsGE1UVGRjEwmG2vXthV7HADY4pyFAJQ7ZyEA5c5ZCEC5cxYCUO6chaWroiIZw4bV9HtfgVggMplsdHZmij0GfeD7AVDunIUAlDtnIQDlzlkIQLlzFgJQ7pyFREQkiz0AAAAAAAAAAAAAAPSFQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpAnEAgAAAAAAAAAAAFDSBGIBAAAAAAAAAAAAKGkCsQAAAAAAAAAAAACUNIFYAAAAAAAAAAAAAEqaQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpAnEAgAAAAAAAAAAAFDSBGIBAAAAAAAAAAAAKGkCsQAAAAAAAAAAAACUNIFYAAAAAAAAAAAAAEqaQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpAnEAgAAAAAAAAAAAFDSBGIBAAAAAAAAAAAAKGkCsQAAAAAAAAAAAACUNIFYAAAAAAAAAAAAAEqaQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpAnEAgAAAAAAAAAAAFDSBGIBAAAAAAAAAAAAKGkCsQAAAAAAAAAAAACUNIFYAAAAAAAAAAAAAEqaQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpAnEAgAAAAAAAAAAAFDSBGIBAAAAAAAAAAAAKGkCsQAAAAAAAAAAAACUNIFYAAAAAAAAAAAAAEqaQCwAAAAAAAAAAAAAJS1V7AEA6JtEIqK2tipyuVyk05no7MwWeyR416usrIhUKhmJRCJyuVxkMtno6MgUeywAAAAAAAAAgLIlEAtQYpLJRAwZUhW5iMhmc7F2fTo60pmorUlFQ0NNtLd3RkdHZ7S1pYs9KryrJBIRNTWVUVmViuqqVKxd3x6t7ZmoqaqIrbaqjY50JtIdndHamo5cLlfscQEAAAAAAAAAyopALEAJqa5ORX19Taxpbo8/PPh8zH705Wha177h+c7jhsfUg3eIQ/feLqqqU9G8ri2yWcE86KtUKhn19TXRmc3F7EdfiXseWRSvrmje8HybEbXxoQMnxJQDJsTw4bXR3NwW6bQbYwEAAAAAAAAAtpREzhVmUPaamlqis1Nwa7Crrk7FsGFD4o45L8Z1dz63yaDriK1q4sJ/PzDGjqyLtWtbhWKhD1KpZAwbNiQWvLQyZtz4WKxv69zo2urKijhn2j5xwB5jYu3aVqFYGGCNjXVRUZGMTCYbq1atL/Y4ALDFOQsBKHfOQgDKnbMQgHLnLCxdqVRFNDTU9nvfZL93BKDfvXU75a3/uzB+fvuCzQZcV65pi3OvfiheW9US9UNrttCU8O6TSETU19fEcy+tjAt/PneTYdiIiPZ0Ji755ePxlwXLo76+JpLJxBaaFAAAAAAAAACgvAnEApSAmprKWPL6urjhrud6vKelrTMuvvGxqK5KRVVVxQBOB+9eNTWVkY2IGb94PDozPbtpOZuLuPR/nojWjs6oqakc2AEBAAAAAAAAAIgIgViAQS+RSERVdWXc8dCLketZHm+DV1c0x9MvvBFV1UJ5UIjKqlT86fFXork13at97elMzHxkcVRWpQZoMgAAAAAAAAAA3k4gFmCQq6lJRUc6Ew8+ubSg/Xf9+aUYUlPpj26HXqqsrIjqqlTc88jigvbf+5fFUZlKRpVQLAAAAAAAAADAgBOIBRjkKiqSsfDV1dHekSlo/4IXV27oA/RcRUUy2to7Y/HytQXtf6OpNVauafPPHgAAAAAAAADAFiChATDIJRKJWN/Suz+u/e1a2zs39AF6LpGIaO3o7FOP1vbOSPpvWwAAAAAAAAAAA05EA2CQy+VyUVdbWfD+IdWpDX2AnsvlIoZUpfrUY0h1KrLZfhoIAAAAAAAAAICNEogFGOQymWzstN3wqK6qKGj/HjuO2NAH6LlMJhs11amYMGZYQfu3bhgSI7aq8c8eAAAAAAAAAMAWIBALMMi1tXVGVWVFHLb32IL2f+SQidHalo5s1g2x0BvpdCbaOzrjwwdNKGj/lAMmRLozGx0dnf07GAAAAAAAAAAAeQRiAQa5XC4XHe3p+JcP7BiJRO/2brd1fbx351HR0Z4emOHgXS7d0RlHvH/7qB9S2at91ZUV8aGDJkRaGBYAAAAAAAAAYIsQiAUoAW1t6Rg3emic+pHde7yntiYV3zxlv2jv6IyOjswATgfvXm1t6UhGxHknvz9SFT1LpCcTEedM2yeGVKWirU0YHQAAAAAAAABgSxCIBSgBnZ3ZaG5ui48fvlP8+3F7RDK56WDeiK1q4pKzPhDbNNZG87q2LTQlvPvkchHNzW2x+8QRceG/Hxh1NalNrq+urIhzP/v+OGCPMdHc3BbZbG4LTQoAAAAAAAAAUN4SuVxOUgPKXFNTS3R2ukG0FFRXp6KuvjrWNnfEPY8sill/eTma1rVveL7L9g0x9eAd4gN7jY1sNhvN6wTyoD+kUsmor6+JTC4Xf3zslbjnkcWx5PV1G56PGVEXHzpoQkw5YHxUpSqiubkt0mm/r8JAa2ysi4qKZGQy2Vi1an2xxwGALc5ZCEC5cxYCUO6chQCUO2dh6UqlKqKhobbf+wrEAgKxJSaZTMSQIZVRVV0ZyUQi1rV0RHtHJuqGVEbdkMpob++Mjo5Of1Q79LNEIqKmpjIqq1JRXZWKtes7oq29M2qqK2JYXXV0pDOR7uiM1tZ0+K9XsGX4H7gAlDtnIQDlzlkIQLlzFgJQ7pyFpWugArGb/nN/ARh0stlcrF/fEdXVlZFMJmJobWWkEhHZzkw0NXVEZ2e22CPCu1IuF9Hamo7W1nRUVlZEKpWMuuqKyOVysWZNS3R0+D8WAAAAAAAAAAAUi0AsQInL5SJaWjqKPQaUlXQ6E+m0ACwAAAAAAAAAwGCRLPYAAAAAAAAAAAAAANAXArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKmkAsAAAAAAAAAAAAACVNIBYAAAAAAAAAAACAkiYQCwAAAAAAAAAAAEBJE4gFAAAAAAAAAAAAoKQJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKmkAsAAAAAAAAAAAAACVNIBYAAAAAAAAAAACAkiYQCwAAAAAAAAAAAEBJE4gFAAAAAAAAAAAAoKQJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKWqrYA5Bv2bJlceedd8b8+fNj4cKF0dTUFB0dHVFfXx/jxo2LyZMnx1FHHRUHHnhgJBKJYo8bERFz586NOXPmxJNPPhnLly+P1atXRyaTia222iq23377mDx5chx++OFxwAEH9PvMixcvjgceeCAeffTRWLRoUaxevTrWr18f9fX1MXz48Nh1111jv/32iyOPPDK22Wabfn13KX4rAAAAAAAAAAAAeLdJ5HK5XLGH4J9WrlwZF198ccycOTMymcxm1++8887xzW9+Mw466KAtMF337r333rjqqqti4cKFPVo/fvz4+OIXvxjHHXdcnwOiixYtissvvzxmz54d2Wx2s+srKyvjIx/5SEyfPj3GjBnTp3eX4rfalKamlujs3PzPweDS2FgXFRXJyGSysWrV+mKPAwBbnLMQgHLnLASg3DkLASh3zkIAyp2zsHSlUhXR0FDb730FYgeJ+fPnx5lnnhlNTU293vu5z30uvva1r0UymRyAybrX2toa559/ftx9990F7d9///3jxz/+cYwaNaqg/ffcc0+cf/750dLS0uu9w4cPjx/84AfxwQ9+sKB3l9q36gmB2NLkUAeg3DkLASh3zkIAyp2zEIBy5ywEoNw5C0vXQAViB1cqr0zNmzcvTjvttIIClhER119/fVx44YX9O9QmtLS0xOc///mCw7AREY8++mhMmzYtXn/99V7vvfXWW+MrX/lKQWHYiIjVq1fHF7/4xZg1a1av95batwIAAAAAAAAAAIBykCr2AOVuxYoVMX369LxwZzKZjClTpsTUqVNjwoQJUVVVFa+++mrMnj077rjjjrz1t9xyS0yaNCmmTZs24DNfcMEF8dhjj+XVhw8fHieccEIcfPDBMXbs2EilUvHGG2/E/Pnz4ze/+U0sXry4y/pXXnklzjrrrPif//mfqKys7NG758+fHxdccEG3zw466KD46Ec/GrvvvnsMGzYs1qxZE88++2zcfvvt8fjjj3dZm81m4z/+4z9i2223jT333LNH7y7FbwUAAAAAAAAAAADlIJHL5XLFHqKcnXHGGfGnP/2pS23kyJFx2WWXxX777dftniVLlsRXvvKVePbZZ7vUhwwZEjNnzowxY8YM2LyzZ8+Os88+O69+7LHHxkUXXRRDhw7tdl8mk4mrr746fvKTn+Q9+8Y3vhGnnnrqZt+dzWbjE5/4RPz1r3/tUh86dGhccsklceSRR25075133hkXXHBBtLa2dqnvueee8dvf/jYSicRm319q36o3mppaorMzU+wx6CXXvgNQ7pyFAJQ7ZyEA5c5ZCEC5cxYCUO6chaUrlaqIhobafu+b7PeO9Nijjz6aF7Csra2Na6+9dqMBy4iIcePGxY033hiTJk3qUm9tbY0rrrhiQGZ9y5VXXplXmzJlSlx22WUbDcNGRFRUVMT06dPjjDPOyHv285//PNLp9Gbf/cADD+SFYSsrK+NnP/vZJsOwEREf/ehH4/LLL88Lvj777LPx4IMPbvbdpfitAAAAAAAAAAAAoFwIxBbRtddem1ebPn167L777pvdW19fHz/72c+itrZrSvrOO++M5cuX99uMb/fwww/HCy+80KU2fPjw+M53vhPJZM9+KZ155pkxduzYLrWVK1fG3LlzN7v3j3/8Y17txBNPjH333bdH7z788MPjX/7lX/Lqs2bN2uzeUvtWAAAAAAAAAAAAUE4EYovk1VdfjUceeaRLbcSIETFt2rQe9xgzZkycfPLJXWqdnZ3x+9//vl9mfKf7778/r3bCCSdEQ0NDj3tUVlbGMccck1d/+umnN7v3iSeeyKsdf/zxPX53RMQnPvGJvNpTTz21yT2l+K0AAAAAAAAAAACgnAjEFsmsWbMim812qX30ox+NqqqqXvX51Kc+lVe7++67+zTbxjz++ON5tQ996EO97rP99tvn1V5//fXN7luxYkVebYcddujVu3fZZZce9X27UvxWAAAAAAAAAAAAUE5SxR6gXD388MN5tSOOOKLXfbbddtvYdddd4/nnn99Qe+mll2LJkiUxbty4Ps34Trfeemu8/PLLsXDhwli4cGEsXrw4Jk2a1Os+7e3tebVkcvPZ7La2trxaZ2dnr95dWVmZV0un05vcU4rfCgAAAAAAAAAAAMqJG2KLIJvNxvz587vUUqlUvPe97y2o3z777JNXmzdvXkG9NiWVSsWOO+4YU6ZMiTPPPDN+9KMfRSrV+0z1P/7xj7zadtttt9l9w4YN61GvTXnppZfyaltvvfVG15fqtwIAAAAAAAAAAIByIhBbBC+//HLebacTJ06MmpqagvrttttuebUFCxYU1GugrVmzJmbPnp1XP/DAAze79z3veU9e7fbbb+/V+7tbv/fee290fTl/KwAAAAAAAAAAACgVArFFsHDhwrzaDjvsUHC/8ePH59UWLVpUcL+B0tHREeeee240Nzd3qU+ePDn23HPPze4/8sgj82q/+93v8m5w3Zgnnngibrnllrz68ccfv9E95fqtAAAAAAAAAAAAoJQIxBbB0qVL82pjx44tuN8222zTo3cU03PPPRcnnXRSPPDAA13qlZWVccEFF/Sox8c//vEYNWpUl1pnZ2ecccYZMWfOnE3u/fOf/xxf+MIXIp1Od6kfccQRm7ydthy/FQAAAAAAAAAAAJSaVLEHKEdvvvlmXm3rrbcuuN/IkSPzaitWrCi4X19ks9nI5XLR0tISS5cujaeffjpmzpwZf/nLXyKXy3VZm0wm43vf+15Mnjy5R73r6+tjxowZcfrpp0cmk9lQX7NmTfz7v/97HHrooTF16tTYbbfdYtiwYbFu3br4+9//HnfffXdeEDciYtKkSfHDH/5wk+98N38rAAAAAAAAAAAAeLcQiC2ClStX5tWGDRtWcL+6urpIpVLR2dm5odbS0hLpdDoqKysL7luIWbNmxZe//OXNrhsxYkRcfPHFcfjhh/eq/wc+8IG44oor4utf/3q0tLR0eTZnzpzN3hT7luOOOy6+/e1vR11d3SbXvZu/FQAAAAAAAAAAALxbJIs9QDlqbm7Oq9XX1/epZ21tbY/eM9CWL1++2TWHHnpozJw5s9dh2LccffTRcccdd8QxxxwTyWTvfgkffPDBccstt8QPf/jDzYZhI97d3woAAAAAAAAAAADeLdwQWwQdHR15terq6j71rKqq6tF7BtqyZcs2u2bOnDlx3HHHxSmnnBInnnhiQT/7uHHj4swzz4xUKhX33HNPj/c98cQT8dvf/jZGjRoVY8eO3ez6d/O3erthw2qK+n4Kk0wmNvx7Y+PmA94A8G7jLASg3DkLASh3zkIAyp2zEIBy5yzknQRii6C78GNFRUWfena3v7Ozs089C/Haa6/1aN3y5ctjxowZ8dvf/jauvPLK2HHHHXv8jhdeeCF++MMfxpw5c3o9X2tra/zud7+Lu+66K77yla/EKaecssn17+Zv9XYVFS6LLmWJRCIqKhLFHgMAisZZCEC5cxYCUO6chQCUO2chAOXOWchbBGKLIJPJ5NUGImSZzWb71LMQ+++/fxx99NGx0047RUNDQ6xfvz6WLFkSDz30UNx2223R0tLSZf3ChQvjpJNOiptvvjl22GGHzfa/44474oILLoi2trYu9YaGhjjxxBPjsMMOi+233z7q6+ujqakpFi5cGA888ED87ne/i9bW1g3r29raYsaMGbFo0aL4zne+s9H3vZu/1dtlMsV9P4VJJhORSCQil8tFNpsr9jgAsMU5CwEod85CAMqdsxCAcucsBKDcOQtL20Bc4igQWwSVlZV5tb7eEJpOp/NqVVVVfepZiM985jN5tZ133jmOOOKIOPvss+Pb3/52zJ49u8vzpqamOPPMM+O2227b5MyzZ8+Oc889Ny88evzxx8f5558f9fX1XeqjR4+O0aNHx8EHHxynn356nHfeefHQQw91WfPrX/86xo4dG5///Oe7fee7+Vu93dq1bdHZmR/+ZXBrbKyLiopEZLO5WLVqfbHHAYAtzlkIQLlzFgJQ7pyFAJQ7ZyEA5c5ZWLpSqYpoaKjt977+nPQiGIiQZXc3mXb3nmJqbGyMK6+8Mj796U/nPXvxxRfjl7/85Ub3vv7663HeeeflhWFPO+20mDFjRl4Y9p1GjRoV11xzTRx33HF5z6688sp48cUXu91Xrt8KAAAAAAAAAAAASolAbBHU1uYnm1tbW/vUs6WlJa9WXV3dp54DIZFIxLe+9a3Ya6+98p7ddNNNeYHXt1x11VXR3NzcpXbQQQfFV7/61R6/u6KiIi666KLYY489utTT6XRcddVV3e4p528FAAAAAAAAAAAApUIgtgiGDx+eV1u/vvArmzOZTLS1tXWpVVdXR11dXcE9B1IqlYqvfe1refVly5bFggUL8urNzc1x9913d6klEok499xzI5ns3S/hqqqq+MY3vpFX/+Mf/xirV6/Oq5f7twIAAAAAAAAAAIBSIBBbBI2NjXm1lStXFtyvu70jR44suN+WsO+++8bYsWPz6s8880xebf78+Xm3qu6+++4xadKkgt79/ve/PyZOnNillk6nY/78+XlrfSsAAAAAAAAAAAAY/ARii6C7IOibb75ZcL/u9o4aNargflvK+973vrzasmXL8mrPPfdcXm2//fbr07sPOuigvNrf/va3vJpvBQAAAAAAAAAAAIOfQGwRjBs3Lq/2yiuvFNyvu73vvAF1MOouCLpu3bq82qpVq/Jqo0eP7tO7t9lmm7xaU1NTXs23AgAAAAAAAAAAgMEvVewBytGuu+4aiUQicrnchtqLL75YcL/u9u60004F99uYjo6OWLp0aSxZsiSWLFkSEydOjAMPPLDgfm//+d9SV1eXV2tvb8+rJRKJgt8bEVFbW5tXS6fTebVS/VYAAAAAAAAAAABQTgRii2Do0KExfvz4WLx48Yba0qVLY9WqVdHY2Njrfs8880xebY899ujLiHlmzpwZ55xzTmSz2Q21D37wg30KxK5YsSKvNnLkyLxaQ0NDXm358uUFvzei+9tgu3t3KX4rAAAAAAAAAAAAKDfJYg9Qrvbff/+82ty5c3vdp6OjIx5//PEutSFDhsTee+9d8GzdGT9+fJcwbETE448/3u3trT01f/78vNqECRPyat0FVZ977rmC3xsR8be//S2vNmrUqG7Xltq3AgAAAAAAAAAAgHIjEFskhx12WF7tnnvu6XWfBx98MNavX9+ldsABB0RVVVXBs3Vnp512ipqami615ubmuO+++wrqN2/evLxbXisrK7u9cXavvfbKqz3++OMF3xLb0tISf/nLX/Lq73//+7tdX2rfCgAAAAAAAAAAAMqNQGyRfOADH4jhw4d3qT3wwAPx4osv9rhHLpeL6667Lq9+wgkn9HW8PFVVVXHUUUfl1a+77rq8m2M3J5fLxWWXXZZXP/jgg6Ouri6vvueee+bd3rqxn70nfvnLX0Zzc3OX2nbbbRc77bRTt+tL7VsBAAAAAAAAAABAuRGILZKqqqo4/vjju9QymUycd9550d7e3qMe119/fTz55JNdattuu20cfvjh/TVmF5/4xCfyan/961/jV7/6Va/6XHHFFTFv3ry8+plnntnt+kQi0W1w9Fe/+lU88sgjvXr3M888Ez/5yU/y6ieddNJG95TitwIAAAAAAAAAAIByIhBbRKeddlrU1tZ2qT399NPx1a9+dbNBy7vuuiv+67/+K68+ffr0SKVSm9z76quvxq677pr3rz/84Q+b3HfQQQfFIYcckle/5JJL4t57793k3oh/3pJ6+eWXx09/+tO8Z1OnTo3JkydvdO9pp50WjY2Nef3OPvvsmDVr1mbfHRExf/78OP300/P+3o4dOzb+7d/+bZN7i/WtAAAAAAAAAAAAgM0TiC2iESNGxJe+9KW8+n333Ref/OQnu71FdcWKFfHd7343vvrVr0Y2m+3ybN99943jjjtuwOaNiLjgggvygqGdnZ0xffr0+Na3vhXLly/P25PL5eKxxx6LE088sdsw7MSJE+PCCy/c5Hvr6+vjwgsvjEQi0aXe3NwcX/rSl+K8886LF198sdu9r732Wnz/+9+Pk08+OVatWtXlWSqViu9///tRVVW1yfeX4rcCAAAAAAAAAACAcpHI5XK5Yg9RznK5XJx++unx4IMPdvt8woQJsfPOO0dtbW0sXbo0nn766Uin03nrRowYEbfeemuMHj16s+989dVX48gjj8yrz5gxI44//vjN7v/zn/8cX/jCF7qdI5FIxHve857YYYcdorq6OlatWhULFiyIN998s9teI0eOjF//+tcxbty4zb43IuKaa66JSy+9dKPPJ0yYELvuumsMHTo01q1bF4sXL47nn39+o+u/973vxac+9akevbsY32pLaWpqic7OTLHHoJcaG+uioiIZmUw2Vq1aX+xxAGCLcxYCUO6chQCUO2chAOXOWQhAuXMWlq5UqiIaGmo3v7CXBGIHgfXr18cXvvCFeOyxxwraP2LEiLjhhhti11137dH6vgZiIyLuv//++PrXvx7Nzc29mvXtdt9997j66qtj22237dW+X/ziF/GjH/2o27BpT9XU1MR3vvOd+NjHPtarfVv6W20pArGlyaEOQLlzFgJQ7pyFAJQ7ZyEA5c5ZCEC5cxaWroEKxCb7vSO9VldXF9ddd1185jOfiUQi0au9++67b9xyyy1bPGB55JFHxq233hp77713r/dWV1fH5z73ubj55pt7HYaNiDj55JPjF7/4RcE/8+TJk+Pmm2/udRg2ojS/FQAAAAAAAAAAALzbuSF2kPn73/8e1113XcyePTva2tq6XZNIJGKvvfaKf/u3f4sPf/jDkUz2LtfcHzfEvt2f//zn+MUvfhGPPfbYRmeOiJgwYUIcccQRccopp8To0aN7/Z53yuVycf/998ctt9wS8+bNi5aWlo2urauri/322y+mTZsWhx56aJ/fHbFlvtWW4obY0uT/5QJAuXMWAlDunIUAlDtnIQDlzlkIQLlzFpaugbohViB2kOro6IhnnnkmFi1aFE1NTZHNZmPYsGExZsyY2GuvvaKhoaHYI+bp6OiIp556KpYuXRqrV6+Ojo6OaGhoiMbGxpg0aVJst912A/budDodCxYsiKVLl0ZTU1M0NzdHfX19NDQ0xHbbbRd77LFHpFKpAXl3KX6rdxKILU0OdQDKnbMQgHLnLASg3DkLASh3zkIAyp2zsHQJxAIDRiC2NDnUASh3zkIAyp2zEIBy5ywEoNw5CwEod87C0jVQgdjB+ee3AwAAAAAAAAAAAEAPCcQCAAAAAAAAAAAAUNJSxR4AAAAAAAAAAAAAYHMSiYiamspIpSreVktERUUyMplsESdjMBCIBQAAAAAAAAAAAAatiopkDBlSGVVVqejMZGPBiytjXWtH1FSlYqfthsfIxrpoa0tHe3s6OjoyxR6XIhGIBQAAAAAAAAAAAAalysqKqB9aE6+vXB+3z/lb/O8Tr0Zre+eG58lExN67bh0f/cDEeN+k0dHS0h7r13cUcWKKRSAWAAAAAAAAAAAAGHQqKyti6LAhMefJV+PKW56Mzkwub002FzH/7yti/t9XxJHv3z6+9Km9IpeLaGkRii03ArEAAAAAAAAAAADAoJJIRNTX18SjC5bHZTc/Ebn8LGye+x9/JZKJiC99eu9IpzORTmcGflAGjWSxBwAAAAAAAAAAAAB4u+rqyshFLq76zVM9CsO+5b7HXolnX3wzqmsqB244BiWBWAAAAAAAAAAAAGBQqapKxYNPLI3m1nSv99710EtRU52KZDIxAJMxWAnEAgAAAAAAAAAAAINGKpWM6upUzJy7uKD9jz73Wqxd3xE1boktKwKxAAAAAAAAAAAAwKDx1s2ui5etKWh/JpuLJa+vc0NsmRGIBQAAAAAAAAAAAAaNROKfQdZ0Jltwj/Z0ZkMfyoNALAAAAAAAAAAAADBoZLO5iIioq6ksuMewuqoNfSgPArEAAAAAAAAAAADAoNHZmY1sNhf777FNQfsbh9XEjmOHR2dnpp8nYzATiAUAAAAAAAAAAAAGjVwuF+3t6fjoIRML2n/MAeMjk81Ge3tnP0/GYCYQCwAAAAAAAAAAAAwq7e2dseN2w2OPiSN6ta+2JhVTD94h0h3CsOVGIBYAAAAAAAAAAAAYVNLpTLS2peO8U/aLMSPrerSnMpWM80/ZL+qqU9Hamh7gCRlsBGIBAAAAAAAAAACAQWd9c1tUpZLx4y8dGnvvMmqTa0c31sbFZxwcu00cEc3NbZHN5rbQlAwWqWIPAAAAAAAAAAAAAPBOuVzEurWtUV9fE989/aBYumJd3PHnRTH/b69Hc2s6qisrYsfttoqPHDwx9t51VKTTmVi7pjUymWyxR6cIBGIBAAAAAAAAAACAQau5uS3a2jqicWh1fP64PaLi+Mldnre1pWPt2rbo6Ogs0oQMBgKxAAAAAAAAAAAAwKDW2ZmN5ub2SCTao6IiGcOGDYmKimRkMtlYt66t2OMxCCSLPQAAAAAAAAAAAABAT+Ry/wzHwjsJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKmkAsAAAAAAAAAAAAACVNIBYAAAAAAAAAAACAkiYQCwAAAAAAAAAAAEBJE4gFAAAAAAAAAAAAoKQJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKmkAsAAAAAAAAAAAAACVNIBYAAAAAAAAAAACAkiYQCwAAAAAAAAAAAEBJE4gFAAAAAAAAAAAAoKQJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKmkAsAAAAAAAAAAAAACVNIBYAAAAAAAAAAACAkiYQCwAAAAAAAAAAAEBJE4gFAAAAAAAAAAAAoKQJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKmkAsAAAAAAAAAAAAACVNIBYAAAAAAAAAAACAkiYQCwAAAAAAAAAAAEBJE4gFAAAAAAAAAAAAoKQJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpArEAAAAAAAAAAAAAlLRUsQcAYPCorKyIVCoZiUQicrmITCYbHR2dxR4LAAAAAAAAAABgkwRiAcpcIhFRU1MZlVWpqK5KxZrm9mhp7YzqqooYPrQmMtlspDsy0draEdlsrtjjAgAAAAAAAAAA5BGIBShjFRXJqB9aE7mI+NPjr8Q9jyyOxcvXbnjeOKwmjtl/+5h68A4xvKE2mte1uzEWAAAAAAAAAAAYdARiAcpURUUihg6riUXL1sZ3r/tLrGnuyFuzam1b/Pq+f8Rv738hTv/4nnHsgRNi7do2oVgAAAAAAAAAAGBQEYgFKFN19TXx8mvr4ps/fTjaOzKbXJvJ5uInv38mMtlcfOigCbFmdTYymewWmhQAAAAAAAAAAGDTksUeAIAtr7o6FZWpirj4hsc2G4Z9u5/f9mysWNUSNUMqB3A6AAAAAAAAAACA3hGIBShDVVWpePS51+KN1a292pfNRdz50KKorkpFIjFAwwEAAAAAAAAAAPSSQCxAmamoSEZNTWXc/fCigvb/ad4rkcnmorraLbEAAAAAAAAAAMDgIBALUGYqKv75W/9zL60saP/6ts545bV1G/oAAAAAAAAAAAAUmzQTQJlJJCI6M9nozGQL7tHSlo5Eoh+HAgAAAAAAAAAA6AOBWIAyk8tFpCqSkerDDa+1Qyojl+vHoQAAAAAAAAAAAPpAIBagzGT+/5th99xxREH764ZUxvhthm7oAwAAAAAAAAAAUGwCsQBlJpPJRmtbOj5yyMSC9h/1/nGRSCSivT3dz5MBAAAAAAAAAAAURiAWoAylOzpj3/eMjtGNtb3al0wm4iOHTIyO9s7I5QZoOAAAAAAAAAAAgF4SiAUoQ+3tnZHuzMT5p+4XQ6pTPd53xvGTY9TwIdHW5nZYAAAAAAAAAABg8BCIBShTzevaYrtR9fGDMw+JxmE1m1ybqkjGl/9175hywPhobm6PTCa7haYEAAAAAAAAAADYvJ5fCwjAu0o2m4t161pj7Ki6+D/nHx1znnw17n54UbywZPWGNaMahsSxB0yIDx00IWqrU7F2bWt0dGSKNzQAAAAAAAAAAEA3BGIBylgmk4u1a1qjpqYyDpm8bRz5/u2jpS0dLW2dUV1ZEfW1lZHuzEa6ozNWr26JbDZX7JEBAAAAAAAAAADyCMQCEG1t6WhrS0cqlYxUqiJqUsmIXNaNsAAAAAAAAAAAQEkQiAVgg87ObHR2Zos9BgAAAAAAAAAAQK8kiz0AAAAAAAAAAAAAAPSFQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpAnEAgAAAAAAAAAAAFDSBGIBAAAAAAAAAAAAKGkCsQAAAAAAAAAAAACUtFSxBwCg5xKJRNTUVEYqlYxsLhfZzmzkcrmoq6uOtraOyGRyxR4RAAAAAAAAAABgixOIBSgBiUQi6uqqoqq6MjrSmXhg/pJYvrIlstlcNA6rjsP3GReNjfXR2paO1paOyGSyxR4ZAAAAAAAAAABgixGIBRjkkslEDB1aE2tb0vF/7nwuHnxyabR3ZLqs+cU9f4v3v2d0fPqoXWKHsVtF87q2SKczG+kIAAAAAAAAAADw7iIQCzCIJRL/DMMufWN9XHDtI7GmuaPbddlsLh597rWY//cVcc60feLAPcfEurWt0dnpplgAAAAAAAAAAODdL1nsAQDYuLq6qljbkt5kGPbtOjPZ+PFN8+Nvi1ZFbV31FpgQAAAAAAAAAACg+ARiAQapRCIRVdWp+PV9z/coDPuWTDYX1925IKqrUlFZWTGAEwIAAAAAAAAAAAwOArEAg1RNTSo60tl48IlXe733xVfXxMJXV0d1dWoAJgMAAAAAAAAAABhcBGIBBqlUqiLmPPFqtHVkCto/a+7iqK6u7OepAAAAAAAAAAAABh+BWIDBKpGI15taCt7+elNLJJOJSCT6cSYAAAAAAAAAAIBBSCAWYJBKJCKy2VzB+7PZDZ36ZR4AAAAAAAAAAIDBSiAWYJDKZnPRMKym4P2Nw6ojl8tFLld4qBYAAAAAAAAAAKAUCMQCDFK5bDYO32e7qEgWdsPrB/cdF23tnf08FQAAAAAAAAAAwOAjEAswSLW2pmNYXVXsv8c2vd67zYja2HuXraNDIBYAAAAAAAAAACgDArEAg1Q2m4u29s7416N3japU7367nnbMpOhIZ6KjQyAWAAAAAAAAAAB49xOIBRjEWls6YtzWQ+Prn3l/VPYwFHvSlElx2Pu2i9aW9gGeDgAAAAAAAAAAYHAQiAUYxDKZbDQ3t8X7Jm0dF59xcEya0LDRtduOrIuvTntffOroXWJ9c3t0dGS24KQAAAAAAAAAAADFkyr2AABsWjqdibVrW2PCmGHxo7MPjZdfWxv3zl0cr61siWw2Fw3DquOI942LyTuPio50JtatbRWGBQAAAAAAAAAAyopALEAJyGSysW5ta7SmkrH1VjVx2r/sERUV/7zkO5fLRVt7Z6xZ0yIICwAAAAAAAAAAlCWBWIAS0tmZjebm9ohoj8bGuqioSEY2m4vmdW3FHg0AAAAAAAAAAKBoksUeAAAAAAAAAAAAAAD6QiAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNJSxR6AfMuWLYs777wz5s+fHwsXLoympqbo6OiI+vr6GDduXEyePDmOOuqoOPDAAyORSBR73IiImDt3bsyZMyeefPLJWL58eaxevToymUxstdVWsf3228fkyZPj8MMPjwMOOKDXMz/66KPx2c9+doAm/3/OOuusOPvss3u1529/+1s8+OCD8fjjj8crr7wSTU1N0dbWFltttVU0NDTEbrvtFu9///vjqKOOioaGhgGaHAAAAAAAAAAAAMpbIpfL5Yo9BP+0cuXKuPjii2PmzJmRyWQ2u37nnXeOb37zm3HQQQdtgem6d++998ZVV10VCxcu7NH68ePHxxe/+MU47rjjehyMHYyB2GeeeSYuv/zyePjhh3u0fsiQIXHCCSfE2WefHVtttVVfxhwQTU0t0dm5+V9zDC6NjXVRUZGMTCYbq1atL/Y4ALDFOQsBKHfOQgDKnbMQgHLnLASg3DkLS1cqVRENDbX93jfZ7x0pyPz582Pq1Klx11139SgMGxHxwgsvxKmnnhqXXHJJZLPZAZ6wq9bW1jjnnHNi+vTpPQ7DRkS8/PLLce6558bJJ58cb7zxxgBOOHBuvPHGmDZtWo/DsBH//Pv1f//v/42Pfexj8dRTTw3ccAAAAAAAAAAAAFCGBGIHgXnz5sVpp50WTU1NBe2//vrr48ILL+zfoTahpaUlPv/5z8fdd99dcI9HH300pk2bFq+//no/Tjbwrr766pgxY0ak0+mC9i9btixOPvnkeOKJJ/p5MgAAAAAAAAAAAChfqWIPUO5WrFgR06dPj5aWli71ZDIZU6ZMialTp8aECROiqqoqXn311Zg9e3bccccdeetvueWWmDRpUkybNm3AZ77gggvisccey6sPHz48TjjhhDj44INj7NixkUql4o033oj58+fHb37zm1i8eHGX9a+88kqcddZZ8T//8z9RWVk54HNvSn19fRx77LGbXHPPPffEVVddlVdPJpNx9NFHx5QpU2LXXXeNurq6WLVqVTz11FPxm9/8Jv7+9793Wd/W1hZnnHFG/OEPf4ixY8f2688BAAAAAAAAAAAA5SiRy+VyxR6inJ1xxhnxpz/9qUtt5MiRcdlll8V+++3X7Z4lS5bEV77ylXj22We71IcMGRIzZ86MMWPGDNi8s2fPjrPPPjuvfuyxx8ZFF10UQ4cO7XZfJpOJq6++On7yk5/kPfvGN74Rp556ar/P2p1nn302TjrppGhvb99QS6VScc0118Qhhxyy0X0tLS0xZcqUWLFiRZf66NGj4/LLL4999tmn2325XC5uvPHG+NGPfhSZTKbLsylTpsSVV17Zh5+m/zQ1tURnZ2bzCxlUGhvroqIiGZlMNlatWl/scQBgi3MWAlDunIUAlDtnIQDlzlkIQLlzFpauVKoiGhpq+71vst870mOPPvpoXhi2trY2rr322o2GYSMixo0bFzfeeGNMmjSpS721tTWuuOKKAZn1Ld0FOKdMmRKXXXbZRsOwEREVFRUxffr0OOOMM/Ke/fznP490Ot2vc3bnzTffjLPOOqtLGDYi4utf//omw7AREb/73e/ywrDDhg2LG2+8caNh2IiIRCIRp556avznf/5n3rNZs2bFP/7xj178BAAAAAAAAAAAAEB3BGKL6Nprr82rTZ8+PXbffffN7q2vr4+f/exnUVvbNSV95513xvLly/ttxrd7+OGH44UXXuhSGz58eHznO9+JZLJnv5TOPPPMGDt2bJfaypUrY+7cuf02Z3ey2Wx8+ctfjtdee61L/cgjj4yTTz55s/vvu+++vNqZZ54ZEydO7NH7p02bFvvuu29effbs2T3aDwAAAAAAAAAAAGycQGyRvPrqq/HII490qY0YMSKmTZvW4x5jxozJC3N2dnbG73//+36Z8Z3uv//+vNoJJ5wQDQ0NPe5RWVkZxxxzTF796aef7tNsm/Ozn/0sHn/88S61MWPGxIwZM3q0/8knn+zy18lkMj72sY/1aoZPfOITebWnnnqqVz0AAAAAAAAAAACAfAKxRTJr1qzIZrNdah/96EejqqqqV30+9alP5dXuvvvuPs22Me8MlEZEfOhDH+p1n+233z6v9vrrrxc0U08888wz8d///d959Ysuuii22mqrze5vamqKdDrdpdbQ0BDDhw/v1Ry77LJLXm3FihW96gEAAAAAAAAAAADkSxV7gHL18MMP59WOOOKIXvfZdtttY9ddd43nn39+Q+2ll16KJUuWxLhx4/o04zvdeuut8fLLL8fChQtj4cKFsXjx4pg0aVKv+7S3t+fVksmByWan0+k4//zzo7Ozs0v94x//eBxyyCE96tHa2ppXe2e/nkil8v9xe2fQFgAAAAAAAAAAAOg9gdgiyGazMX/+/C61VCoV733vewvqt88++3QJxEZEzJs3r98DsalUKnbcccfYcccdY8qUKQX3+cc//pFX22677foy2kZdf/31ee8bOXJknHfeeT3u0d0tsmvWrInXX389Ro8e3eM+L730Ul5t66237vF+AAAAAAAAAAAAoHsDcy0nm/Tyyy9HW1tbl9rEiROjpqamoH677bZbXm3BggUF9Rpoa9asidmzZ+fVDzzwwH5/15IlS+InP/lJXv2cc87pNuS6MXV1dbH99tvn1W+//fZezXPHHXfk1fbee+9e9QAAAAAAAAAAAADyCcQWwcKFC/NqO+ywQ8H9xo8fn1dbtGhRwf0GSkdHR5x77rnR3NzcpT558uTYc889+/19P/rRj/KCx3vssUccf/zxve515JFH5tWuvfbaHv99vvfee+OBBx7oUquoqIiPfexjvZ4FAAAAAAAAAAAA6EogtgiWLl2aVxs7dmzB/bbZZpsevaOYnnvuuTjppJPyQqGVlZVxwQUX9Pv7nnjiiZg1a1Ze/fzzz49EItHrfp/97GdjyJAhXWrr1q2Lz33uc/Hss89ucu/tt98eX//61/PqJ510UkyYMKHXswAAAAAAAAAAAABdpYo9QDl6880382pbb711wf1GjhyZV1uxYkXB/foim81GLpeLlpaWWLp0aTz99NMxc+bM+Mtf/hK5XK7L2mQyGd/73vdi8uTJ/T7HJZdcklc75phjYp999imo37bbbhvnn39+/Od//meX+rJly+LTn/50TJkyJY455pjYZZddoq6uLlavXh3PPvts3HbbbTFv3ry8focccki3IVkAAAAAAAAAAACg9wRii2DlypV5tWHDhhXcr66uLlKpVHR2dm6otbS0RDqdjsrKyoL7FmLWrFnx5S9/ebPrRowYERdffHEcfvjh/T7Dgw8+GE899VSXWjKZjLPPPrtPfT/5yU9GR0dHXHzxxV3+Xmcymbjnnnvinnvu2WyPioqKOPnkk+Occ87Z4t8GAAAAAAAAAAAA3q2SxR6gHDU3N+fV6uvr+9Sztra2R+8ZaMuXL9/smkMPPTRmzpw5IGHYiIif/vSnebUPf/jDscsuu/S590knnRS///3v44ADDuj13g9/+MNxxx13xLnnnisMCwAAAAAAAAAAAP3IDbFF0NHRkVerrq7uU8+qqqoevWegLVu2bLNr5syZE8cdd1yccsopceKJJ/b5Z3+7Rx55JJ588skutUQiEV/84hf77R2TJk2K6dOnR0TEX/7ylx7v+/Of/xxbb711nH766dHY2Nhv8/SHYcNqij0CBUgmExv+vbGxrsjTAMCW5ywEoNw5CwEod85CAMqdsxCAcucs5J0EYougu6BqRUVFn3p2t7+zs7NPPQvx2muv9Wjd8uXLY8aMGfHb3/42rrzyythxxx375f033HBDXu3www/vt/7z58+PH/7wh/HUU0/1eu/atWvjxhtvjFtvvTW+9a1vxUc+8pF+mak/VFS4LLqUJRKJqKhIFHsMACgaZyEA5c5ZCEC5cxYCUO6chQCUO2chbxGILYJMJpNXG4hAbDab7VPPQuy///5x9NFHx0477RQNDQ2xfv36WLJkSTz00ENx2223RUtLS5f1CxcujJNOOiluvvnm2GGHHfr07pdffjkeeuihvPqpp57ap75vue666+LHP/5x3vcbO3Zs/Ou//msccsghMXbs2BgyZEisWrUqFixYEPfff3/ccccdXcLJa9asia9+9auxdOnSOP300/tltr7KZLb8rxX6LplMRCKRiFwuF9lsrtjjAMAW5ywEoNw5CwEod85CAMqdsxCAcucsLG0DcYmjQGwRVFZW5tX6eptrOp3Oq1VVVfWpZyE+85nP5NV23nnnOOKII+Lss8+Ob3/72zF79uwuz5uamuLMM8+M2267rU8z33TTTZHLdf2Nbbfddov999+/4J5vufHGG+OHP/xhXv3000+Ps846K2/ubbbZJrbZZps46qij4gtf+EKcc845sWDBgi5rLr300hg7duyguCl27dq26OzMD2ozuDU21kVFRSKy2VysWrW+2OMAwBbnLASg3DkLASh3zkIAyp2zEIBy5ywsXalURTQ01PZ7X39OehEMRCC2u1tnu3tPMTU2NsaVV14Zn/70p/Oevfjii/HLX/6y4N7pdDpuv/32vHp37+qtv//97/GjH/0or/7tb387zjnnnM2GeMePHx833XRTHHjggXnPvvvd78aqVav6PCMAAAAAAAAAAACUM4HYIqitzU82t7a29qlnS0tLXq26urpPPQdCIpGIb33rW7HXXnvlPbvpppsim80W1HfOnDmxevXqLrXq6uqYOnVqQf3e7pJLLskLLH/iE5+IadOm9bhHTU1NXHHFFbHtttt2qa9Zsyauu+66Ps8IAAAAAAAAAAAA5UwgtgiGDx+eV1u/vvArmzOZTLS1tXWpVVdXR11dXcE9B1IqlYqvfe1refVly5bFggULCup5xx135NWOPvroGDp0aEH93vLKK6/E3Llzu9SGDBkS55xzTq97bbXVVjF9+vS8+m233dbtDb8AAAAAAAAAAABAzwjEFkFjY2NebeXKlQX3627vyJEjC+63Jey7774xduzYvPozzzzT615tbW3xv//7v3n14447rpDRuvjzn/8cuVyuS+3QQw8t+O/v1KlTo76+vkvtzTffjBdeeKHgGQEAAAAAAAAAAKDcCcQWQXdB0DfffLPgft3tHTVqVMH9tpT3ve99ebVly5b1us/cuXPzbsgdOnRoHHDAAQXP9pbnnnsur7b//vsX3K+ysjLe//7359X/9re/FdwTAAAAAAAAAAAAyp1AbBGMGzcur/bKK68U3K+7vRMnTiy435bSXWh33bp1ve7zwAMP5NUOO+ywqKqqKmiut+vu9t2tt966Tz232WabvFpTU1OfegIAAAAAAAAAAEA5SxV7gHK06667RiKRiFwut6H24osvFtyvu7077bRTwf02pqOjI5YuXRpLliyJJUuWxMSJE+PAAw8suN/bf/631NXV9brPQw89lFc76qijCprpnTo6OvJqiUSiTz1ra2vzap2dnX3qCQAAAAAAAAAAAOVMILYIhg4dGuPHj4/FixdvqC1dujRWrVoVjY2Nve73zDPP5NX22GOPvoyYZ+bMmXHOOedENpvdUPvgBz/Yp0DsihUr8mojR47sVY9XX301li1b1qWWTCbj4IMPLniut2toaMirLV++vE89u7sNdsSIEX3qCQAAAAAAAAAAAOUsWewBytX++++fV5s7d26v+3R0dMTjjz/epTZkyJDYe++9C56tO+PHj+8Sho2IePzxx6O9vb3gnvPnz8+rTZgwoVc95s2bl1fbbbfdYtiwYYWO1UV3Ad2//vWvfer5t7/9La82atSoPvUEAAAAAAAAAACAciYQWySHHXZYXu2ee+7pdZ8HH3ww1q9f36V2wAEHRFVVVcGzdWennXaKmpqaLrXm5ua47777Cuo3b968vJtWKysre33j7BNPPJFX22+//QqaqTt77bVXXm3WrFnR1tZWUL9ly5bF3//+9y61ysrKfg8wAwAAAAAAAAAAQDkRiC2SD3zgAzF8+PAutQceeCBefPHFHvfI5XJx3XXX5dVPOOGEvo6Xp6qqKo466qi8+nXXXZd3c+zm5HK5uOyyy/LqBx98cNTV1fWq14IFC/Jqe+65Z696bMoHPvCBqKys7FJbv359/PrXvy6o309/+tPI5XJdavvss08MHTq04BkBAAAAAAAAAACg3AnEFklVVVUcf/zxXWqZTCbOO++8aG9v71GP66+/Pp588skutW233TYOP/zw/hqzi0984hN5tb/+9a/xq1/9qld9rrjiipg3b15e/cwzz+xVn87OznjhhRfy6rvvvnuv+mxKfX19fOhDH8qrX3rppd2+e1Puv//++O1vf5tXP+mkkwqeDwAAAAAAAAAAABCILarTTjstamtru9Sefvrp+OpXv7rZUOxdd90V//Vf/5VXnz59eqRSqU3uffXVV2PXXXfN+9cf/vCHTe476KCD4pBDDsmrX3LJJXHvvfducm/EP2+Gvfzyy+OnP/1p3rOpU6fG5MmTN9vj7RYvXhwdHR1darW1tbH99tv3qs/mTJ8+PaqqqrrU2tvb49RTT+022NudP/7xj/Ef//EfebfD7rXXXjFlypR+mxUAAAAAAAAAAADKkUBsEY0YMSK+9KUv5dXvu++++OQnP9lt2HLFihXx3e9+N7761a9GNpvt8mzfffeN4447bsDmjYi44IIL8kK8nZ2dMX369PjWt74Vy5cvz9uTy+XiscceixNPPLHbMOzEiRPjwgsv7PUsL7/8cl5t3LhxkUgket1rU7bbbrs455xz8upvvPFGnHzyyXHJJZd0+3NHRCxatCjOPffcOOuss6KlpaXLs/r6+rjooov6dVYAAAAAAAAAAAAoR5u+SpQBd8opp8TcuXPjwQcf7FJ//vnn46STTooJEybEzjvvHLW1tbF06dJ4+umnI51O5/UZMWJEXHrppf0eBn2nCRMmxFVXXRVf+MIX8ua45ZZb4je/+U285z3viR122CGqq6tj1apVsWDBgnjzzTe77Tdy5Mi49tprY9iwYb2eZdmyZd3ONxBOPfXUWLRoUdxyyy1d6p2dnXH99dfHDTfcELvsskvstNNOMWTIkFizZk288MILsXjx4m77VVRUxGWXXRY777zzgMwLAAAAAAAAAAAA5UQgtsgSiURcdtll8YUvfCEee+yxvOeLFy/eaKjyLSNGjIgbbrghRo8ePUBTdnXIIYfEFVdcEV//+tejubm5y7NcLhd//etf469//etm++y+++5x9dVXx7bbblvQHK+99lpebcyYMQX16olvf/vbMWzYsPg//+f/RC6X6/Isl8vF888/H88///xm+wwfPjx+/OMfxyGHHDJQowIAAAAAAAAAAEBZSRZ7ACLq6uriuuuui8985jO9vuF13333jVtuuSV23XXXAZque0ceeWTceuutsffee/d6b3V1dXzuc5+Lm2++ueAwbETkhXEj/nnj7ECpqKiI//iP/4j//u//ju22266gHgcffHD87ne/E4YFAAAAAAAAAACAfuSG2EGiqqoq/vM//zNOOOGEuO6662L27NnR1tbW7dpEIhF77bVX/Nu//Vt8+MMfjmSyOLnm7bffPn7961/Hn//85/jFL34Rjz322EZnjoiYMGFCHHHEEXHKKaf0y222ra2tebWBDMS+5cgjj4zDDjss7rrrrvj9738fTz31VHR0dGx0/fDhw+Oggw6Kk08+Ofbaa68Bnw8AAAAAAAAAAADKTSL3zj/7nUGho6MjnnnmmVi0aFE0NTVFNpuNYcOGxZgxY2KvvfaKhoaGYo+Yp6OjI5566qlYunRprF69Ojo6OqKhoSEaGxtj0qRJBd+qOti1tbXF008/Ha+99lqsXr06WltbY+jQodHQ0BATJkyISZMmFS203FNNTS3R2Zkp9hj0UmNjXVRUJCOTycaqVeuLPQ4AbHHOQgDKnbMQgHLnLASg3DkLASh3zsLSlUpVRENDbf/37feO9IuqqqrYd999Y9999y32KD1WVVUV++23X7HH2OJqampi//33L/YYAAAAAAAAAAAAULYG97WVAAAAAAAAAAAAALAZArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKmkAsAAAAAAAAAAAAACVNIBYAAAAAAAAAAACAkiYQCwAAAAAAAAAAAEBJE4gFAAAAAAAAAAAAoKQJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKmkAsAAAAAAAAAAAAACVNIBYAAAAAAAAAAACAkiYQCwAAAAAAAAAAAEBJE4gFAAAAAAAAAAAAoKQJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpqWIPAEDPVVQkY8iQyqiqSkVFRXJDbdhWQyLd0RltbenI5Yo8JAAAAAAAAAAAwBYmEAtQApLJRNTWVceQmsp4beX6uGv2P2LR8jWRTmejfkhl7Lf7NnHEvuNiyJCqaGtLR0tLR7FHBgAAAAAAAAAA2GIEYgEGuWQyEUOHDYmVa1rj+zc+Hk+/8Ebemsf/9nrccNdz8aEDJ8RnP7xbJBKJWL++vQjTAgAAAAAAAAAAbHkCsQCDWCIRUT+0Jpa+0Rzn//ThWNeS3ujalrbO+P0DC2Px8rVxwef2j1wu56ZYAAAAAAAAAACgLCSLPQAAGzdkSFWkO7Px7WvnbjIM+3bz/74ifvaHZ6K2tiqSycQATwgAAAAAAAAAAFB8ArEAg1hlVSrufnhRNK1r79W++x57JdY0t8eQIZUDNBkAAAAAAAAAAMDgIRALMEhVV6ciVZGMWX95udd7M9lc3P3I4qisSg3AZAAAAAAAAAAAAIOLQCzAIFVZWRHPv7wq3ljdWtD+OU+8GpWpikil/FYPAAAAAAAAAAC8u0lJAQxSiUQiVq1tK3j/6ub2DX0AAAAAAAAAAADezQRiAQaxZLLw36YrkoKwAAAAAAAAAABAeRCIBRikstlcjB1VV/D+bUbUbegDAAAAAAAAAADwbiYQCzBIdXR0xvbbDIudxw0vaP+UA8ZHe0dnZDLZ/h0MAAAAAAAAAABgkBGIBRik0ulMtLd3xtSDd+j13rqaVHzwfeMi3dE5AJMBAAAAAAAAAAAMLgKxAINYR0dnHLbPdjFpQkOv9p08dbeoSCairS09QJMBAAAAAAAAAAAMHgKxAINYW1s60ulMXHjagbHzuOE92vOZD70njj1wQjQ3t0cuN7DzAQAAAAAAAAAADAapYg8AwKY1r2uLoUNr4gdnHhK3Pfhi3Dt3cbyxurXLmkQiYvJOo+L4D+4Ue+08Kpqb26Kjo7NIEwMAAAAAAAAAAGxZArEAJWDduraora2Kjx22Y5xwxM7xxN9fjxeXromOzmzUD6mMA/ccE9uMqIu2tnSsXdsa6XSm2CMDAAAAAAAAAABsMQKxACWipaUjoqUjqqtTsfvEETF551GRSETkchGd6UysWrU+MplssccEAAAAAAAAAADY4pLFHgCA3mlv74zmdW1RkUxEZaoiKpKJWL++XRgWAAAAAAAAAAAoWwKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaQKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaQKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaQKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaQKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaQKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaQKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaQKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaQKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaaliD0C+ZcuWxZ133hnz58+PhQsXRlNTU3R0dER9fX2MGzcuJk+eHEcddVQceOCBkUgkij1uRETMnTs35syZE08++WQsX748Vq9eHZlMJrbaaqvYfvvtY/LkyXH44YfHAQcc0OuZH3300fjsZz87QJP/P2eddVacffbZvd734osvxuzZs2PevHmxaNGiDd9r2LBhMWLEiNhzzz1j//33jylTpsSQIUMGYHIAAAAAAAAAAAAobwKxg8jKlSvj4osvjpkzZ0Ymk8l7vnr16li9enU8++yzcdNNN8XOO+8c3/zmN+Oggw4qwrT/dO+998ZVV10VCxcu7Pb5m2++GW+++WY88cQTceONN8b48ePji1/8Yhx33HGDJsxbqAULFsSPf/zjeOSRR7p9vmrVqli1alW88MIL8Yc//CFmzJgRn/vc5+K0006LioqKLTwtAAAAAAAAAAAAvHsliz0A/zR//vyYOnVq3HXXXd2GYbvzwgsvxKmnnhqXXHJJZLPZAZ6wq9bW1jjnnHNi+vTpGw3Ddufll1+Oc889N04++eR44403BnDCgZPL5eLqq6+OT33qUxsNw3Zn9erVcemll8ZJJ51Usj87AAAAAAAAAAAADEYCsYPAvHnz4rTTToumpqaC9l9//fVx4YUX9u9Qm9DS0hKf//zn4+677y64x6OPPhrTpk2L119/vR8nG3jZbDbOPffcuOqqq3ocXH6nJ598Mk499dSCvzcAAAAAAAAAAADQVarYA5S7FStWxPTp06OlpaVLPZlMxpQpU2Lq1KkxYcKEqKqqildffTVmz54dd9xxR976W265JSZNmhTTpk0b8JkvuOCCeOyxx/Lqw4cPjxNOOCEOPvjgGDt2bKRSqXjjjTdi/vz58Zvf/CYWL17cZf0rr7wSZ511VvzP//xPVFZWDvjcm1JfXx/HHnvsZtfNmDEjbr/99m73H3/88XHYYYfF9ttvH4lEIpYtWxYPPfRQ3HLLLbF27dou61944YX4xje+Eddcc02//QwAAAAAAAAAAABQrhK5XC5X7CHK2RlnnBF/+tOfutRGjhwZl112Wey3337d7lmyZEl85StfiWeffbZLfciQITFz5swYM2bMgM07e/bsOPvss/Pqxx57bFx00UUxdOjQbvdlMpm4+uqr4yc/+Unes2984xtx6qmn9vus3Xn22WfjpJNOivb29g21VCoV11xzTRxyyCGb3PunP/0pzjjjjLz6wQcfHJdcckmMGjWq231NTU3xta99LR566KG8Z1deeWVMmTKllz9F/2tqaonOzsJuvKV4GhvroqIiGZlMNlatWl/scQBgi3MWAlDunIUAlDtnIQDlzlkIQLlzFpauVKoiGhpq+71vst870mOPPvpoXhi2trY2rr322o2GYSMixo0bFzfeeGNMmjSpS721tTWuuOKKAZn1LVdeeWVebcqUKXHZZZdtNAwbEVFRURHTp0/vNlD685//PNLpdL/O2Z0333wzzjrrrC5h2IiIr3/965sNw7a3t8d3v/vdvPrUqVPj5z//+UbDsBERDQ0Ncc0118SBBx6Y9+yGG27o4fQAAAAAAAAAAADAxgjEFtG1116bV5s+fXrsvvvum91bX18fP/vZz6K2tmtK+s4774zly5f324xv9/DDD8cLL7zQpTZ8+PD4zne+E8lkz34pnXnmmTF27NgutZUrV8bcuXP7bc7uZLPZ+PKXvxyvvfZal/qRRx4ZJ5988mb333zzzXl/X/fcc8/4wQ9+EBUVFZvdX1FREd/5zncilUp1qT/55JPx0ksv9eAnAAAAAAAAAAAAADZGILZIXn311XjkkUe61EaMGBHTpk3rcY8xY8bkhTk7Ozvj97//fb/M+E73339/Xu2EE06IhoaGHveorKyMY445Jq/+9NNP92m2zfnZz34Wjz/+eJfamDFjYsaMGZvdm8vl4le/+lWXWiqVih/84AdRVVXV4xnGjx8fH/jAB/Lq75wLAAAAAAAAAAAA6B2B2CKZNWtWZLPZLrWPfvSjvQpYRkR86lOfyqvdfffdfZptY7oLbn7oQx/qdZ/tt98+r/b6668XNFNPPPPMM/Hf//3fefWLLroottpqq83uf/TRR2PJkiVdav/yL/8SO+20U69nOfroozf85+rq6hg9enSsXLmy130AAAAAAAAAAACA/ye1+SUMhIcffjivdsQRR/S6z7bbbhu77rprPP/88xtqL730UixZsiTGjRvXpxnf6dZbb42XX345Fi5cGAsXLozFixfHpEmTet2nvb09r5ZMDkw2O51Ox/nnnx+dnZ1d6h//+MfjkEMO6VGP7m7G/exnP1vQPFOnTo0DDjggGhoaora2tqAeAAAAAAAAAAAAQFcCsUWQzWZj/vz5XWqpVCre+973FtRvn3326RKIjYiYN29evwdiU6lU7LjjjrHjjjvGlClTCu7zj3/8I6+23Xbb9WW0jbr++uvz3jdy5Mg477zzetzjoYce6vLX48ePj/e85z0FzVNTUxNjx44taC8AAAAAAAAAAADQvYG5lpNNevnll6Otra1LbeLEiVFTU1NQv9122y2vtmDBgoJ6DbQ1a9bE7Nmz8+oHHnhgv79ryZIl8ZOf/CSvfs4558RWW23Vox5r166NxYsXd6ntt99+/TEeAAAAAAAAAAAA0E8EYotg4cKFebUddtih4H7jx4/Pqy1atKjgfgOlo6Mjzj333Ghubu5Snzx5cuy55579/r4f/ehHecHjPfbYI44//vge93juuecil8t1qe2+++6b3NPR0RFNTU3R2dnZ82EBAAAAAAAAAACAgqWKPUA5Wrp0aV5t7NixBffbZpttevSOYnruuefiwgsvjGeeeaZLvbKyMi644IJ+f98TTzwRs2bNyquff/75kUgketznpZdeyqtNmDChy1+n0+m477774o9//GM8+eSTsWzZsoiISCQS0djYGLvvvnscddRRceyxx/b4ZloAAAAAAAAAAACg5wRii+DNN9/Mq2299dYF9xs5cmRebcWKFQX364tsNhu5XC5aWlpi6dKl8fTTT8fMmTPjL3/5S95Nq8lkMr73ve/F5MmT+32OSy65JK92zDHHxD777NOrPkuWLMmrvf1b3XbbbXHppZfG66+/nrcul8vFypUrY86cOTFnzpy49NJL48wzz4xp06ZFKuUfPQAAAAAAAAAAAOgvUnlFsHLlyrzasGHDCu5XV1cXqVQqOjs7N9RaWloinU5HZWVlwX0LMWvWrPjyl7+82XUjRoyIiy++OA4//PB+n+HBBx+Mp556qkstmUzG2Wef3ete3QVdGxsbo6WlJb7xjW90ewvtxqxevTq+//3vxwMPPBBXXXVV1NfX93oeAAAAAAAAAAAAIF+y2AOUo+bm5rxaX8ORtbW1PXrPQFu+fPlm1xx66KExc+bMAQnDRkT89Kc/zat9+MMfjl122aXXvZqamvJquVwuTj/99F6FYd/ukUceiRNPPDHWrFlT0H4AAAAAAAAAAACgKzfEFkFHR0derbq6uk89q6qqevSegbZs2bLNrpkzZ04cd9xxccopp8SJJ57Y55/97R555JF48sknu9QSiUR88YtfLKjf2rVr82ozZsyIxx57rEvtmGOOiY985CPx3ve+NxobG6O5uTleeuml+OMf/xi33HJLtLS0dFn/j3/8I772ta/FNddcE4lEoqDZ+tOwYTXFHoECJJOJDf/e2FhX5GkAYMtzFgJQ7pyFAJQ7ZyEA5c5ZCEC5cxbyTgKxRdBdULWioqJPPbvb39nZ2aeehXjttdd6tG758uUxY8aM+O1vfxtXXnll7Ljjjv3y/htuuCGvdvjhhxfcv62tLa92xx13bPjPo0ePjssvvzz22WefLmsaGxujsbEx9t133zj11FPjy1/+cjzxxBNd1jz44INx4403xqmnnlrQbP2posJl0aUskUhERUXxg9UAUCzOQgDKnbMQgHLnLASg3DkLASh3zkLeIhBbBJlMJq82EIHYbDbbp56F2H///ePoo4+OnXbaKRoaGmL9+vWxZMmSeOihh+K2227Luyl14cKFcdJJJ8XNN98cO+ywQ5/e/fLLL8dDDz2UV+9L4DSdTm/02bbbbhu//vWvY/To0ZvsMXr06LjhhhvitNNOi8cff7zLs2uuuSY+/elPR21tbcEz9odMZsv/WqHvkslEJBKJyOVykc3mij0OAGxxzkIAyp2zEIBy5ywEoNw5CwEod87C0jYQlzgKxBZBZWVlXq2vt7l2F9ysqqrqU89CfOYzn8mr7bzzznHEEUfE2WefHd/+9rdj9uzZXZ43NTXFmWeeGbfddlufZr7pppsil+v6G9tuu+0W+++/f8E9NxYqrqioiCuuuGKzYdi31NTUxI9//OP4yEc+EmvXrt1Qb2pqit/85jdxyimnFDxjf1i7ti06O/OD2gxujY11UVGRiGw2F6tWrS/2OACwxTkLASh3zkIAyp2zEIBy5ywEoNw5C0tXKlURDQ39f4mkPye9CAYiENvdrbPdvaeYGhsb48orr4xPf/rTec9efPHF+OUvf1lw73Q6Hbfffntevbt39UYq1X1mfOrUqTF58uRe9Ro9enRMmzYtr37//fcXNBsAAAAAAAAAAADwTwKxRVBbm59sbm1t7VPPlpaWvFp1dXWfeg6ERCIR3/rWt2KvvfbKe3bTTTdt9EbWzZkzZ06sXr26S626ujqmTp1aUL+3bOzG2n/9138tqN8nP/nJvNpTTz0VbW1tBfUDAAAAAAAAAAAABGKLYvjw4Xm19esLv7I5k8nkBSqrq6ujrq6u4J4DKZVKxde+9rW8+rJly2LBggUF9bzjjjvyakcffXQMHTq0oH5vGTZsWF6ttrY23vve9xbUb7vttottttmmS62joyMWLlxYUD8AAAAAAAAAAABAILYoGhsb82orV64suF93e0eOHFlwvy1h3333jbFjx+bVn3nmmV73amtri//93//Nqx933HGFjNZFQ0NDXm277baLVCpVcM+JEyfm1VatWlVwPwAAAAAAAAAAACh3ArFF0F0Q9M033yy4X3d7R40aVXC/LeV973tfXm3ZsmW97jN37ty8G3KHDh0aBxxwQMGzveWdt7lGRGy11VZ96tnd/qampj71hP+PvfsOb6pu/zj+SVra0l1a9l6ydwEBQTYiKm4U5HE8bhHcA2W4FRVEcKGIOAFxgiAgClqG7C2bAm1ZLYXupmnO7w9+7UM4KW260tr367q4SO5zzv2906QNj8+n3wAAAAAAAAAAAAAAAABARUYg1gPq1q1rqh05cqTQ/Vxd62oX0rLGVWg3OTnZ7T5//PGHqXb55ZfLx8enUHOdr169eqaa3W4vct8LWa18KwIAAAAAAAAAAAAAAAAAUFiF/9x3FFqzZs1ksVhkGEZu7cCBA4Xu5+raJk2aFLpfXmw2m2JjY3X06FEdPXpUjRo1Urdu3Qrd7/zHnyMgIMDtPn/99Zep1r9//0LNdKGmTZuaaidOnChSz7Nnz5pqQUFBReoJAAAAAAAAAAAAAAAAAEBFRiDWA4KCglS/fn1FR0fn1mJjY3X69GlVqVLF7X7btm0z1Vq3bl2UEU0WL16sxx57TA6HI7fWp0+fIgViT548aapFRES41SMmJkZxcXFONavVqh49ehR6rvO1adNGVqvV6XEfO3as0M+V5HpHX1c70QIAAAAAAAAAAAAAAAAAgILhc9o9pGvXrqbamjVr3O5js9m0fv16p1rlypXVoUOHQs/mSv369Z1CoZK0fv16ZWZmFrrnxo0bTbUGDRq41WPDhg2mWsuWLRUcHFzYsZwEBgaqVatWTjXDMPTnn38Wqt/JkycVExPjVPP391f9+vULPSMAAAAAAAAAAAAAAAAAABUdgVgPufzyy021RYsWud1n5cqVSk1Ndapdeuml8vHxKfRsrjRp0kR+fn5OtZSUFC1btqxQ/TZs2KBjx4451SpVquT2jrObNm0y1bp06VKomfLSt29fU23+/PmF6rVgwQJTrXv37vLy8ipUPwAAAAAAAAAAAAAAAAAAQCDWY3r27KnQ0FCn2h9//KEDBw4UuIdhGJo5c6apfuONNxZ1PBMfHx/179/fVJ85c6Zp59j8GIahKVOmmOo9evRQQECAW7127NhhqrVp08atHvm59tprTYHV9evXKyoqyq0+6enp+vLLL031K6+8skjzAQAAAAAAAAAAAAAAAABQ0RGI9RAfHx9df/31TrXs7Gw9++yzyszMLFCPTz/9VJs3b3aq1apVS7179y6uMZ3ccMMNptquXbtchjwvZurUqdqwYYOp/tBDD7nVx263a9++faZ6q1at3OqTn1q1amngwIGm+vPPP6/Tp08XuM9rr72muLg4p1r16tVd9gYAAAAAAAAAAAAAAAAAAAVHINaD7r77bvn7+zvVtm7dqscffzzfUOzChQv11ltvmepjxoyRt7f3Ra+NiYlRs2bNTH++//77i17XvXt3XXbZZab6G2+8oV9//fWi10rndoZ955139MEHH5iODRkyRG3bts23x/mio6Nls9mcav7+/qpXr55bfQrisccek4+Pj1Pt2LFjuvPOO3X8+PF8r3/nnXc0d+5cU33MmDGqVKlSsc0JAAAAAAAAAAAAAAAAAEBFRCDWg8LDwzV69GhTfdmyZbrppptc7qJ68uRJvfjii3r88cflcDicjkVGRmro0KElNq8kjRs3zhTitdvtGjNmjMaPH69jx46ZrjEMQ+vWrdOtt97qMgzbqFEjTZw40e1ZDh8+bKrVrVtXFovF7V75qVevnp566ilTfffu3Ro6dKi++OILpaammo7v379fd999t8vH3aVLF9MuwQAAAAAAAAAAAAAAAAAAwH0X30oUJe6OO+7QmjVrtHLlSqf6nj17NGLECDVo0EBNmzaVv7+/YmNjtXXrVmVlZZn6hIeHa/LkySUSBj1fgwYNNG3aNN1///2mOebOnat58+apRYsWatiwoXx9fXX69Gnt2LFD8fHxLvtFRERoxowZCg4OdnuWuLg4l/OVlJEjR+rgwYP6+uuvnepnzpzRyy+/rMmTJ6tdu3aqWbOm0tPTdeDAAe3du9dlrxo1apTK8wUAAAAAAAAAAAAAAAAAQEVAINbDLBaLpkyZovvvv1/r1q0zHY+OjlZ0dPRFe4SHh2vWrFmqXr16CU3p7LLLLtPUqVP11FNPKSUlxemYYRjatWuXdu3alW+fVq1aafr06apVq1ah5jh+/LipVrNmzUL1Kqjx48crICBAH3/8selYWlqa1qxZk2+POnXq6LPPPlPVqlVLYkQAAAAAAAAAAAAAAAAAACocq6cHgBQQEKCZM2dq5MiRbu8YGhkZqblz56pZs2YlNJ1r/fr10w8//KAOHTq4fa2vr6/uuusuffPNN4UOw0oyhXGlczvOliSLxaInnnhCH3zwgWrUqOH29VdddZV++OEH1a1btwSmAwAAAAAAAAAAAAAAAACgYmKH2DLCx8dHzz//vG688UbNnDlTS5cuVUZGhstzLRaL2rdvr9tuu01XXnmlrFbP5Jrr1aunOXPmKCoqSrNnz9a6devynFmSGjRooL59++qOO+4olt1s09PTTbWSDsTm6Nu3r3r06KH58+fru+++086dO/M818/PT3369NFdd92ltm3blsp8AAAAAAAAAAAAAAAAAABUJBbDMAxPDwEzm82mbdu26dChQ0pMTJTD4VBwcLBq1qyp9u3bKywszNMjmthsNm3ZskWxsbE6c+aMbDabwsLCVKVKFTVv3lx16tTx9IglJj4+Xjt27NDRo0eVkpIiLy8vhYSEqHHjxmrVqpUqV67s6REvKjExTXZ7tqfHgJuqVAmQl5dV2dkOnT6d6ulxAAAodbwXAgAqOt4LAQAVHe+FAICKjvdCAEBFx3th+eXt7aWwMP/i71vsHVEsfHx8FBkZqcjISE+PUmA+Pj7q0qWLp8fwiIiICPXu3dvTYwAAAAAAAAAAAAAAAAAAUCFZPT0AAAAAAAAAAAAAAAAAAAAAUBQEYgEAAAAAAAAAAAAAAAAAAFCuEYgFAAAAAAAAAAAAAAAAAABAuUYgFgAAAAAAAAAAAAAAAAAAAOUagVgAAAAAAAAAAAAAAAAAAACUawRiAQAAAAAAAAAAAAAAAAAAUK4RiAUAAAAAAAAAAAAAAAAAAEC5RiAWAAAAAAAAAAAAAAAAAAAA5RqBWAAAAAAAAAAAAAAAAAAAAJRrBGIBAAAAAAAAAAAAAAAAAABQrhGIBQAAAAAAAAAAAAAAAAAAQLlGIBYAAAAAAAAAAAAAAAAAAADlGoFYAAAAAAAAAAAAAAAAAAAAlGsEYgEAAAAAAAAAAAAAAAAAAFCuEYgFAAAAAAAAAAAAAAAAAABAuUYgFgAAAAAAAAAAAAAAAAAAAOUagVgAAAAAAAAAAAAAAAAAAACUawRiAQAAAAAAAAAAAAAAAAAAUK4RiAUAAAAAAAAAAAAAAAAAAEC5RiAWAAAAAAAAAAAAAAAAAAAA5RqBWAAAAAAAAAAAAAAAAAAAAJRrBGIBAAAAAAAAAAAAAAAAAABQrhGIBQAAAAAAAAAAAAAAAAAAQLlGIBYAAAAAAAAAAAAAAAAAAADlGoFYAAAAAAAAAAAAAAAAAAAAlGsEYgEAAAAAAAAAAAAAAAAAAFCuEYgFAAAAAAAAAAAAAAAAAABAuUYgFgAAAAAAAAAAAAAAAAAAAOUagVgAAAAAAAAAAAAAAAAAAACUawRiAQAAAAAAAAAAAAAAAAAAUK4RiAUAAAAAAAAAAAAAAAAAAEC5RiAWAAAAAAAAAAAAAAAAAAAA5RqBWAAAAAAAAAAAAAAAAAAAAJRrBGIBAAAAAAAAAAAAAAAAAABQrhGIBQAAAAAAAAAAAAAAAAAAQLlGIBYAAAAAAAAAAAAAAAAAAADlGoFYAAAAAAAAAAAAAAAAAAAAlGsEYgEAAAAAAAAAAAAAAAAAAFCuEYgFAAAAAAAAAAAAAAAAAABAuUYgFgAAAAAAAAAAAAAAAAAAAOUagVgAAAAAAAAAAAAAAAAAAACUawRiAQAAAAAAAAAAAAAAAAAAUK4RiAUAAAAAAAAAAAAAAAAAAEC5RiAWAAAAAAAAAAAAAAAAAAAA5RqBWAAAAAAAAAAAAAAAAAAAAJRrBGIBAAAAAAAAAAAAAAAAAABQrhGIBQAAAAAAAAAAAAAAAAAAQLlGIBYAAAAAAAAAAAAAAAAAAADlGoFYAAAAAAAAAAAAAAAAAAAAlGsEYgEAAAAAAAAAAAAAAAAAAFCuEYgFAAAAAAAAAAAAAAAAAABAuUYgFgAAAAAAAAAAAAAAAAAAAOUagVgAAAAAAAAAAAAAAAAAAACUawRiAQAAAAAAAAAAAAAAAAAAUK4RiAUAAAAAAAAAAAAAAAAAAEC5RiAWAAAAAAAAAAAAAAAAAAAA5RqBWAAAAAAAAAAAAAAAAAAAAJRrBGIBAAAAAAAAAAAAAAAAAABQrhGIBQAAAAAAAAAAAAAAAAAAQLlGIBYAAAAAAAAAAAAAAAAAAADlGoFYAAAAAAAAAAAAAAAAAAAAlGsEYgEAAAAAAAAAAAAAAAAAAFCuEYgFAAAAAAAAAAAAAAAAAABAuUYgFgAAAAAAAAAAAAAAAAAAAOUagVgAAAAAAAAAAAAAAAAAAACUawRiAQAAAAAAAAAAAAAAAAAAUK4RiAUAAAAAAAAAAAAAAAAAAEC5RiAWAAAAAAAAAAAAAAAAAAAA5RqBWAAAAAAAAAAAAAAAAAAAAJRrBGIBAAAAAAAAAAAAAAAAAABQrnl7egAAAAAAAAAAAAAAAFB2GYZDmZkZyshIU3a2XYbhkMPh8PRYFV5iorcsFskwpKwsu6fHAQCg1PFeWHBWq1UWi1VWq5d8fPzk51dZXl7/vvjov+8RAQAAAAAAAAAAAACAIjEMQ5mZ6crISFNmZroMgwBsWZOV5ZBkkWTI4TA8PQ4AAKWO98KCcziyc29nZqYpOVny9vaRr29lVa4cIG/vSh6crvgQiAUAAAAAAAAAAAAAALkMw1BS0mmlp6fkcYZFVqu1VGeCmcViyb1ttRICAgBUPLwXFpxhGKZfcLLbbbLbbUpNTVJwcBX5+wd6aLriQyAWAAAAAAAAAAAAAABIch2GtVis8vPzl5+fv3x8fGWxEIYtC7y8rLkfE52dzQ6+AICKh/dC9xiGIbs9K/dTAOx2W84RJSUlyG63KSgozCloXN4QiAUAAAAAAAAAAAAAAC7DsMHB4apcOaBcByMAAABwbkfdSpV8VKmSjwIDQ5SdbVdKSpLS05MlSWlpyZIsCg4O8+ygRcCvbQEAAAAAAAAAAAAAAGVmpjuFYUNDq8rfP5AwLAAAwL+Ql5e3QkKqKDg4XNK5f++lpSXJZsv07GBFQCAWAAAAAAAAAAAAAAAoIyMt93ZwcLj8/Pw9OA0AAABKg79/oAIDQ3Lvp6Sc9eA0RUMgFgAAAAAAAAAAAACACs4wHMrMTJckWSxWVa4c4OGJAAAAUFoCAoJltXpLkmy2DDkcDg9PVDgEYgEAAAAAAAAAAAAAqOAyMzNkGOeCD35+/rJYLB6eCAAAAKXFYrHIz6/y/98zZLNleHSewiIQCwAAAAAAAAAAAABABZeRkZZ728/P34OTAAAAwBN8fSvn3j7/34blCYFYAAAAAAAAAAAAAAAquOxse+5tHx8/D04CAAAAT6hUyTf3tsOR7cFJCo9ALAAAAAAAAAAAAAAAFZxhOP7/lkUWi8WjswAAAKD0nfs34Ll/BzocjoufXEYRiAUAAAAAAAAAAAAAoILLCT1YrcQIAAAAKiKLxZL7b0ECsQAAAAAAAAAAAAAAAAAAACjnDE8PUCgEYgEAAAAAAAAAAAAAAAAAAFCuEYgFAAAAAAAAAAAAAAAAAABAuUYgFgAAAAAAAAAAAAAAAAAAAOUagVgAAAAAAAAAAAAAAAAAAACUawRiAQAAAAAAAAAAAAAAAAAAUK4RiAUAAAAAAAAAAAAAAAAAAEC5RiAWAAAAAAAAAAAAAAAAAAAA5RqBWAAAAAAAAAAAAAAAAAAAAJRrBGIBAAAAAAAAAAAAAAAAAABQrhGIBQAAAAAAAAAAAAAAAFBm2e12T48AACgHCMQCAAAAAAAAAAAAAAAAKHOys7M1d+5XmjZtsqdHAQCUAwRiAQAAAAAAAAAAAAAAAJQpp06d1N13j9S0aVOUlpbm6XEAAOUAgVgAAAAAAAAAAAAAAAAAZcrRo0e0b99eT48BAChHCMQCAAAAAAAAAAAAAAAAAACgXCMQCwAAAAAAAAAAAAAAAAAAgHKNQCwAAAAAAAAAAAAAAAAAAADKNW9PDwAAAAAAAAAAAAAAAAAAkrRo0QK9+uoLTrXFixdq8eKFkqTLLuuldevWymazSZLmzftJtWrVvmjPWbM+1syZH0mSRo9+TDffPFySdOONV+v48WNq376jpk+fofj4eM2d+5Wiolbq5MkT8vLyVv369dWrV19df/2NCggIzHd+wzC0YsVy/f77b9q1a4cSExPl41NJ1apVV2RkFw0deoPq12/g7pcFAFAABGIBAAAAAAAAAAAAAAAAlAtBQcHq3r2nVqxYLklavnypRo6886LXLFv2qyTJy8tL/fsPcnnOP//s1NNPP6bTpxPOq2bqn3926Z9/dmn+/Dl6662patq0WZ7rHD9+TOPGPa1//tnlVLfZMpWSkqKDBw/ou+/mafjw/+jeex+UxWIpwCMGABQUgVgAAAAAAAAAAAAAAAAAZULz5i314INjFBcXox9//C631rfvAElSo0aNZbfbcwOxv/225KKB2N27/9GRI4clSZ07d1WVKuGmcxITT+uZZ86FYf39A9S7d1/Vrl1Hx48f14oVy5WcnKSEhHg9/PB9mjZthpo2vcTUIy4uVg88cJcSEs4FaoODQ3TZZb1Uu3YdZWZmateuHdq4cb2ys7P1xRezlJAQr7FjJxTtiwUAcEIgFgAAAAAAAAAAAAAAAECZ0KhRYzVq1FibNm3IDcQ2bNhIw4ePzD3HbrcrNDRMZ84k6sCB/Tp48IAaNWrsst+yZYtzbw8adKXLcw4fjpZ0Lnj72mtvqWrVarnH7r33QT3//FPaunWzUlJSNHnyG/rgg5lO12dnZ2vChGdzw7ADBw7WE088K39/f6fzdu7coeeee1Lx8ae0aNECdejQSYMHX1XArwwAID9WTw8AAAAAAAAAAAAAAAAAAAXl7e2t/v0H5d5ftuxXl+c5HA799ttSSZK/f4B69uydZ8/w8HBNnjzNKQwrSWFhYXrjjSmqVq26JGn79q1avTrK6ZwVK37XP//skiR16XKpnn/+BVMYVpJatWqtl19+QxaLRZL06acfKzs7O59HCwAoKAKxAAAAAAAAAAAAAAAAAMqVK64Yknt7+fKlLs/ZuHG9EhLiJUm9e/eVn59fnv1uv/1uBQeHuDwWGBioW24ZkXt/5crfnY4vXPhj7u3//OcuWa15R7Jat26rTp06S5KOHYvV9u1b8zwXAOAeArEAAAAAAAAAAAAAAAAAypXmzVuoYcNGkqS4uFjt3LnDdM75O8cOGnTlRfv16zfgosd79OiVe3vdurW5t+12u3bs2JZ7v1mzFhcfXFKbNu1yb2/btiXf8wEABePt6QEAAAAAAAAAAAAAAAAAwF1XXDFEH3wwTZL0229L1KpV69xjmZmZuTu5VqtWXR06dMqzT82atRQSEnrRtWrXriNfX19lZmYqPv6U7Ha7vL29deLEcaWnp+eeN2BAT7cew/Hjx9w6HwCQN3aIBQAAAAAAAAAAAAAAAFDuDBp0pazWc/Gn339fKofDkXts1aq/lJqaKkkaMOCK3PNcCQ0NK9B6gYFBkiTDMHTmTKIkKSnpbKFmz5GcnFyk6wEA/8MOsWVQXFycFixYoI0bN2r//v1KTEyUzWZTYGCg6tatq7Zt26p///7q1q2bLBaLp8eVJK1Zs0Z//vmnNm/erGPHjunMmTPKzs5WSEiI6tWrp7Zt26p379669NJL3Z7577//1n/+858Smvx/Ro0apYcffrhYe3788cd66623cu/Xrl1bv//+e7GuAQAAAAAAAAAAAAAAUBFFRFRVp06dtX7930pISNCmTRsUGdlFkrRs2eLc8wYNuvKifby9CxahOj9w6+1dSZKUnZ3tNM/NNw8v8PySVLduXbfOBwDkjUBsGZKQkKBXX31VixcvdnqzzHHmzBmdOXNG27dv11dffaWmTZtq7Nix6t69uwemPefXX3/VtGnTtH//fpfH4+PjFR8fr02bNumzzz5T/fr19eCDD2ro0KFlJsxbUnbv3q2pU6d6egwAAAAAAAAAAAAAAIB/rSuuGKL16/+WJP3++zJFRnZRamqK1q5dLUm65JJmatSo8UV7pKam5LuOw+HIPc/b21shISGSpKCg4NxzDMPQ8OEjC/U4AABFl/de4ChVGzdu1JAhQ7Rw4UKXYVhX9u3bpzvvvFNvvPGG02+glIb09HQ99thjGjNmTJ5hWFcOHz6sp59+WrfffrtOnTpVghN6ls1m05NPPqmsrCxPjwIAAAAAAAAAAAAAAPCvdfnlfVW5sr8kadWqv2QYhtauXZOb2chvd1hJiok5KrvdftFzjh49IpvNJkmqVat27kZw1avXkJeXlyQpISFeJ0+eyHe9tLTU3F4AgOJTbgOxmZmZ2r17t1auXKkff/xRc+bM0RdffKElS5a4PP/EifzfbDxlw4YNuvvuu5WYmFio6z/99FNNnDixeIe6iLS0NN1777365ZdfCt3j77//1vDhw8v081IUkydP1t69ez09BgAAAAAAAAAAAAAAQLlU0E8e9vPzU+/efSWdC6Tu3r1Lq1f/JUny8vJS//6D8u1hs9m0efOGi57z118rcm9fdtnlTus3a9Yi9/6yZb/mu95LL41Xv349dN11V2rhwp/yPR8AUDDenh6goAzDUFRUlFasWKG1a9cqOjra5a6oHTt21KBBzm9kaWlp6tOnjzp16qTrr79eQ4cOldVaNrLAJ0+e1JgxY5SWluZUt1qtGjRokIYMGaIGDRrIx8dHMTExWrp0qX7++WfT+XPnzlXz5s01fPjwEp953LhxWrdunakeGhqqG2+8UT169FDt2rXl7e2tU6dOaePGjZo3b56io6Odzj9y5IhGjRqlr7/+WpUqVSrxuS8mMDBQV1xxRbH0Wrt2rT777LNi6QUAAAAAAAAAAAAAAFARWa1eubcdjot/2vLgwVdp8eKFkqQ//1yhv/9eI0mKjOyq8PCIAq03e/aniozs6jKIm5R0VvPmfZN7v1+/gab1d+3aIUn6+uvPNXDgYFWtWs3lOtu3b1VU1J8yDEPx8afUsmWrAs0HAMhfmQ/E2mw2ff311/rss89ydxM1DMOtHseOHZPD4dCGDRu0YcMGffzxx3ryySfVp0+fkhjZLRMmTFB8fLxTLSIiQlOmTFGXLl2c6vXr11ePHj10991369FHH9X27dudjk+aNEl9+vRRzZo1S2zepUuXauHChab6FVdcoZdffllBQUFO9dq1a6t9+/a64447NH36dL3//vtOx7dt26Yvv/xSd955Z55rdu3aVXv27CmW+bdv364RI0YoMzMzt+bt7a2pU6eqadOmRe6flJSkZ555xu3XKAAAAAAAAAAAAAAAAP4nICAg9/axY8cuem6HDp1UvXoNnThxXN9/P0+pqamSpEGDrizwelu2bNLrr7+kxx57Wr6+vrn1+Ph4jR37hE6fTpAkXXHFEDVr1tzp2iuvvEpz5nyp2NgYnT17Vo888qBeeeVNNWjQ0Om83bt3ady4/+VKevfup0aNmhR4RgDAxZXpQOyqVas0btw4HTt2zBQwLOi26JIUExOTe9swDB08eFAPPvigbrvtNj3zzDPy8vK6yNUl5++//9bvv//uVPP399eMGTPUqlXev/1Rt25dffbZZxoxYoR2796dW09PT9fUqVP1+uuvl9jM7777rqk2aNAgTZky5aK77np5eWnMmDEyDEMffPCB07GPP/5Yt912W4nvEhsfH69Ro0Y5hWEl6amnntJll11WLGu88MIL+f4jDAAAAAAAAAAAAAAAABdXo0ZNWSwWGYahbdu26KWXxqlBg8aqWrWqrrhiiNO5FotFAwcO1hdfzMoNw/r7B6hXr94FXs/b21u//PKz1q//W5df3ldhYWGKiTmqFSt+V1rauZ516tTVqFGPmq719fXTSy+9rlGj7lNaWqoOH47W7bffom7deuiSS5orKytLe/fu0bp1a3IzUDVr1tLjjz9TyK8OAMCVvBOMHvbee+/pnnvuUVxcnAzDkMVicfqTI+dN4mI7csbFxeXezrneMAx9+eWXuvfee2W320vugVzEjBkzTLUxY8ZcNAybIzAwUB9++KH8/f2d6gsWLCixQOaqVau0b98+p1poaKheeOGFi4Zhz/fQQw+pdu3aTrWEhAStWbOm2OZ0xeFw6JFHHtHx48ed6v369dPtt99eLGssWrTI5e65AAAAAAAAAAAAAAAAcE9gYKD69RuYe3/JksX66KPp+uabL12eP3iwc0i2d+++8vPzK/B6L7zwmvz8/HTy5Al9++03mjHjfS1atCA3DNu+fUd99NEshYaGurz+kkua68MPZ+buCpudna2oqD/16acz9MUXs/T336tz802tW7fVe+99nGcvAEDhlMlA7Msvv6zp06fL4XCYArDnK+jH0p8fiM25JicUu3r1aj377LNFH9pNMTExWr16tVMtPDxcw4cPL3CPmjVrmsKcdrtd3333XbHMeKHly5ebajfeeKPCwsIK3KNSpUoaOHCgqb5169YizZafDz/8UOvXr3eq1axZU6+99lqx9D9x4oQmTpzoVLvllluKpTcAAAAAAAAAAAAAAEBFNHbsBN1++39Vp05d+fj4KigoWF5eXi4zQ/XqNVCLFi1z7w8adKVba11+eR/Nnj1HQ4derxo1aqpSpUoKDQ1Vt2499OKLr2vatI8UEhJ60R6NGjXR7NlzNGHCy+rdu59q1KgpX19f+fj4qHr1Gurdu69eeWWS3n//E1WrVt2t+QAA+fP29AAXmjFjhr788txvclwYhD3/zSw8PFx169bVli1b8u2ZkpKSezunZ86us4ZhaOHChYqMjNSwYcOK4REUzJIlS+RwOJxqV199tXx8fNzqc/PNN+uDDz5wqv3yyy8aNWpUkWe80IWBUkkaPHiw233q1atnqp04caJQMxXEtm3b9N5775nqL7/8skJCQorc3zAMPfPMMzp79mxurX79+nr66ac1Z86cIvcHAAAAAAAAAAAAAACoiHx8fHTPPQ/onnseyPdcwzB05swZSVK1atXVoUMnt9erXbuOnnxyrNvXnc/Ly0sDBlyhAQOuKFIfAID7ylQgduPGjXrnnXfyDMJ2795dQ4cOVbdu3VStWjVJUvPmzfPtO2HCBPXp00fTp0/Xtm3bnHadzQnFTp48WQMHDnRrt9OiWLVqlanWt29ft/vUqlVLzZo10549e3JrBw8e1NGjR1W3bt0izXihH374QYcPH9b+/fu1f/9+RUdHF+jrf6HMzExTzWotmc2Ks7Ky9Nxzz8lutzvVr7vuOl122WXFssbs2bOddvv18vLS66+/Ln9//2LpDwAAAAAAAAAAAAAAgIvbtm2Ljh079ynSV1wxpMSyKACAsqvMBGIdDocmTJggh8PhFIg1DENNmjTRq6++qrZt2xa6f69evdSrVy998803evXVV00ByaSkJM2aNUuPPfZYodcoKIfDoY0bNzrVvL291a5du0L169ixo1MgVpI2bNhQ7IFYb29vNW7cWI0bN9agQYMK3Wfv3r2mWp06dYoyWp4+/fRT03oRERF69tlni6X//v37NXnyZKfa3XffrY4dOxZLfwAAAAAAAAAAAAAAAOTv++/nSTq3Od6QIdd4eBoAgCeUmV+FWLhwofbv358bhjUMQ4ZhqH379pozZ06RwrDnu/XWWzVr1iz5+vrm1nJ2if3hhx/kcDiKZZ2LOXz4sDIyMpxqjRo1kp+fX6H6tWzZ0lTbsWNHoXqVtLNnz2rp0qWmerdu3Yp9raNHj+r999831R977DGFhIQUuX9WVpaefPJJpx1vmzdvrlGjRhW5NwAAAAAAAAAAAAAAAPKWlpYq6Vx+4+uvv9Dy5cskSd27X6batUtmYzYAQNlWZnaI/frrr3NvG4Yh6VxIdObMmQoICCjWtSIjI/XCCy/o6aefdtqNNj4+XmvWrFGPHj2Kdb0L7d+/31Rr2LBhofvVr1/fVDt06FCh+5UUm82mp59+WikpKU71tm3bqk2bNsW+3ptvvmkKHrdu3VrXX399sfSfOnWqdu3alXvfx8dHkyZNko+PT7H0BwAAAAAAAAAAAAAAgGs33zxUFotVqakpstlsks59+vE99zzo4ckAAJ5SJnaIPX78uLZs2eIUTrVYLHrhhReKPQybY+jQoercuXNu+DbH5s2bS2S988XGxppqtWvXLnS/GjVqFGgNT9q5c6dGjBihP/74w6leqVIljRs3rtjX27Rpk5YsWWKqP/fcc06vs8LasGGDZs6c6VQbPXq0mjVrVuTeAAAAAAAAAAAAAAAAuLjw8KpKTDydG4aVpAceeFhNmjT14FQAAE8qEzvErlu3Lve2YRiyWCzq3r27OnfuXKLrjhgxQuvXr3eq7dixo0TXlM7tRHuhatWqFbpfRESEqXby5MlC9ysKh8MhwzCUlpam2NhYbd26VYsXL9batWtN4WOr1aqXXnpJbdu2LfY53njjDVNt4MCB6tixY5F7p6Sk6KmnnpLD4citderUSf/973+L3BsAAAAAAAAAAAAAAAD569athxISTikjI0MNGzbS8OH/UZ8+/T09FgDAg8pEIHb37t2m2hVXXFHi6/bs2VNWqzU3hGsYhg4fPlzi6yYkJJhqwcHBhe4XEBAgb29v2e323FpaWpqysrJUqVKlQvctjCVLluiRRx7J97zw8HC9+uqr6t27d7HPsHLlSm3ZssWpZrVa9fDDDxdL/1deecVpB15/f3+98cYbslrLxIbLAAAAAAAAAAAAAAAA/3r33z9K998/qkg95s9fUEzTAADKgjKR4IuJiTHVimMnz/wEBASoTp06TrWkpKQSXzclJcVUCwwMLFJPf3//Aq1T0o4dO5bvOb169dLixYtLJAwrSR988IGpduWVV+qSSy4pcu+lS5fq+++/d6o9++yzqlu3bpF7AwAAAAAAAAAAAAAAAACAwikTO8S6Cm5WrVq1VNYOCQnRkSNHZLFYJEnJycklvqbNZjPVfH19i9TTx8enQOuUtLi4uHzP+fPPPzV06FDdcccduvXWW4v82M+3evVqbd682almsVj04IMPFrn3qVOnNH78eKda7969dfPNNxe5t6cFB/t5egQUgtVqyf27SpUAD08DAEDp470QAFDR8V4IAKjoeC8EgOKVmOitrCyHLBaLvLzKxN5ayMf/xxxksYjnDABQIfFeWPwsFousVosqVfIul/9bu0wEYrOyskw1P7/SCehdGBp1OBylvqYkeXl5Famnq+vtdnuRehbG8ePHC3TesWPH9Nprr+nbb7/Vu+++q8aNGxfL+rNmzTLVevfuXSz9x44dq8TExNz7oaGhevnll4vctyzgDaF8O/cfJSyeHgMAAI/hvRAAUNHxXggAqOh4LwSA4nEuUGI57zbKE54zAEBFx3thcbKU25BxmQjE+vv7m2qnT59WjRo1SnzthISE3N1h85qluGVnZ5tqJRGILY1w74W6du2qAQMGqEmTJgoLC1NqaqqOHj2qv/76Sz/++KPS0tKczt+/f79GjBihb775Rg0bNizS2ocPH9Zff/1lqt95551F6itJX331lf7880+n2sSJE0ttJ+OSlp1d+q8VFJ3VapHFYpFhGHI4DE+PAwBAqeO9EABQ0fFeCACo6HgvBIDiZRiSZJx3G2Xd+cEfnjMAQEXEe2FJMWQYJZ8pK4nAbZkIxIaHh5tq+/btK/FA7IkTJxQfH5/7H0sklUrAsVKlSqZaUXdzdbXLro+PT5F6FsbIkSNNtaZNm6pv3756+OGHNWHCBC1dutTpeGJioh566CH9+OOPRZr5q6++yn0ec7Rs2VJdu3YtdE9JOnTokN58802n2tVXX63BgwcXqW9ZkpSUIbvdHNRG2ValSoC8vCxyOAydPp3q6XEAACh1vBcCACo63gsBABUd74UAULyysuxyOAxZrQYb6pQTXl5WWSwqlcAKAABlEe+FxS/nl06zsuwl+r+1vb29FBZW/JuXlok9bevXr2+qXbgbZ0lYsWKF032LxaK6deuW+LolEYh1teusq3U8qUqVKnr33Xc1bNgw07EDBw7o888/L3TvrKws/fTTT6a6q7XcYbfb9eSTTyo9PT23VqNGDY0fP75IfQEAAAAAAAAAAAAAAAAAQPEpE4HYtm3b5t7O2a31559/VnJycomt6XA49Pnnn8ty/r7Jklq3bl1ia+bw9zcnm88PXBZGWlqaqebr61ukniXBYrFo/Pjxat++venYV199JYejcEn9P//8U2fOnHGq+fr6asiQIYXql+O9997T9u3bc+9bLBa9+uqrCg4OLlJfAAAAAAAAAAAAAAAAAABQfMpEILZDhw6qXLmyUy0pKUnTp08vsTXnzJmjAwcOmOqXXnppia2ZIzQ01FRLTS389sLZ2dnKyMhwqvn6+iogIKDQPUuSt7e3nnzySVM9Li5OO3bsKFTPn3/+2VQbMGCAgoKCCtVPkrZs2aKPPvrIqTZ8+HD16NGj0D0BAAAAAAAAAAAAAAAAAEDxKxOBWD8/P/Xt21eGYUj63y6xn3/+uRYtWlTs623atEmvvfaaaXfYiIgIRUZGFvt6F6pSpYqplpCQUOh+rq6NiIgodL/SEBkZqdq1a5vq27Ztc7tXRkaGVqxYYaoPHTq0MKNJOrfj7lNPPaXs7OzcWoMGDVwGeQEAAAAAAAAAAAAAAAAAgGd5e3qAHHfeead++eWX3Ps5odinn35aqampuummm4plnaioKD3++OPKysrKDcQahiGLxaJhw4YVyxr5cRUEjY+PL3Q/V9dWrVq10P1KS6dOnRQbG+tUi4uLc7vPmjVrTDvkBgUFFWm33+3bt+vw4cNOtejoaLVv377QPSUpNjZWzZo1M9U///xzde3atUi9AQAAAAAAAAAAAAAAAACoqMrEDrGS1Lp1aw0YMCB3l9ickGpWVpbGjx+vxx57TEePHi10/8TERL3xxhu67777dPbsWdPusMHBwRo5cmSRHkNB1a1b11Q7cuRIofu5urZRo0aF7ldaXIV2k5OT3e7zxx9/mGqXX365fHx8CjUXAAAAAAAAAAAAAAAAAAAoX8rMDrGS9Pzzz2vdunVKSkrK3SE25+/Fixdr6dKl6tatm/r3769WrVqpfv36F+2Xnp6uNWvWaOXKlfr555+VkZGR2zNHzv3HHntMISEhJf0QJUnNmjXLfVw5Dhw4UOh+rq5t0qRJofvlxWazKTY2VkePHtXRo0fVqFEjdevWrdD9zn/8OQICAtzu89dff5lq/fv3L9RMAAAAAAAAAAAAAAAAAACg/ClTgdjq1atr0qRJevDBB+VwOHKDqznhUbvdrqioKEVFReXZ48CBA7rtttsUFxenEydOyOFwSPpf+PLCnWEtFosGDBigYcOGldCjMgsKClL9+vUVHR2dW4uNjdXp06dVpUoVt/tt27bNVGvdunVRRjRZvHixHnvssdyvpyT16dOnSIHYkydPmmoRERFu9YiJiVFcXJxTzWq1qkePHoWeCwAAAAAAAAAAAAAAAAAAlC9lKhArnfuo+1deeUVjx47NDbGev6urq11Fzz/v7Nmz2rhxo+m8C4OwOedHRkbqrbfeKu6Hka+uXbs6BWIlac2aNRoyZIhbfWw2m9avX+9Uq1y5sjp06FDUEZ3Ur1/fKQwrSevXr1dmZqZ8fX0L1XPjxo2mWoMGDdzqsWHDBlOtZcuWCg4OLtRMOTp06HDR4HVBXXbZZU73a9Soofnz55vOK63diQEAAAAAAAAAAAAAAAAA+Dcqc4FYSbr22msVFBSkJ598UmlpaU5h1guDrRcGX/PaCfZChmGoT58+mjx5snx8fIpp8oK7/PLLNXfuXKfaokWL3A7Erly5UqmpqU61Sy+9tNgfU5MmTeTn56eMjIzcWkpKipYtW6arrrrK7X4bNmzQsWPHnGqVKlVye8fZTZs2mWpdunRxe54L+fj4qGrVqkXucyEvL68S6QsAAAAAAAAAAAAAAAAAQEVm9fQAeenXr59+/PFHde7cWYZhXHRn2PNZLJaLhmENw5Cfn5+eeeYZvf/++6pcuXKxzl1QPXv2VGhoqFPtjz/+0IEDBwrcwzAMzZw501S/8cYbizqeiY+Pj/r372+qz5w507RzbH4Mw9CUKVNM9R49eiggIMCtXjt27DDV2rRp41YPAAAAAAAAAAAAAAAAAABQvpXZQKwk1atXT1988YXef/99dejQITcYe/4usBf+cSXnmsqVK2vEiBFasmSJ7rjjjnx3kS1JPj4+uv76651q2dnZevbZZ5WZmVmgHp9++qk2b97sVKtVq5Z69+5dXGM6ueGGG0y1Xbt26csvv3Srz9SpU7VhwwZT/aGHHnKrj91u1759+0z1Vq1audUHAAAAAAAAAAAAAAAAAACUb96eHqAg+vbtq759++rQoUNatmyZVq9erV27dikpKSnfa2vVqqUOHTro8ssvV//+/eXv718KExfM3XffrTlz5igtLS23tnXrVj3++ON6++235evrm+e1Cxcu1FtvvWWqjxkzRt7eF39aY2Ji1K9fP1P9tddeM4V0z9e9e3dddtllioqKcqq/8cYbqlatmq644oqLrmsYhqZOnaoPPvjAdGzIkCFq27btRa+/UHR0tGw2m1PN399f9erVc6sPAAAAAAAAAAAAAAAAAAAo38pFIDZHw4YNde+99+ree++VJJ04cULHjh1TQkKCMjIylJWVJR8fHwUEBKhq1aqqU6eOgoODPTx13sLDwzV69Gi9/vrrTvVly5bppptu0vjx4xUZGel07OTJk/rwww/11VdfmfpFRkZq6NChJTrzuHHjdN111zmFeO12u8aMGaNhw4bpgQceUM2aNZ2uMQxD69ev1+TJk0072kpSo0aNNHHiRLdnOXz4sKlWt25dj+78CwAAAAAAAAAAAAAAAAAASl+5CsReqHr16qpevbqnxyiSO+64Q2vWrNHKlSud6nv27NGIESPUoEEDNW3aVP7+/oqNjdXWrVuVlZVl6hMeHq7JkyeXeBi0QYMGmjZtmu6//37THHPnztW8efPUokULNWzYUL6+vjp9+rR27Nih+Ph4l/0iIiI0Y8aMQgWX4+LiXM4HAAAAAAAAAAAAAAAAAAAqljITiF29erUmTpyoG2+8Uddee62qVavm6ZFKhcVi0ZQpU3T//fdr3bp1puPR0dGKjo6+aI/w8HDNmjWr1MLBl112maZOnaqnnnpKKSkpTscMw9CuXbu0a9eufPu0atVK06dPV61atQo1x/Hjx021C3enBQAAAAAAAAAAAAAAAAAA/35WTw+Q47XXXtORI0c0ZcoU9e3bV/fff7+WL18uh8Ph6dFKXEBAgGbOnKmRI0e6vcNrZGSk5s6dq2bNmpXQdK7169dPP/zwgzp06OD2tb6+vrrrrrv0zTffFDoMK8kUxpXO7TgLAAAAAAAAAAAAAAAAAAAqljKxQ2xUVJT27dsni8UiwzBkt9u1YsUKbdmyRb///rv8/f09PWKJ8/Hx0fPPP68bb7xRM2fO1NKlS5WRkeHyXIvFovbt2+u2227TlVdeKavVM7nmevXqac6cOYqKitLs2bO1bt26PGeWpAYNGqhv37664447imU32/T0dFONQCwAAAAAAAAAAAAAAAAAABWPxTAMw9NDjB07Vt9//33u7qiGYchisei///2vnnjiCQ9P5xk2m03btm3ToUOHlJiYKIfDoeDgYNWsWVPt27dXWFiYp0c0sdls2rJli2JjY3XmzBnZbDaFhYWpSpUqat68uerUqePpEZGHxMQ02e3Znh4DbqpSJUBeXlZlZzt0+nSqp8cBAKDU8V4IAKjoeC8EAFR0vBcCQPE6eTJGDke2rFYvVavG/7dbHnh5WWWxSIYhZWf/+z99FwCAC/FeWPxK69+E3t5eCgsr/o1Sy8QOsRs3bswNw56vX79+HpimbPDx8VFkZKQiIyM9PUqB+fj4qEuXLp4eAwAAAAAAAAAAAAAAAAAAVDBWTw8gSSdPnnRZb9q0aSlPAgAAAAAAAAAAAAAAAAAAgPKmTARi8+Ln5+fpEQAAAAAAAAAAAAAAAAAAAFDGlYlAbMOGDWUYhqkeGxvrgWkAAAAAAAAAAAAAAAAAwDMMw1B6erqnxyg1r7wyUZddFun0Z9OmDZ4eC0A5VCYCsQMGDHBZX758eSlPAgAAAAAAAAAAAAAAAACesXfvbt13353655+dnh4FAMqdMhGIHTlypCIiInLvWywWGYahjz/+WKdPn/bgZAAAAAAAAAAAAAAAAABQslJTUzR16tu6557btWvXDk+PAwDlUpkIxAYGBuq9995TQECAUz0xMVEjR47UqVOnPDQZAAAAAAAAAAAAAAAAAJSctWtXa8SIm/Ttt98oOzvb0+MAQLlVJgKxktSuXTt9+eWXqlOnjgzDkMVikcVi0YEDB3T11Vfr/fffV2JioqfHBAAAAAAAAAAAAAAAAIBis3z5UsXHs2EgABSVt6cHOF/z5s31008/6c0339TcuXNlGIYk6cyZM5o2bZqmT5+uRo0aqUOHDmrbtq2qVq2q4OBghYSEqHLlysUyQ61atYqlDwAAAAAAAAAAAAAAAAAAAEpHmQnETp48Ofd2UFCQunXrplWrVslisUiSDMOQYRjav3+/Dhw4oPnz5xf7DBaLRbt27Sr2vgAAAAAAAAAAAAAAAAAAs+eem6jnnpvo6TEA/AuUmUDsjBkzcsOv5zMMQxaLxRSMBQAAAAAAAAAAAAAAAAAAAKQyFIjN4SrsmlM7PxhbGusCAAAAAAAAAAAAAAAAAACg7CtzgdiSCrwCAAAAAAAAAAAAAAAAAADg36nMBWLZqRUAAAAAAAAAAAAAAAClKTU1RTt37tDRo4eVkpKiSpUqKSysipo0aaomTS4p0AZvmZmZ2rlzu6KjDyklJVm+vr4KDQ1Ts2Yt1KBBw2Kd9+jRIzp8OFqJiad15kyiKleurLCwKqpevaaaN28hb++SiQSlpqZo//79OnHimBITTysjI0OSch9rzZq11KRJUwUEBJbI+pJkt9u1e/cuRUcf1NmzZ2UYhsLDIxQRUVVt2rSTn59fia1dHp06dVKbN2/SiRPH5e/vr8aNm6hVqzaqVKmSW32OHz+mQ4cO6uTJE0pNTZHNZpOXl7f8/SsrPDxC9erVV/36DeXl5VVCj8R9FeW1Eh9/Srt371J8/CklJyfL27uSQkNDFRISqgYNGqpWrdolsu7x48e1b9/u/39NpMrHx0dBQcGqU6eemjdvLl/f4v36HjlyWAcO7NPZs2eUlJSkgIAAVakSrho1qqt581ayWKzFut75YmKOavv2rYqPP6WgoCA1bdpcLVq0lNXq3pqpqSnatWunTp9O0OnTp2UYDoWFVVFYWBW1bNlKwcEhJfQIKo4yE4jt3Lmzp0cAAAAAAAAAAAAAAAAoEB8fL3l5WWWxWGQYhrKzHbLZsj09Fi6waNECvfrqC7n3vby8tHLl37n39+3bq9mzZ2rVqj+VlZXlske1atU1bNhw3XDDMJdB0+PHj2n27E/122+/Kj093WWP6tVraPjwkRo69IZCh1VPnTqpOXO+0qpVfykm5kie5wUGBioysqtuvHGY2rfvWKi1znfy5AktXPiToqJWat++vfludme1WtWqVRsNHnyVBg26Ur6+vgVa58LnSpJWrFib+/WKiTmqr776XMuXL1VaWqrLHr6+voqM7KLrrrtJl17avUDresKmTRs0evT9Fz3H1fFvv/1ZNWvWyr1/7FicbrrpGqdzpkx5T507d5XNZtN7772jn3/+wfTaDgoK1uDBQzRixO0KD4+46Jy//vqL1q5drdOnE/J9XIGBgerevaeuu+5GtWnTLt/zc7zyykQtXrzQqfbuux+qY8dIl+dXpNdKXuLjT+mnn77XsmW/Kibm6EXPrVWrtjp37qqrrhqqFi1aFWndxMREff/9PP3++zIdPhyd53ne3t7q0uVSXXfdTerWrUeh1zty5LDmzv1KUVF/KiEhPs/zAgICFRnZWddcc726du3m1hquvh/nzPlBderUVXJyst5++3X9/vsyORwOp3PCwyN0zTXXadiwEQoMzPuXAOx2uxYtWqDffluibdu2yG63uzzParWqRYtW6t9/kIYOvV4+Pj5uPQ6cU2YCsV988YWnRwAAAAAAAAAAAAAAAMiTxWKRn18l+fh6y6eSl5JSM5Wema3Kvl4KCfGXzZYtm82ujIwsPiG3jHM4HPr668/1yScf5hlOynHy5AlNmzZFy5cv06RJ7yg0NDT32IIFP+rdd9/OMwib48SJ45oy5U0tX75Mr7zypsLCwgo8a2ZmhmbP/lRz536lzMzMfM9PSUnRihXLtWLFcl16aXc9+uhTql27ToHXO7/Pxx+/rx9//E7Z2QUPezscDm3fvlXbt2/V559/qmefHa9OnQq/UZ5hGPrqq9maOfOjPEPLOTIzM7Vq1V9ateovde/eU+PGvaigoKBCr11eZWdna+zYJ7R27WqXx5OTkzRv3jfq0KGTevbsbTr+zz87NXnyJP3zz0631k1JSdHSpYu1dOli9ezZW08//bzT90tJqyivlXnzvtHHH7+f78+dHHFxsfrpp+/100/fq2fPy/XEE89eNAjtit1u1+zZM/X1158X6OeQ3W7X6tVRWr06Sl27dtdTT41V9eo1CrxeUlKSpk59U8uWLTEFUV1JTU3RypV/aOXKP9ShQyeNHv24mja9pMDruZKWlqYxY+7X3r17XB5PSIjXrFkfq1evPnmutXp1lKZPn6IjRw7nu57D4dDOndu1c+d2zZnzpR544GH17z+oSI+hIiq5fYIBAAAAAAAAAAAAAAD+Jby9rQoJrSyrt1WLVh/Sfa/9phHjf9XdryzTiPG/6r7XftOiNYdk/f/zvL2JZJRVhmFowoSx+vDD6fmGYc+3a9cOPfnk6NxrPv74A73xxssFDqVJ0rZtW/Tcc08WeN0zZ85ozJgH9fnnnxYohHahtWtX6557btemTRvcui42NkZ33/0ffffdPLfCsBc6fvyYHntsVJ7BzIJ4/fWX9OGH0/MNOF5o9eq/NHr0fW49P/8Ws2Z9nO/XPDg4RJdeat65c+HCn/TAA/91Owx7ob/+WqFRo+7Jc4fWklARXivvvPNmgUL4efnrr5W6++7/KDY2psDXJCae1n333alZsz4u1M+hv/9erXvvvUPR0YcKdP62bVt0xx23asmSxQUKw15o8+aNeuCBu7RixXK3rz3f22+/nmcYNkejRo3zDMPOnj1TTz31SIHCsBc6ceK4Jk58Tu+9N7VQX4OKrMzsEAsAAAAAAAAAAAAAAFAWeXtbFRxSWZv3nNSkLzYqPdMcZoyLT9XMn3fq6yV79NTITurQrJqSzqbLbifIUtZ88MG7+uOP35xqoaGhatmyjcLCwpSWlqbdu//RsWOxpmv/+WeX5s+fo0qVKmn27JkX9AhTy5atFRoaqjNnErVnzz9KSDB/zPy2bVv0/fff6uabb73onAkJ8XrooXvy/Dj0atWqq2nTSxQSEqr09HSdPHlCu3fvMgVYk5LO6rHHRumNN6YU6KPEk5OT9cgjD7l8/JJUp05d1a/fQEFBwfL29lZKSopiY4/q0KGDLoO+2dnZmjTpFX355Tz5+wfku/75PvnkQ/3yy89ONW9vb7Vo0UrVq9eQl5dVx48f1z//7JLNZg7q7du3V7NmfawHHxzt1rrl2cGD+/XFF7PyPa9v3wGqVKmSU+3PP1fojTdedrnDtY+Prxo1aqxatWrL399fWVlZSk5O0v79+3Ty5AmXa0RHH9LHH3+oMWMeL9yDcUNFeK0sXPiT5s+f6/JY7dp11KBBw9zvy6SkJB04sM9l8PXUqZN67rmn9Mknn8vb++LxwaSkJD300D15hjoDAgLUokUrhYdHyDAMxcQc1Z49/5h+DiUkxGvMmPv12WffKCysSp7rbdiwTk8//Wiewdtq1aqrceMmCgurkvuz58CB/abzMjIyNG7cM3r88Wd07bU3XPQxurJ27SotWbIo3/MGDbrSZX3KlEn67rt5Lo/5+fmpRYtWioioKi8vL50+fVp79uzS2bNnTed+880XSkw8reeff8G9B1CBEYgFAAAAAAAAAAAAAADIg8ViUWCQnzbvPqmXZq2Tw2EOip0vPdOulz5dp3F3dVW7phE6eybdZbgMnpGdna2vv/4i937NmrV0//0P6/LL+5iCYStX/qFXXplo2uHyyy8/U0pKSu79unXr6aGHxqh7956yWv+3M7DdbtfChT/p3Xffls1mc+oxf/4c3XjjMKfzz+dwOPTii+NdhmH79Ruo2267w+WuhMnJyfrll580e/anSk5OcprlxRef18yZX6lGjYt/bPn77091GYa96qqhGjnyTtWuXcfldcnJyVq8eIE+/XSG09dHkk6ePKFFixboxhtvuejaF/rqq9m5t4OCgjVy5J269trrTcHaM2fOaN68r/Xll5+ZdlOcP3+Obr75VkVEVHVr7ZLUpk07/fTTr7n3p059W7//vszpnFdemaTWrds61UJDw/LtPWvWJ05hxFq1aqt9+44KD4/Q8ePHtH793zpzJlGDBg12ui45OVmTJpnDsCEhIbrnngc1cOBg+fv7u1zzwIH9+vrr2VqyZLHp2Pffz9Odd96t4OCQfGcvin/rayVHenq6pk+fYqpfdlkvPfjgaNWr18DldXv37ta7707Wli2bnOr79+/VsmW/avDgqy667iuvTHAZhq1Tp67uv3+UevToZQpWnzhxXJ988qEWL17oVE9ISNAbb7ys11+f7HKt2NgYPf/80y7DsJGRXXTPPQ+qVavWTnUvL6vi4mI0e/YsLVz4k9NzahiG3nnnTTVp0tT0vZSfTz75yOl+o0aN1apVW4WEhCgm5qjWr1+r9PR0DRhwhenaRYsWuAzD1q/fQHfccbf69Olver/Jzs7Wpk0bNGPG+6bdmX/99Re1bNla119/k1uPoaIiEAsAAAAAAAAAAAAAAJAHP79KyrI7NOnLjfmGYXM4HIYmfbFBsycMkp9fJaWn2/K/CKWudeu2evPNqQoKCnJ5/PLL+8hisWjs2Cec6mfOnMm93aFDJ73++tsKCAg0Xe/t7a1rr71BEREReuYZ5x0y4+JidejQQTVu3MTl2l9++Zk2blznVPP19dX48S/r8sv75PmYgoKCdMstt6lfv4F64onRTjsnnj17Vq+8MkHTpn2U5/WxsTFatGiBqf7gg6M1fPh/8rwuZ+2bbx6unj176/7771JCQrzT8ZUr/3A7EJsTzmzcuKneeGNKnmHe0NBQ3Xvvg2rcuKkmTHjW6ZjNZtPKlb/rhhuGubV2SapUqZLCwyNy7/v6+prOCQoKdjqnoFJSkiVJVqtVo0Y9ouuvv9kpfGe327VixXK1adPO6br58+c4vbZzZvjgg5l5hi1zNG7cROPGvaS2bTvozTdfdTqWnZ2tVav+yjd4WVT/1tdKjj/++M0UNO/Xb4AmTnxVFoslz+suuaS53nnnfY0d+6RWr/7L6djPP/9w0eflzz9XaNWqv0z1nj17a+LEV1y+biWpevUaeu65iWrUqInee+8dp2NRUX9q584dpmCrJE2a9Eru6zeHxWLRww8/qptvHp7nnLVr19Gzz45Tnz79NHbsk0pPT889ZrfbNW7cM/rqq2/d2qE6Zw4fH18988w4DRgwyOnrnJmZoTVrVqlatepO1x09ekRTpkwy9bvyyqv1+OPP5Pk18/LyUufOXRUZ2UXvvTdVc+Z86XR82rTJ6ty5q+rWrVfgx1BRuf41EwAAAAAAAAAAAAAAAMjH11tL/z6s9EzzR8FfTHqmXUvXHpaPD3uVlUWhoaF67bW38gzD5ujVq7caN27q8lh4eIReeukNl2HY81122eVq376jqb5r1w6X56empujLL2c71axWq15++Y2LhmHPV7VqNU2bNkM1a9Zyqm/evFHbtm3J87pFixaYPuq8Q4dO+YZhz1ezZi3de++DpvqFux4WVGhoqCZNyjvgeL5+/Qaod+++pvqaNasKtXZ5NmrUI7r55uGmnSi9vb3Vv/8gp5phGFq48CdTj4cffjTfMOz5hg69Po/XeuGee3f9m18r27dvNdXuuefBi4Zhc3h7e+vZZ8ebwpg7d25XcnJyHldJM2d+aKp17Bipl19+I89g5/luvfU29enT31T/9ttvTLU1a1Zp48b1pvrDDz920TDs+Tp3vlRvvjlVXl5eTvVTp07qhx/mF6jHhSZOfEUDB15h+jr7+vqpd+9+pvNnz57pFMiVpP79B7n8+rtisVg0atQjpl8eyMrK0tdff16IR1DxlNtAbFpamvbs2aM///xTixYt0g8//KCFCxdq+fLlWrNmjQ4cOGDabh4AAAAAAAAAAAAAAKCgfHy85FPJS4tXRxfq+sVros/18PHK/2SUqltvHamwsCoFOrd798tc1m+55TaFhoYWqEeXLpeaaseOxbk89+eff1RaWqpT7aqrhqpbN9dz5CU4OFgPP/yYqX6xUFVU1J+m2n/+c6db60rnPsb9wgBZRkaG0tLS3O51883DVb16/gHHHEOHXm+qxcQcdXvd8qx27Tpu7XK6b98enThx3KlWvXoNDRp0pdtrX3ZZL1MtMTHB7T6F8W9+rZw8edJUq1IlvMDXh4WFqXv3npLO7VBcp049RUZ21ZkziS7P37lzh9MO05Lk5+enZ58dbwqcXsx99z0kq9U5orh27WpT8P7bb+eYru3cuatuvvnWAq8lSe3bd9TIkeafWfPmfa3MzEy3enXo0Em9evUu8Pnx8fFavnypUy0srIoef/yZAgWXz/fAAw+bnt8lSxaZdt6GWbn5NSTDMBQVFaXly5dr3bp1io6Ozt3qOi8Wi0U1atRQZGSkLr30UvXr108hISGlNDEAAAAAAAAAAAAAACjPvLysSkrNVFx8av4nuxB7KkVJqTZ5eVklZed7PkqPO0G/hg0buaxfcUXBe9SqVdtUu/CjwXMsWPCDqXbbbXcUeK3z9ex5uSIiqio+/lRubd26tcrMzHS5W+ENN9ysmJijiouLVVxcrNLS0tSxY2e31w0JCVVgYJCSk5Oc6hkZ6fL393er11VXDXXr/ObNW5lqZ86ccatHeTd48FVuhRYDA4P00EOPKC4uVrGxMYqLi1Xv3n3d6pGjTp26plp6eobbfQrj3/xa8fY2Pxdr1qxSv34DCtxj1KhH9NBDY1StWnVTSPVCv/++1FTr3bufadfp/NSpU1ft2nXQ5s0bJZ3bWbt+/QY6fTpBVatWkySdPXtGGzeuM1373//e59ZaOYYP/4++/fYbpab+7707ISFBGzasU48ePQvcx93X0+LFC5WVleVUu/baG/LdidwVX19fDRlyjb74YlZuzWazae3a1Roy5Bq3+1UkZT4Qa7fb9c0332jWrFk6duyYJOUbhM1hGIbi4uK0YMECLViwQC+99JKuuuoq3XfffapTp05Jjg0AAAAAAAAAAAAAAMo5i8Wi9MyiBVkzMu0K8GWH2LKkdu06ioioWuDzg4PNm6/VqlW7wDvMSucChxfKyDCHBE+fTtCRI4edak2bXuIyUFsQFotFnTt31eLFC3NrNptNu3btUIcOnUznX3PNdYVaxxV/f39TIPbCsFh+ateu49YumJIUFBSkypUrO31suc3m3s6Q5V2bNu3cOr9Wrdq69dbbimVtf/8AU81ud+95L4x/+2ulYcPGWrXqL6faW2+9ppCQEEVGdilQD3d2z80JsJ7viiuGFPj68z3yyJOy2TJVr159BQQEmo5v2rTBtGNsgwaN1Lp120Kt5+/vrwEDBuvHH+c71bds2eRWINbd9V19zXr16uNWj/N17tzVKRArSVu3biYQm4+LR709bOvWrRoyZIheffVVxcXFyTAMGYYhi8Xi1p+c69LT0zV//nxdffXVmjlzpqcfHgAAAAAAAAAAAAAAKMMMw1DlIoZZ/Xy9C7zxF0pHgwYN3Trfx8fHVKtTp16Re7h6XWzbtsVUa9SosVtrXahhQ/P1O3ZsK1LPi3E4HNqxY7syMtJNx9z9XmjatFmhZrgwlGm32wvVpzyyWq1q0cK882lpSE1N0c6dO0x1h8NR4mv/218rvXr1NtWSk5P0yCMPavTo+/Xjj9/pxInjxbJWZmam9u/f51SzWq1q2bJ1ofo1btxELVq0chmGlaR//tllqnXsaA7su6NTp0hTbcsWc2A1L2FhVVS7dsE33HQ4HNq1a7tTzcvLy+33m/M1atTEVNu+fWuh+1UUZXaH2G+++UavvPKKsrOzc0OwhXX+tTnB2Lfeektbt27Vm2++6XILeAAAAAAAAAAAAAAAULFlZzsUEuKvWhEBiotPzf+CC9SuGqjgAB+dPZtWAtOhsMLDI4rcIzDQdbCrqPbs2W2qLVmyWEuWLC7WdU6dOlksfex2u+LiYnTo0EEdOLBf//yzUzt37lBS0lmX57sbiA0NDS3UXJUqVXK6XxqBzLIiJCRU/v7+Jb5OSkqKDh+O1qFDB7R//17t3Lld+/btdRkoLY1fCvi3v1Zatmyt7t17avXqv0zHNm3aoE2bNkg6t7Nqly5d1bnzperQoZP8/PzcXisuLtb0dahdu06Jva6OHj1iqjVv3rJIPVu0MId3Y2JiCnx9jRo13VovNjZGKSkpTrXs7Gz16dPNrT75iY8/Vaz9/o3KZCB2xowZmjJlitNusHnJ6wdmXtfk1A3D0LJly/TAAw/o448/lpcXH08AAAAAAAAAAAAAAAD+x2bLli0rW4O7N9DMn3e6ff3gbg3O9bBl538ySk1gYFCRe5TU5mtnz54pkb7mdVwHVvOSmHhau3fv0qFDB3X06BHFxcUqNjZGp06dNH3UeXG6cPdO5C84OLjYehmGoUOHDmrfvj06fDhasbFHFRcXq7i4WLdfQyWtIrxWxo9/Sffff5eiow/meU509EFFRx/UvHnfyMfHR+3adVC3bpepZ8/LVbNmrQKt42qn2apVqxV67vzEx5sD+u4GUi9UrVq13E+Wz5GSkqzs7OwC5QSDg0PcWq+0fnanp6fLZrO53HUc55S5QOyCBQs0efJkSc7h1fNv56hWrZpq1aqloKAgBQcHy+FwKDk5WSkpKYqLi9PJk//7ZrkwIJvzgl+zZo0mTJigl19+uaQfGgAAAAAAAAAAAAAAKGdsmXYN7FpfXy/Zo/TMgn+UdmVfbw28tL5strL58dsVWVkOEiUlJZXKOsnJ+a+TmZmpX375WUuWLNLOndvzPb8k8KnP7gsKKnogNibmqH744Vv99tsSJSQkFMNUJa8ivFYCAwP17rsf6O23X9fKlX/ke77NZtP69X9r/fq/9e67b6t585YaPHiIrrzyGlWuXDnP69LTzbual+Suw2lp5vUCAoq2C7fVapW/v79SU/+3u7thGEpOTi7QbsJBQe794kRp/ezOWSsioug7nf9blalA7OHDhzV+/HhJzgHWnPCq1WpV7969de2116p9+/aqXr36RfvFx8drx44dWrRokZYuXaqMjAxTyNYwDH333Xfq37+/evfuXWKPDQAAAAAAAAAAAAAAlD8ZGVkKCa2sp0Z20kufrpPDkf9Hf1utFj01MlLeXhalJmeVwpRwx8U+qdjTUlKSS2Udm8120eNRUSs1ZcqbLneKzE+1atV1+eV9tWzZYp05c6aQE6KwvL0LHwfLysrShx9O13ffzZXd7l6Y32q1qlWr1mrQoJEWLPix0DPg4qpUCdcrr7ypNWtW6dtvv9GGDevkcDgKdO3u3bu0e/cuffnlbI0a9Yj69Rvo8rzMzExTzdfXr0hzX0xWlvl9snLloq/n6+vnFIg9t9bFf/blqFSpkltrldbPbqngj6GiKlOB2Jdeeknp6em5QdXzw6t9+vTRuHHjVKtWwbZulqSIiAj17t1bvXv31rhx4/TBBx/os88+c+qds9YLL7ygHj16uP1iBgAAAAAAAAAAAAAA/16GYSglOUMdmlXTuLu6aNIXGy+6U2xlX289NTJSHZpVVdLZdKdPwgXy4+Nj3uXyiSeeUc+evYt1nYvlY+bN+0bTpk0u0GvX3z9A9es3UNOml6hFi1Zq16696tVrIEn6668Vks4Uw7QoDampKXrmmce1efPGAp1ftWo1NWzYWM2aNVfLlq3Uvn0nBQUFadOmDQRiS0G3bj3UrVsPnT6doJUr/9Dq1X9p06YNLsOsFzp16qQmTBirhIR43XzzcNPxypXNu8HabPn3LayAgABTLT09o8h909JSTbWSCva62nm8Q4dOmjjxlWJfKzQ0rNh7/puUmUDsxo0bFRUVZQqqWq1WTZgwQbfcckuR+gcFBempp55Sv3799PDDDysxMdHp+PHjx/XDDz/o5ptvLtI6AAAAAAAAAAAAAADg38VudyjpbLraNa2qz8YP1LK/j2jR6kOKi/9f2KZ21UAN7tZAAy+tL28vi5LOpstuL9iufUCO4GDzx92npaUrPLx0Ph57zZpVevfdt10eq1IlXJ06dVaLFi3VsGEj1a/fUNWq5f3pzgXdtRJlw6RJr+QZhm3a9BK1b99Jl1zSTA0aNFT9+g3k728OMUo876WtSpVwXXfdjbruuhuVmZmpbdu2aOPG9dqwYZ327t190edj2rQpql27rnr06OlUDwoKMp174U6rxSkoyPxzLzU1pUg97Xa7MjLModrKlSsXqW9egoNDTLUzZxJL7Wc3/qfMBGK/+OILp/s5u7i+8MILuummm4ptnU6dOunjjz/W7bffnvuNmhO+nTVrFoFYAAAAAAAAAAAAAABgYrc7dPZMuvz8KmlwtwYaenljJaXalJFpl5+vt4IDfGSzZctmsys1OYudYVEorgKxcXGxpbK2zWbT66+/aKoHBgbp4Ycf1RVXDJGXl1eB+7kKo6FsiopaqeXLl5nqrVu31RNPPKsmTZoWuBfPu+f4+vqqc+eu6ty5qyQpOTlZ69at0cqVfygq6k/TLq+GYWjGjPcKFIhNSIgvsbld/dw7diyuSD3j4mJMtdDQsBL79HhXod7jx48rOzvbrZ+bKDqrpweQpPT0dK1YsSJ3d9icMOxNN91UrGHYHK1atdKECRNM//iMjo7W3r17i309AAAAAAAAAAAAAABQ/hmGofR0m86eTdPZs2myGg4F+HrJajhya+npNsKwKLQ6deqZalu2bCqVtVeu/F0JCQlONS8vL73xxhQNGXKNW6GuzMxMJSWdLe4RUUK+//5bU+2SS5rpnXfedysMK0nx8aeKaywUUVBQkPr1G6gXX3xN3377kzp16mw658CB/YqNdQ6P1q5dx/T9HhNzVJmZhQs7nzp1Ui++OE4zZ36kxYsXauvWzUpMPJ17vH79hqZrdu/+p1BrXez62rXrFKnnxdSuXdv0NUtPT9PevbtLbE24ViZ2iN28ebMyMjJyA7HSueT3448/XmJrXn311Zo7d642bNjgtO6KFSt0ySWXlNi6AAAAAAAAAAAAAACg/LPZsiVle3oM/Mu0a9fBVIuOPqjjx4+pRo2aher51VeztX37VtWoUUu1atVSzZq11LRpM1O/qKiVpmt79eqjdu3au73mwYP7XdYv9vHt8IyMjAxt2LDOVL/nngfk5+fndr8DB8zPPc978UhKOqvDh6N1+PAhtWzZWo0aNSnwteHhEXr11Td1001DTWH1Q4cOOIVF/f0D1LBhY+3f/7+NJbOzs7V79+5C/TzYuXO7li5d7FS77rqb9PjjT0uS2rY199y8eYPb65xv48b1plrTpiWXCfT3D1Djxk1NAdi1a1erRYtWhep58OABTZ36lmrUqKmaNc/97K5du45at25bHCP/a5WJQOy2bdtyb+fsDnvFFVcoJCSkRNcdNmyYNmxw/ubZsWNHia4JAAAAAAAAAAAAAAAAuNKoUWMFBQUrOTnJqf7dd/P00ENj3O6XmZmpb775QmfOnHGqP/PMOF111VCnWlyc+SPK27Rp5/aakhQV9afLenY2IXJXzt/Mr7QdP37MZWC1TZv2bvdyOBxasybKZR2Ft2zZr3r33clOu6r+5z936d57Cx6IlaSAgEC1a9dBf/21wqmelpZmOrdNm3ZOgdicOQoTiF27drWp1rbt/362tGnTVl5eXk4/H6KjD2nbti0uw7L5SUtL1e+/LzPVO3Y075BbnNq162AKxP700/caOfJOeXu7H9P88cf5pmBvu3Yd9N57Hxdpzn87q6cHkKQjR46YagMGDCjxdfv06ZP7YrNYLDIMQ/v27SvxdQEAAAAAAAAAAAAAAIALWSwW9es30FT/6afvdfz4Mbf7zZ8/xxSG9fLyUq9evU3npqamuJzHXWfOnNH333/r8pjdnuV2v4rAk4HYlBTz8y5JhRnpl19+dvk6zcrieS+KmjVrO4VhJen3338rVK/MzAxTLSgo2FTr27e/qfbbb0uUmJjo1nopKSlasWK5U83b21udOv0vnOrvH6Du3Xuarp0162MZhuHWepL01VefKz093alWubK/una91O1e7hgwYJCpFh9/St99N9ftXsePH9fChT+b6n369CvUbBVJmQjEJiQkmGoNGzYs8XUDAwMVERHhVHP3mxYAAAAAAAAAAAAAAAAoLrfcMkJWq3OkJy0tVS+88JxbwcIjR6L12WczTfUBA65QcLD5U5tDQ8NMtY0b1xV4PUmy2+2aOHGsaYfbHDabza1+FUWlSpVMtdIKkYaFmZ93SdqwwfyR8xezf/8+TZs2xeUxmy3T7bnwP82bt1BoaKhTLSbmiBYtWuBWn8TERG3dutlUb9asuanWoUMnXXJJM6daSkqypkyZ5Naan3zyoSl03bNnb1WpEu5Uu/XW20zXrl//t779do5b623btkVffvmZqT5o0JUKCAh0q5e7WrZsrfbtO5rqH330nnbv/qfAfQzD0KRJL5u+bwIDAzVw4JVFnvPfrkwEYi9MZEtS1apVS2XtiIgIpyR5Xr/1AAAAAAAAAAAAAAAAAJS0OnXqasCAK0z17du36YknRrvcyfVCx47F6cknH1F6uvNHoXt5eenOO+9xeU2zZi1MtVWr/tKaNasKNHd8fLwef/xhbdiQd4jWVUYI53bIvFBCQnyprF2jRk2FhJgD0h99NF3JyckF6rF27Wo9/PB9SktLdXk8I8O8KykKztvbW1dffZ2pPmXKm9q2bUuBemRlZemVVyYoM9M5ZNmhQydTODXHbbfdaar9/vsyTZkyqUA7t/7443eaP9850GqxWHTLLebwa9u27Z12jc0xbdpkzZv3Tb5rSdKmTRv0xBNjlJ2d7VQPDAzUnXfeXaAeRXXHHXebdny22Wx69NGHtHXrlnyvdzgcmjTpFa1bt9Z0bNiwEQoONu/mC2dlIhBbuXJlU620fhBmZGQ4vQgv/A0bAAAAAAAAAAAAAAAAoDQ99thTqlOnrqm+ceN6jRhxkxYtWuDyo88zMjL03XfzdOedIxQbG2M6fvfdD6h27Tou13T1EemGYej555/SvHlfu1xPkk6cOK5PP52h2267SRs3XnxX0aQk1zvHVnRVqlQx1RYs+MEUXiwJXl5e6tWrr6l+5MhhPfjgf/MM8TkcDm3dukXPPfeknnhidJ67AktSUtLZ4hq3wrrpplsUFOQchkxPT9Po0ffro4/eU3x83gHqLVs26cEH/6u1a1ebjuUVkJfO/UwYNGiwqf7dd/N03313asuWTS6DsXFxsXr55Ql6663XTMeuu+5GtWrV2uV648a9qLAw5+8FwzD07rtv69FHH9KuXTtcXhcXF6dJk17VI4886DKU/eijTyk8PMLFlcUvMrKLy91uk5OTNHr0fZo8+Q0dP37c5bVbt27WAw/8VwsW/Gg61qTJJRo+/D/FPe6/krenB5Bcb7196tSpUkk0nzp1yul+QID5Ny4AAAAAAAAAAAAAAACA0hIQEKiXXnpdDz98n+nTjuPjT+nVV1/Q5MlvqFWrNoqIiJDFYtWpUye1a9eOPHdh7dnzct122+15rtmmTTt1795Tq1f/5VTPzMzUu+9O1ieffKQWLVqqatVq8vb2VlJSkqKjD+rIkcOmXt7e3mrbtr02bdrgVD9+PK6gX4IKpX79Bqba9u3bdOut16tDh47y8vJWQkKCxox5TPXqmc8tqjvu+K+WLl1kCuAeOnRQDz10t2rWrKWmTZspODhYWVlZSkiI1759e3T2rDnoWqdOPWVnZ+vYsdjcWmpqqpKSktjdsgiqVAnXo48+qRdfHOdUt9vt+uKLWfrqq9lq0KCh6tVroMDAQNntdiUmJmr//j1KSEhw2fO6625Sx46RF1338cef1b59e3Xw4AGn+q5dOzRq1L2KiKiqSy5pptDQMGVmZig6OloHD+53GZRt2bK1HnhgdJ5rRURU1QsvvKonnhgjm835tbh+/d9av/5vVa9eQ40bN1VoaKjS0lIVGxujffv25tnzzjvv0aBBV170MRa3e+99SHv27NHGjc67ZWdnZ+v777/V999/qyZNLlGdOnUUGBikpKQk7dnzj06ccB2UDQkJ0YsvviZfX9/SGL/cK7OB2I0bN6px48Yluu6BAwd09uxZWSyW3G/CmjVrluiaAAAAAAAAAAAAAAAAQH6aNm2mDz+cpaefftTlbq8ZGRn57siao0+f/pow4WXTR3lf6JlnntcDD/zX5XppaakFWq9ateoaP/4lGYZhCsRu2bJJw4aNKNDMFUn79p0UGhqqM2fOONVPnjyhJUsW597fvXtwiQRiq1evobFjJ+qFF56Tw+EwHT92LE7HjuUfZu7Z83I9++wETZ8+xSkQK5177nv16l1cI1dIAwcO1okTJ/TRR9NNxxwOhw4ePGAKrualX7+BGjPm8XzP8/f313vvfaLnnnvS9P0snQvox8efcnGls+bNW+qtt951+Uny5+vYMVLTpn2ksWMfdxnkPXHieJ7B0fN5eXnp4Ycf1Y033pLvucXN29tbb701VZMmvaLFixe6PGf//r3avz/vIG+OiIiqmjLlPdWrV7+4x/zXsnp6AElq1qyZqbZ06dISX/fCNSwWixo2bFji6wIAAAAAAAAAAAAAAAD5adCgoWbM+ExXX32tvLy83L4+ICBAjz/+jF588TV5e+e/b16VKuF6990P1aZNW7fX8vLy0nXX3aTPP5+r9u07qlmz5vLxcd7RcOPGDS4/0ryiq1y5sp58cmy+z/H+/ftKbIZ+/QboxRdfU2BgkNvXVq1aTePGvajXXntbwcHBat3a/PqJilpZHGNWeCNH3qEXXnhVVaqEF+r6wMBAPfLIE5o48ZUC/UyQpKCgIL399jT95z93yc/Pz631LBaLhg0brg8+mFngHYJbtWqtGTNmq0+f/vmG+F1f30affPKFR8KwOSpVqqTnnpuop59+XlWrVitUj379BmrWrK/VsGGjYp7u361M7BDbtWvX3Ns5u7WuXr1aW7duVbt27UpkzeTkZH3++eemb5oOHTqUyHoAAAAAAAAAAAAAAACAu0JCQvX008/rttvu0Lx5X2vt2tUud3A9X5069TRkyNW66qprXX5y88VUr15D06d/rCVLFmn+/Lnau3f3Rc9v0KChunW7TNdee4Nq166TW/f3D1DPnr20fPmy3FpaWqoWLPiRXWJduPzyvpoy5T298cbLeT6/Bw7sL9EZevfup9at22ru3K+1aNHPOnv2bJ7n+vr6qnXrturXb6AGDRosX9//BSX79Omvd955y+lj73/7bYnuu+8hhYdHlOhjqAj69Ruorl27a/Hihfr111+0d+/u3E9Hz0vjxk00YMAVuuaa6wscTD1fpUqVdO+9D+r662/WnDlfKipqpWJijuZ5fmBgoPr06a9bb72tULsaV69eQy+99Lr27dujb7+do7//Xu1yx9gc/v7+6tq1u6655jp17tw1z/NK29VXX6uBAwfr559/0IoVy7Vz53bZ7fY8zw8ICFCvXn103XU3qmXL1qU46b+Hxcjvu6GUDBo0SEeOHJGk3G/Qli1bas6cOfLx8Sn29caNG6dvv/02NxBrGIYsFouWLl2qunXrFvt6QFmWmJgmuz3b02PATVWqBMjLy6rsbIdOn+Y36AAAFQ/vhQCAio73QgBARcd7IQAUr5MnY+RwZMtq9VK1anXyvwAe5+VllcUiGYaUnW3+iHP8u8XFxergwQM6cyZRZ8+ekWEYCgoKVnh4hFq2bFXo3SNdSUw8rZ07dyg+/qSSk1Pk5WVVSEiowsKqqHnzFsW6FiSHw6E9e/7R/v37lJh4WtK5kFy1atXVsGFj1alTOrkmwzB06NBB7d+/V2fPnlVaWqr8/QMUEhKq6tVrqEWLliWS6YL70tJStW/fXsXGxiglJUXp6WmyWr0UGBioWrVq65JLmiksrEqxrxsTc1QHDx5QYuJpJSWdlY+Pj4KDQ9SwYSNdcklzWa3F9+H1hmFo//59io09qjNnEpWUlKRKlXwUFhamxo0bq1GjJvLyKhN7g15UWlqq/vlnlxISEnTmTKLS09MUEBCg4OBQNW7cRA0bNirWr1thlNa/Cb29vRQW5l/sfctMIPbTTz/VpEmTTAHVPn36aPr06cX6RH/44Yd65513TGu1a9dOc+bMKbZ1gPKCQGz5xH/sBQBUdLwXAgAqOt4LAQAVHe+FAFC8CMSWPwRiAQAVHe+Fxa+8B2I9Gyc+z7BhwxQUFJR732KxyDAM/fHHH7r77rt14sSJIq+RmZmpl156SVOnTs0Nw57vrrvuKvIaAAAAAAAAAAAAAAAAAAAAKF1lJhAbEBCge+65Rzkb1ubs2moYhtasWaOrr75aM2bMUEJCgtu9MzIyNH/+fF1zzTX6+uuvdf6muDnrtG/fXgMHDiy2xwMAAAAAAAAAAAAAAAAAAIDSYTHOT4d6mMPh0G233aZNmzblhmFz/pbO7Rrr5eWlbt26qV27dmrdurXq1q2roKAgBQUFycvLS8nJyUpOTtaJEye0c+dObd++XVFRUUpJSXHqk8MwDFWuXFnz589X48aNPfK4AU9LTEyT3Z7t6THgJj4ODABQ0fFeCACo6HgvBABUdLwXAkDxKq2Px0Xx4WOiAQAVHe+Fxa+0/k3o7e2lsDD/4u9b7B2LwGq16s0339QNN9ygs2fPOoVipXPhVbvdrqioKEVFRRW4r6sgbE7darXqpZdeIgwLAAAAAAAAAAAAAAAAAABQTpWpQKwk1a5dWzNnztSdd96p5ORkpxDr+cFYd1wYhM3pYbFY9Nxzz+mqq64q2tAAAAAAAAAAAAAAAAAAyoWEhHiPrh8YGChfXz+PzoCC4bUClC9lLhArSa1atdLcuXM1atQoHThwwBRodRVwdYdhGAoKCtKrr76qAQMGFKkXAAAAAAAAAAAAAAAAgPJj6NArPLr+2LETdOWVV3t0BhQMrxWgfLF6eoC8NGzYUN9//73uv/9++fj4uL0rrCs5PQYNGqSFCxcShgUAAAAAAAAAAAAAAAAAAPgXKJM7xObw9fXVI488ov/85z/68ssv9fPPPysmJsbpnLx2i70wQBsYGKgrr7xSw4cPV/PmzUtsZgAAAAAAAAAAAAAAAAAAAJSuMh2IzVGlShWNHj1ao0eP1u7du7Vx40bt2LFDhw8f1vHjx5WUlKSMjAwZhiEfHx8FBASoevXqqlu3rpo3b66OHTuqY8eO8vYuFw8XAAAAAAAAAAAAAAAAAAAAbih3CdHmzZuzwysAAAAAAAAAAAAAAACAQomK2uDpEVBO8FoByherpwcAAAAAAAAAAAAAAAAAAAAAiuJfH4i12+2eHgEAAAAAAAAAAAAAAAAAAAAlqNwEYmNiYjR37lylpKS4dd3YsWM1aNAgjR07VkuWLFF2dnYJTQgAAAAAAAAAAAAAAAAAAABP8Pb0ABdjt9u1YMECzZo1S/v27ZMkNW/eXO3atStwj5iYGB0+fFhHjhzRDz/8oIiICA0bNkx33323/Pz8Smp0AAAAAAAAAAAAAAAAAAAAlJIyu0Ps5s2bNXjwYI0dO1b79u2TYRiSpEOHDrnVJzY2VhaLRYZhyDAMnTp1Su+9956uueYarV27tiRGBwAAAAAAAAAAAAAAAAAAQCkqk4HYzz77TCNHjtTRo0dzg7A53AnE2mw2nTx5UpJksVhy/xiGoSNHjuiuu+7S3Llzi3V2AAAAAAAAAAAAAAAAAAAAlC5vTw9woS+++EKvv/66pHMh1gu5E4g9duyYDMMw9cm573A4NHHiRNntdo0YMaIIUwMAAAAAAAAAAAAAAAAAAMBTytQOsRs2bNCrr76au5Pr+XJ2dnUnEJuZmammTZvKarXKMAzTbrM5PV977TVt3ry5WB4DAAAAAAAAAAAAAAAAAAAASleZCcTabDY9//zzptCqJBmGoYCAAI0YMULPPfdcgXtecsklWrBggTZs2KC3335bPXr0cBmKtdvtevLJJ5WWllbkxwEAAAAAAAAAAAAAAAAAAIDSVWYCsT/99JOio6OddoY1DEMWi0X//e9/tWLFCo0bN06XXnqp270rV66sIUOGaObMmZo5c6aqVq1qOic2NlZz5swp0mMAAAAAAAAAAAAAAAAAAABA6SszgdhvvvnG6b5hGPLx8dH06dP15JNPKjAwsFjW6dGjh+bOnas6derk1iwWiwzD0Oeff67s7OxiWQcAAAAAAAAAAAAAAAAAAAClo0wEYo8ePapdu3bl7g6bszPsc889p759+xb7ejVr1tQ777wjLy8vp/qJEye0du3aYl8PAAAAAAAAAAAAAAAAAAAAJadMBGK3bNmSe9swDElSy5YtNWzYsBJbs1WrVho6dGjuejn+/vvvElsTAAAAAAAAAAAAAAAAAAAAxa9MBGJ37tzpdN9iseiWW24p8XVdrbFp06YSXxcAAAAAAAAAAAAAAAAAAADFp0wEYuPj4021Ll26lPi6rVu3VmBgoKRzIVzDMHTixIkSXxcAAAAAAAAAAAAAAAAAAADFp0wEYpOSkky16tWrl/i6FotFNWvWdKqdOXOmxNcFAAAAAAAAAAAAAAAAAABA8SkTgdjMzEyPre3n5yfDMHLvp6ene2wWAAAAAAAAAAAAAAAAAAAAuK9MBGIDAwNNtVOnTpXK2gkJCbJYLLn3fXx8SmVdAAAAAAAAAAAAAAAAAAAAFI8yEYitUqWKqbZnz54SXzczM9MUvI2IiCjxdQEAAAAAAAAAAAAAAAAAAFB8ykQgtmnTpqba77//XuLrRkVFKSsrS5JkGIYsFovq1q1b4usCAAAAAAAAAAAAAAAAAACg+JSJQGyrVq1yb1ssFhmGoV9//VUnT54s0XXnzp1rqrVu3bpE1wQAAAAAAAAAAAAAAAAAAEDxKhOB2A4dOigsLMyplp6erjfffLPE1vzjjz/0559/ymKxONW7d+9eYmsCAAAAAAAAAAAAAAAAAACg+JWJQKzVatWAAQNkGIak/+0Su3DhQs2YMaPY19uzZ4+eeeYZUxi2atWq6tKlS7GvBwAAAAAAAAAAAAAAAAAAgJJTJgKxknT77bc7BVRzQrFTpkzRW2+9paysrGJZ56+//tJdd92ls2fP5tYMw5DFYtFtt91mCskCAAAAAAAAAAAAAAAAAACgbCszgdjGjRtr0KBBubvE5oRUDcPQzJkzdd111+mXX36RzWYrVP9t27bpiSee0L333quEhART8LVatWq67bbbivw4AAAAAAAAAAAAAAAAAAAAULq8PT3A+Z5//nmtWbNGSUlJuWHYnL/379+vJ554QkFBQerVq5datWqlFi1aqEaNGgoMDFRgYKCsVqtSUlKUmpqq06dPa+/evdq9e7dWr16t6OhoSf8L2ubIuT9hwgT5+/t76JEDAAAAAAAAAAAAAAAAAACgsMpUIDYiIkKvvvqqRo8eLYfDYQrFGoahpKQk/fLLL/rll18K3Ddn11lJpp1hLRaL7r33XvXt27fYHgcAAAAAAAAAAAAAAAAAFIZhGMrIyFDlypU9PUqZl5aWxiaIAHJZPT3Ahfr166eXX345N7h6/t85f3LCsQX9c+G1OQzD0K233qpHH33UI48VAAAAAAAAAAAAAAAAAHLs3btb9913p/75Z6enRynTYmNj9MQTo7VixXJPjwKgDClTO8TmuO6661SjRg098cQTSkhIcLmra2HlhGK9vb316KOP6r///W9RxwUAAAAAAAAAAAAAAACAQktNTdEnn3yk77+fp+zsbE+PU2bZbDZ9/fXn+vzzWbLZMtW37wBPjwSgDClzO8Tm6NatmxYsWKDhw4fLy8vLaWfXwsrZMbZjx46aP38+YVgAAAAAAAAAAAAAAAAAHrV27WqNGHGTvv32G8KwF/HPPzt1++236JNPPpTNlunpcQCUQWVyh9gcVapU0fjx43XPPfdo/vz5+umnnxQTE+N0Tl67xV4YoPXx8VGfPn10yy23qFu3biU2MwAAAAAAAAAAAAAAAAAU1PLlSxUff8rTY5R5q1dH6ejRI54eA0AZVqYDsTlq1qyphx9+WA8//LAOHTqk9evXa8eOHTpy5IhiYmKUnJys9PR02e12+fj4KCAgQFWrVlXt2rXVrFkztWvXTl27dpWfn5+nHwoAAAAAAAAAAAAAAAAAAACKWbkIxJ6vYcOGatiwoW6++WZPjwIAAAAAAAAAAAAAAAAAAIAywOrpAQAAAAAAAAAAAAAAAAAAAICiIBALAAAAAAAAAAAAAAAAAACAco1ALAAAAAAAAAAAAAAAAAAAAMo1b08PUFKSk5O1bNkybdmyRSdPnpTdbld4eLhat26tfv36qVatWp4eEQAAAAAAAAAAAAAAAGVAamqKdu7coaNHDyslJUWVKlVSWFgVNWnSVE2aXCKLxZJvj8zMTO3cuV3R0YeUkpIsX19fhYaGqVmzFmrQoGGxznv06BEdPhytxMTTOnMmUZUrV1ZYWBVVr15TzZu3kLd3yUSCUlNTtH//fp04cUyJiaeVkZEhSbmPtWbNWmrSpKkCAgJLZH1Jstvt2r17l6KjD+rs2bMyDEPh4RGKiKiqNm3ayc/Pr8TWLo9K+7WSkZGhPXt26+jRw0pOTpbdnqXg4BCFhISoatXqataseYm9PsuTrKws7d+/V9HRh5ScnKSMjAwFBQUrJCRU4eERat68hXx9fYt93czMDO3fvz/3+8duz1JQULDCws79rKpZs3gzdenp6dq5c7tOnTqps2fPyG63KyysisLCqqhp00tUtWq1Yl3vfHa7XevX/62jRw/Lbs9WrVq11LZte1WpEu52r4MH9ysmJkanTycoOTlJAQGBCgsLU+3addS0abMCvUegdFgMwzA8PUR+Dh48qEOHDqlfv375nutwOPTBBx/ok08+yX3TvZDValX//v31xBNPqG7dusU9LlDuJCamyW7P9vQYcFOVKgHy8rIqO9uh06dTPT0OAACljvdCAEBFx3shAKCi470QAIrXyZMxcjiyZbV6qVq1Op4ep1zw8fGSl5dVFotFhmEoO9shm630/n/Xc2tLhiFlZztKbd3yZtGiBXr11Rdy73t5eWnlyr9z7+/bt1ezZ8/UqlV/Kisry2WPatWqa9iw4brhhmEug3zHjx/T7Nmf6rffflV6errLHtWr19Dw4SM1dOgNhQ4Dnjp1UnPmfKVVq/5STMyRPM8LDAxUZGRX3XjjMLVv37FQa53v5MkTWrjwJ0VFrdS+fXuVX9TIarWqVas2Gjz4Kg0adGWBQ30XPleStGLF2tyvV0zMUX311edavnyp0tJc//vP19dXkZFddN11N+nSS7sXaF1P2LRpg0aPvt/t67799ucCBRZL+7WSnZ2t5cuXatGiBdq8eaOys/P+WejvH6AOHTqqd+9+6t9/kCpVqpTnuceOxemmm65xe5533/1QHTtGun1daYiKWqlfflmgv/9eLZvNlud5Pj6+atu2nXr2vFyDB18tf3//Iq27du1q/fzzD/r779XKzMzM87xq1arrqquG6tprbyhUcFQ6F0RdtuxX/fzzD/rnn52y2+15ntu4cVP17Hm5br75VgUHh7i1zqhR92rLlk259wcOHKzx41+SJK1YsVzTpk3RiRPHna6xWq2KjOyikSPvVIcOnS7a/8iRaM2d+7XWrFmlkydP5HleWFgVde3aTcOGjVDTppe49RjKotL6N6G3t5fCwor2unalzAZiExMT9dVXX+nHH39UbGys/P39tXHjxoteY7PZ9MADD2j16tX5vvlaLP/H3n2HSVWe/wN+ZjsLLEsRBaSIYhex19hbogm2REWNJcaGitFYkmjUxGjU2DX6tZvYY9SIFY1dsWFBNFFRUapIL8v2+f3hD8J4BthddlnGve/r8hKec973fWbP2Tlr8tl3UlFSUhIXXnhh7L333s3ZOuQcgdjc5H/sBaCt8ywEoK3zLASgrfMsBGheArEN823WoDDaFedFfmFh1FbMiXR1ZaSKSqKgtCzqampiQVV9VFbWLDO3sLwEYhtmSYHY+vr6uOeev8Utt9y41LDW4tZff8O49NKrory8fFFt+PBH4pprLl9iEPa7Bg4cFH/602XRuXPnBr+GqqrKuPPO2+L+++9eapAtm6233jZ+9aszo1evxn9fz5s3L26++a/xyCP/XGrAcWlWW61H/OY3v4/NNttimecuKRCbn58fd999Z9x66/8tMbSczbbb/iDOPfcP0bFjx0b33dJaKhDbGvfKp59+HH/84+/j888/a9S4iG/vj9NPPzu22Wa7rMe/T4HYKVMmxwUXnBMffPB+o8eWl5fHSSf9Kvbaq/EZt08++W9ceulF8d//ftSocR06dIihQ0+NH/9430aNe/nlF+LKKy9baoB0SesdeugRMWTIzyM/P79BY5YUiB0x4sn44x9/v9Tn8A9+sFNcfPFfsh6bM2dO3HTTX2P48Icb9d6XSqVit932jFNOOS06d+7S4HErm1wPxOY1+4zN4NFHH4299torrr/++pgwYUKk0+moqKiI6dOnL3Xc2WefHa+++mqk0+lIpVJL/SedTseCBQvi17/+dTz44IMr6JUBAAAAAAAAALmooCAvupSXRLvC+pj7zlMx/oaT4qsrj4rx15/w7b9vOCnmvvNUtCusjy7lJVFQsFJGMoiIdDod553327jxxusaHIaNiPjoozFxxhmnLBpz8803xCWXXNjgMGxExOjR78XvfndGg9edNWtWDBt2Yvztb7c1OuAY8e2ukL/85RHxzjtvN2rcxIkT4phjfh7//OcDTQ7DRnwbAjzttJPi9ddfa/Icf/7zH+PGG69rVBg2IuK1116OU045rlHXJ5e1xr3y7rujYujQY5sUho349v4488xT45FHvt/Zrc8//yyOO+6oJoVhI769thdeeF783/9d36hxjzzyz/jlL49odBg24ttA/CWXXBjXXHN5g86vqamJyy67KH7zm183Ogy7cL3/+7/r44wzTo158+Y1evxCX3zxefz5zxcu85dS9tzzh1nrEydOiOOPPyoeeeTBRr/3pdPpeOaZp+KXvzwiPvtsbKPG0nyatgd7C7r99tvj0ksvXXRTLgyvRkR89dVX0bVr9q2Yn3322XjiiScilUotqi0MxmazsP7tDznnxVprrRWDBg1qxlcCAAAAAAAAAHwfFBTkRXmnkqj4/L2Y+vAVka6uTJxTM2NyzHj2jpj50n3Rfb/Torz/oJg1uzJqa+3eurK54YZr4vnnn82olZeXx/rrbxSdO3eOioqK+O9//xOTJ09MjP3Pfz6KBx+8LwoLC+POO2/9zhydY/31N4zy8vKYNWtmfPzxf7Ju/jZ69Hvx0EP/iJ/97JCl9jl9+rQYOvSXMWHC+KzHu3dfNQYMWDs6dSqPBQsWxNSpX8d///tRIsQ1Z87sOO20k+KSS66MrbbaZqlrRkTMnTs3Tj11aNbXHxGx+uq9o2/fftGxY1kUFBTEvHnzYuLE8fHFF59nDfrW1dXFpZf+Ke6664EoLW2/zPUXd8stN8bjjz+aUSsoKIj11tsgVl11tcjPz4spU6bEf/7zUVRXJ0Ogn376Sdx++81x4omnNGrdXNMa98qMGdPj3HPPjoqK5Kc1dOjQMdZaa0Csskr3KCkpicrKypg4cUJ8+unHiWBzOp2OK664NNZee91Yf/0NG/nKV35VVZVx7rlnxfTp0xLH2rVrF2utNSBWXbVHtGvXLqqrq+Lrr7+Ojz/+T9Yg99//fnusvfY6sfPOuy1z3YcffjAuv/zPSzzev/+a0atX7ygrK4vZs2fFRx99GDNmJN+vHnjg3ujYsSyOOuqXS5yrtrY2fve7M+K1117Jevzb79n1o3v3VaOwsCimTfsm/vOfD2P+/OS98+abI+P444+OG264tdG7O6fT6fjzn/+Y9b1gcR06dIxtt/1Bov7FF5/HKaccHzNnzsg6bvXV+8Qaa/SPsrKymD9/XkyaNCk+/fTjRPh2ypTJccIJv4jrr785BgxYu1GvgeWXSrf0Hv2N8Prrr8fRRx8d9fX1WYOtf/7zn2Pw4MFZx+67777x3//+NyNAu3jodXHfDcmm0+no169fPP744w3echm+T2bOrIja2qb/Rhetw8eBAdDWeRYC0NZ5FgLQ1nkWAjSvFfXxuLkolUpFl/KSWDDu/fj6gT9HpBsQcE3lxao/+0206zcwZsyqXOZOdU2Rn58XqVREOh1RVyd0uyRPPDE8LrrogiUe79GjZxx//Mmx4447R0FB5r5yL774fPzpT+cnAn/l5eUxb968ReHP3r37xNChw2LbbX8QeXn/2xm4trY2HnvsX3HNNZdHdXV1xhw9e/aK++57OOP8xdXX18evfnVSjBr1ZuLYrrvuEYcddmTWoNXcuXPj8cf/FXfeeVvMnTsn41inTp3i1lvvjtVWW22JX4+IiEsuuTCGD38kUd9nn8Fx+OFHRa9e2d8j5s6dG08+OTxuu+2mrDs8nnrqr+PAAw9e4rrZrtXiOaCOHcvi8MOPin333T8RrJ01a1Y88MA9cdddd0R9feb3Q1FRUTzwwL+iW7dVlrj2ilZTUxNz5sxe9Perr748nnvumYxz/vSnS2PDDQdm1MrLOyeyTa11r2S7T7p3XzWGDTs9tttuh8T3U8S3gdv77rs77r77zkQYd5NNNotrr/2/jFpdXV3MmjVz0d/vvfeuuO++uzLOOeWU02PXXXfPqJWVdYrCwsIl9r4i3XnnrXHzzTdk1Dp2LIuhQ4fF7rvvFcXFxYkxCxYsiEcffShuvvmGqKzM/AWMZb13RESMGfNBnHTSLxMB9by8vPjxj/eNww47Mnr06JlxrL6+Pl544bm4+uq/JMK7+fn5ceONt8V6622Qdb2rrrosHnzw/kS9Q4cOceSRx8Teew9OhFtramri5ZdfjBtuuDZr+H7bbX8Ql1xyxRI3w4yIOOmkY+O9995ZbL2OMW/e3EV/Ly4uji233CZ69+4TlZULYsyY0fHJJx/Hj3+8X5x11u8y5qqsrIxjjvl5jBv3eeK1//jH+8UhhxyW9b1vxozp8eCD98f999+d2Jl59dV7xy23/D06dOiwxNewMlpRPxMWFORH586lzT7vSrM/f319ffzhD3/ICMN+9wfC8eOz/xbD6NGjM8KwqVRq0Z/btWsXxx13XPz1r3+Nv/zlL/GTn/wk6xvCl19+GQ899FDzvzAAAAAAAAAAIGeVlBRGuq4mpj58RcPCsBER6fqY+vDlEXU1UVKycoSySNpww4Fx2213x6677p41vLfjjjvHOeckw7SzZs1aFDTbZJPN4pZb/hbbb79jIo9SUFAQ++57QPzhDxcn5pg0aWJ88cXnifpCd911RyLgWFxcHH/602VxwQUXLXHXwY4dO8bBBx8Wf/vbfbHmmmtlHJs9e3b86U/nLXHNiG8/LvyJJ4Yn6ieeeEqcffa5SwzDLlz7Zz8bErfffk907dotcfzFF59f6trZLMwOrbnmgLj99ntiyJDDs+4yW15eHscee2Kcd96fEseqq6vjxRefa/TaLamwsDC6du226J9sociOHcsyzunatVvWjf5a416pqKiIZ58dkVErLy+PG264NXbccZes308R3wZVjz32xKzfV+++Oyqxw21+fn7G62/Xrl1iXIcOHRJfp5UlDJtOp+OxxzJ3OC4qKoqrr/5r7LPP4KzXPeLbnWMPOujQ+Mtfrkl8LSdNmhijRr211DWvuOLPiTBsu3alcfnl18YZZ/w2EYaN+DYsu8suu8Wtt94Vq6/eJ+NYXV1d3HLL/yXGRES89947WcOw/fuvGX//+wNx8MGHZd3ptbCwMHbZZbe466774wc/2DFx/LXXXo777797ia8zm8XDsFtttW3cd9/DcfHFf4kTTzwlTjvtrLjttrvjllv+Hj/9aTKYf/XVlyfCsOXlneOaa26MX//67CW+93Xp0jWOPfbEuPnmv0X37qtmHJswYXxcc83ljXoNLL+VJhD77LPPxueff57Y4TWdTkeXLl3iyCOPjB13TN78ERHDh//vQbx4mLZDhw5x7733xq9+9avYZZddYp999olLL7007r777igrK8uYI51Ox9///vcWenUAAAAAAAAAQC5qV5wXc997NtLVlcs+eTHp6sqY+96z0a54pYlmsJjy8vK4+OK/LPMjuXfYYadYc80BWY917dot/vjHS6J9+6Xv/rf99jvGoEGbJuoffTQm6/nz58+Lu+66M6OWl5cXF154Sey4485LXWuhVVbpHtdee1Mi+Pbuu6Ni9Oj3ljjuiSeGZ925c8iQnzdo3Yhvd9099tgTE/X//OfDBs+xuPLy8rj00iuXubNtRMSuu+4eO+20S6I+cuSrTVp7Zdda98rYsZ/EggUVGbWf/GT/WHXVZV+jiIjdd9+rTVynadO+Sex+utNOu8baa6/boPGDBm2adVfl119f8tfppZeej08++Tijlkql4uKL/xJbbLHVMtfs1q1b/PGPf04Ecd9447X46qtxifOvv/7qRK1Hj15x3XU3xyqrdF/mesXFJfHHP14SW2+9beLYXXfdkdghtyE22GCjuOiiy7Kuv+6660X//mtm1CZOnBCPP/6vjFpJSUlcfvm1sfHGmzRozf7914zrrrspOnTIfKY8/fQTMWXK5Ea+ApbHSvNT1z/+8Y9Ff14YhE2n03HIIYfE888/H2eddVZstNFGWcc+88wzGdsjL9wldujQobHOOuskzh80aFBcf/31GetFRHz66afxySefNNdLAgAAAAAAAAByWFFRfuQXFsbcd55u0vg574yI/MLCKCpK7upI6zrkkMOjc+cuDTp32223z1o/+ODDory8vEFzbLnl1ona5MmTsp776KOPREXF/IzaPvsMjm22yd7HkpSVlcXJJ5+WqN9zz9+WOOaVV15K1H7+86MatW5ExPbb75D4qPPKysqoqKhYwogl+9nPhjQ4aBkRMXjw/onad3ce/b5orXvlm2+mJmpdu3Zt1Jp77/2TjLEbbTQwioqKGjXHym7q1OTXqUuXpn+dysvLY731NoiOHcuWeP6jjz6SqO2774Gx+eZbNnjNAQPWjt122zNRf+21VzL+PmbMB4mgeyqVinPOuSCxWeXSFBQUxG9/e17i/XTWrFnx6KON/8T3448/aYm772bzwAP3RH195g7wRxzxi1hnnYYFlxfq2bNXHH30LzNqdXV1cd99jdvpluWzUgRi582bF6+//nrG7q6pVCoOO+ywOO+885Z6g44ZMyamTJmSqBcWFsaBBx64xHGbb755/PjHP160G+1Cr732WhNfBQAAAAAAAADwfZKfnxe1FXOiZkbTdnermTEp6irmRn7+ShHPYDF77vmjBp+7xhr9s9b32qvhc/Ts2StRW/zjvRc3fPjDidphhx3Z4LUW94Mf7Bjduq2SUXvzzdejqqoq6/kHHPCzGDLk54t2sVx99T6x6aZbNHrdTp3KEzslRkRUVi5o9Fz77DO4Ueevu+4GidqsWbMavW4uaK175bu7h0Y0fnfXTTfdIv72t/vj3/9+Jf71r6fjhhtuyxpmzmXZvk5vvjkyEb5cmn791ojbb78nRox4MR577Nm4+eY748gjj8l67pw5c+Ltt9/IqKVSqTj44EMb13hkBnGLiopjzTXXSvT93HMjEuO22GKr2HjjQY1er0uXrnHAAQcl6k8//WSj5unVa/XYZJPNGnx+bW1tPPHEYxm1kpKSrDvzNsQ++wyOwsLCjNrLL7/QpLlompXiJ67Ro0dHTU1NRq1Hjx5x5plnLnPsCy+8kPH3hWHa7bbbbpnb2h9wwAGJ2nvvvbfMNQEAAAAAAACA779UKhXp6sZ/XPPi6msqEztl0rp69Vo9EfxbmrKyTolaz569GrzDbEQsIRyavLdmzJgeX331ZUZtwIC1swZqGyKVSiU+Jr26ujo++mhM1vN/8pP94sQTT4kLL7wkbrvtrrjvvociP79pOxyXlpYmat/NBy1Lr16rN3pHzY4dO0a7du0yatXV2QPAuaw175VsIfHXX38trr/+6qiurm7QesXFxdG//5pRXFzSpH5zQZ8+fRPfP59//llceOF5iZ19lySVSsWAAWtHaWn7ZZ47evS7UVdXl1HbaKONo1ev1Rve9P83cOCg+MtfrokHHvhXPPvsy3HnnffFkCE/zzjnrbfeSIzbZ599G73WQj/+8X6Rl5cZZxw79pOYP39eg+fYcMOBjVrzv//9TyxYkLlz9RZbbJ14D2mo0tL2scEGG2XUvv56SkyZ0rRfrKHxVopA7Jgx/3vjXBhoPeCAAxq0DfZLLyW3ao+I2GWXXZY5dtCgQRlvOul0Or788suljAAAAAAAAAAA2op0Oh2pouULa+UVliQ+vZbW1a/fGo06P1t+ZfXV+yz3HNnui9Gj30vU+vdfs1FrfdcaayTHjxkzernmXJr6+voYM+aDrLvBNvZ7YcCAdZrUw3fDg7W1tU2aZ2XWmvdKnz79ol+/ZCj23nv/HgcfvF/cdNNfY8yYDxq1E+r3Ubt27RIh44iIESOejJ/+9Cdx7bVXxDvvvN1s9+eHHybDy40NiC6Un58fW2+9bfTs2SsRUo2IqKioiC+/HJeob7rp5k1aLyKiW7du0bdvv4xaXV1d1nt9Sb4bRl2WDz54P1Fb3u+jbOOzrUPLSO7L3AomTJiQqG21VfLN4Ltmz54dY8aMyfqbVNttt90yxxcXF0fPnj1jwoQJ3/5WVzodU6ZMaVjTAAAAAAAAAMD3Wl1dfRR0KIvCLj2iZkbjd3cr7NIz8ks7Rt3simWfzArTtWu35Z6jQ4cOzdBJ0scf/zdRe/rpJxv9seHL8s03U5tlntra2pg0aUJ88cXn8dlnY+M///kwPvxwTMyZMzvr+Y0NxJaXlzepr+9+ZPn3MZjZ2vfKMcccF+ecc1aiPnXq1/G3v90Wf/vbbVFW1ik233zL2HLLrWKLLbaOVVddrVl7ywVHHXVsvPXWG4mdW2fPnh33339P3H//PdGuXWlsuulmseWWW8cWW2wdffr0bdJaEyaMT9QGDFi7SXMty8SJExLfV6ut1qPJ37MLrbfeBvHFF59n1LJlC5ekR4+ejVrvk0+S30d33nlr3HnnrY2aZ1m++eabZp2PJVspArHTpk1L1NZcc9lJ65EjR0Z9fX0iENunT5/o2bNhN3fHjh0X7Uob8W16HQAAAAAAAACgurou6mpqouOme8aMZ+9o9PiyTfeIupqaqK6uW/bJrDAdOnRc7jmKi4uboZOk2bNntci8yXWyB1aXZObMGfHf/34UX3zxeYwf/1VMmjQxJk6cEN98MzUR9GtODfmY+Laqte+VnXbaNQ4//Kj4+99vX+LYOXNmx3PPPRPPPfdMRHy7O/M222wf2233gxg4cFDWnUe/bzbYYMM47bSz4rLLLlriOQsWVMSrr74cr776ckR8G+rceuvtYrvtfhCbbbZFIuC9JF9/ndwIcpVVujet8WWYNi0ZlF5ttR7LPW+20PSSAvbZlJV1atR6K+r7qDGvgeWzUgRiFyxIbpFeVla2zHGvvvpqxt8XBlsbsrvsQt99w2jJhzQAAAAAAAAAkFsWVNVHx0G7xcyX7ot0dWWDx6WKSqLjoN2iour7tzNlrisqKmrtFpZozpw5K2SduXOXvU5VVVU8/vij8fTTT8SHH36wArpKaqng8ffBynCvHHvsidG5c5e4+ea/Zs1/fde4cV/EuHFfxL33/j26dOkau+yye+y77wHRr98azdnySmfw4P2jXbvSuOaav8SsWbOWef7kyZPi4Yf/EQ8//I/o0KFj7LjjzjF48P6x/vobLnXcggXJjSBLS0ub2vZSZdt0sn375Q+wZ9t9uzGh1Y4dG/cLDyvq+0ggdsVZKWL22bYlb0gw9dVXX03sDhsRsc022zR47Xnz5mXM0RzfmAAAAAAAAADA90NlZU2k8guj+36nRaQaGLNI5UX3/U6PyC+Mysqalm2QRsuWNVlZzJs3d4WsU11dvdTjr7zyYgwZckBcccUljQ7Ddu++avz0p4cs90ens3Qrw72SSqXiZz87JP7+93/EgQceFB07LnsDxIVmzJgeDz54XxxxxMFx1VWXxfz585qj3ZXWHnvsFXfd9WAcfvhR0bVrtwaPmzdvbjz++KNx7LFHxh/+cG5Mn578JPaFqqqqErWSkpIm9bssNTXJZ1tJSbvlnjdbCD7bWkvS0N10F1pR30eNeQ0sn5Vih9hsu8FWVFQs9Tdyxo0bF5MmTUr8kJJKpWLrrbdu0LrpdDqmTMncKlogFgAAAAAAAABYKJ1Ox+y5VVHef1Cs+rOzY+rDVyx1p9hUUUl03+/0KO2/ccyaXRnpdHoFdkuuKypKhsF+/euz4wc/2KlZ11laaOyBB+6Na6+9okH3bmlp++jbt18MGLB2rLfeBrHxxoOiT59+ERHx8ssvRMSsZuiWbFaGe2Wh1VZbLU499Yw46aRfxVtvvR4vv/xivP76azF16tfLHFtXVxcPPnh/fPzxf+KKK66Pdu2WP1S5siovL4/jjhsav/zlCfH+++/GSy+9ECNHvhITJoxv0PgRI56Mjz76MG644Zbo3LlL4ni7dsndYLOFZJtDtoxdZeWydwlelmw7zxYXt0yoNyL7juGXXnpVrLPOus26Tku+BjKttIHYiRMnLvU3RV5++eWMvy98CK+33nrRuXPnBq37+eefx/z58yOVSi0a36VL8s0CAAAAAAAAAGi7amvrY9bsyujUb+Poc8otMe+9Z2POO09HzYzJi84p7NIzyjbdIzoO2i0ivzBmza6M2trkJ+bC0mTfVG5Bo3aUXB4jR74a11xzedZjXbp0jc022yLWW2/9WGON/tG37xrRvfuqS5wr2ydG03xa+17JpqCgILbZZvvYZpvtIyLi888/i1Gj3opRo96M9957J+bNW/IusB98MDr+9Kfz48ILL1lR7baavLy82GSTzWKTTTaLYcNOj4kTJ8Tbb78Zo0a9Fe+883bMmjVziWMnTPgqzjrrtLjxxtsiLy9z1/KOHTsmzp8/f36z9//tWsn7rznWynaPtGRIuqysU6JWVVXZqt9HLJ+VIhC75pprJmofffRRbLDBBksc88ILLyRqqVQqdtxxxwav++STTybGr7322g0e31ImTZoUw4cPj1GjRsXYsWNj5syZUV1dHR06dIjevXvHwIEDY7fddottttlmpdnGf+TIkfHSSy/Fu+++G5MnT45Zs2ZFXV1ddOrUKfr06RMDBw6MnXbaKbbeeutG9/zGG2/Ez3/+8xbq/H9OOumkOPnkkxt8fn19fbz22mvx1ltvxbvvvhuTJk2KOXPmxPz586NDhw5RXl4eq6++emyxxRaxzTbbxMYbb9yC3QMAAAAAAADQkmpr62PGrMooKSmMDpvuFZ22+nHUVcyN+prKyCssifzSjlFXUxMVVfVROdfOsDRNtpDjpEkTV8ja1dXV8ec//yFR79ChY5x88q9ir732jvz8/AbPV1m55J2UWX6tea80VP/+a0b//mvGT396cNTV1cVHH42JV155KZ599un4+uspifNfeOHf8fHH/2323TlXdr16rR69eq0egwfvH+l0Oj799ON49dWX49lnn44vvxyXOP+jj8bEyy+/EDvuuEtGPVsgdvr0aS3Sc7b7b/LkScs978SJExK1VVbpvtzzLkm2YO/K9n1E46wUgdiBAwcmak899VT89Kc/zXr+N998E2+88UbWYOXOO+/coDXnzp0b9913X2KO9dZbr0HjW8L06dPjoosuiieffDLq6uoSx2fNmhWzZs2KDz74IO6+++4YMGBA/Pa3v41tt922Fbr91lNPPRXXXnttjB07NuvxadOmxbRp0+Kdd96JO+64I/r27RsnnnhiDB48eKUJ8zZWbW1t3HPPPXHnnXfGhAnJN+GI/12rcePGxSuvvBJXXnllbLTRRnH88cfHbrvttoI7BgAAAAAAAKA5pNPpWLCgOhYsiCgqqon8/MJIFRRFuj4ddbMroro6+f/1Q2OsvnqfRO29995ZIWu/+OJzMX369Ixafn5+XHLJlbHxxoMaNVdVVVXMmTO7Gbvju1rzXmmK/Pz82GijjWOjjTaOY489Mf7xj3vj+uuvTvzywEsvPd/mArGL+3ZDx3Vj7bXXjaOO+mU8/fQTccklF0Z1dXXGeS+99HwiENu7d/KeGDv209h11z2a1Mt9990VkydPil69Vo+ePXtFz569ok+fflFQUBC9eq0ehYWFUVNTs+j8r7+eEjNnzmzwp7tn8/HH/0nUevVavcnzLUvv3r0TtffeeycOPfSIFluTlrVSBGI32mijaNeuXVRWVkYqlYp0Oh2vvfZajBw5MrbZZpvE+ddee23U1tYmApU9e/aMjTbaaJnrpdPpOO+882LatGmJObbaaqvlezFNNGrUqBg6dGjMnLnkLa+/69NPP42jjjoqjj766DjjjDMS22C3pAULFsTvfve7ePzxxxs17ssvv4yzzjorHnroobj88stjlVVWaaEOW8aXX34ZZ5xxRrz//vuNHvvBBx/E0KFDY7/99ovzzjuvRbfzBgAAAAAAAKBlfRt+FYCleW288SaJ2rhxn8eUKZNjtdV6NGnOu+++Mz744P1YbbWe0bNnz+jRo2cMGLBOYr5XXnkxMXaHHXZudBg2IuLzz7NvrFZfX9/ouciuNe+ViIiampoYP/6r+PLLL6K+Ph277rp7g9fJz8+Pgw8+LL78clwMH/5IxrEvvvi8Sb2vrGpra2PSpInx5ZdfxOzZs2KfffZt1Pg99/xRTJkyOW6++YaMerav04YbbhwRf8+offTRh41teZEnnhgen3/+WUZt+PAR0blzlyguLom11143Pvzwg4zj77zzVpMDuFOmTM66Q+xaaw1o0nwNMXDgJnHPPZlfs/feezcqKyujpKSkSXNee+0VMWXK5OjRo1f06NEjevToFeuuu1506dK1OVpmGVaKQGxxcXHsvvvu8eijj0YqlVoUij311FPjuuuuiy222GLRubfddls88MADi85Z/N8/+tGPlrlWRUVFnHfeefHEE08sCsMu/E2DtddeO9Zee+2WeZFL8fbbb8cvf/nLqKioaNL42267LebPnx9/+ENy2/qWUFFREccdd1y8+eabTZ7jjTfeiCFDhsRdd90Vq666ajN213LGjRsXhxxySMyYMWO55nn44Yfj888/jzvvvFMoFgAAAAAAAABYpH//NaNjx7KYO3dORv2f/3wghg4d1uj5qqqq4t57/x6zZs3KqJ999rmxzz6DM2qTJiU/7nyjjTZu9JoREa+88lLWerZPTCaa9CnLrXWvVFRUxC9+cVhMmjRx0fVcZZXujQrELrTtttsnArEVFfOXeH6ufRr1scceGZ9++vGiXVQLCgpit932anTQctttf5AIxGbLmW20UfJT2t97b1RMmzYtunXr1qg1v/56SiJ027t3n+jcucuiv2+88aBEIHb48EeaHIh97LF/JXYM7tevf3Tt2rjeG2PgwI0X5Q8XWrCgIh5//NE44ICfNXq+adOmxT//+UDU1tZm1K+++gaB2BVkxW0pugw/+9n/bqCFAdfZs2fHz3/+8zj44IPjtNNOi7322isuu+yyRect/iaXSqUy5viu6dOnxx133BF77713PPbYY4njqVQqfvrTnzbTq2m4qVOnxrBhwxJvUnl5efHDH/4wrrvuunjsscdixIgRcdttt8XBBx8cpaWliXnuv//+uOeee1ZIz+eee27WMGx5eXkcc8wxcfvtt8eIESPiueeei/vvvz/OPPPM6NevX+L8r776Kk466aSMrbNbS4cOHWKvvfZa4vGZM2fG0UcfnTUM26VLl/jFL34RN998czz++OPxwgsvxL/+9a+45JJLYs8998y6c+/7778fp512WuJNHAAAAAAAAABou1KpVNYw2b/+9VBMmTK50fM9+OB9iYBjfn5+7LDDTolz58+fl7Wfxpo1a1Y89NA/sh6rrW39jMjKqClf59a6V0pLSyOVSmWEm7/5ZmqMHv1eo9esrKxM1MrKOi3x/BX56dnNoUOHjhm5qNra2njppecbPU9VVfLr1LFjWaLWuXOX2GSTzTJqdXV18dBDDzR6zWzh1K22yvyk9913/2Fi3KhRb8X777/b6PVmzJgeDz+cfN/YaaddGj1XY5SVdUq8rohvd0ueNy/5nrgsd9xxSyIMW17eOQYN2rTJPdI4K827xOabbx4777xzYtfXdDod77//fjz55JMxbty4jHrE/8Kz++yzT/Tu3Tvr3EcffXRsv/32cckll8TkyZMXjVl8/FprrRWHHHLICnu9C5133nkxbdq0jFq3bt3izjvvjKuuuip23333GDBgQPTt2ze22267uOCCC+LRRx+NjTbaKDHXpZdeGpMnN/6B1hgjRozIGijea6+94tlnn40zzjgjtt122+jbt2/06tUrBg0aFL/4xS/iiSeeiBNPPDExbvTo0XHXXXctdc2tttoqPv7442b558EHH4zi4uKM+QsKCuLqq6+OAQOWvL32VVddFRMnTkzUDz/88Pj3v/8dZ555Zuywww6x1lprRY8ePWLdddeNfffdN6655pp49NFHs8793HPPxb/+9a+lvnYAAAAAAAAAoG05+OBDE8G/ior5ccEFv2vUpmNffTUu7rjj1kR99933yho6LC/vnKiNGtW4Tw+ura2N88//bWLX0oWqq6sbNV9bUVhYmKg15Fq31r2y9dbbJmrf3cG0IV588blEbZ111l3i+QUFyQ9DX5nvqWxfpzvuuKXRPb/wQrav03pZz/3Zz5L5t3vu+Vt8+uknDV7v66+nxH333Z2o/+Qn+2f8fcCAtWPzzbfMqKXT6bjwwvNjzpzs7wHZ1NXVxZ///MeYPXt2Rr2goCAGD95/CaOaz5AhP0/Upk79Oi655MJGbXb47rujYvjwhxP1/fY7MPLz85erRxpupQnERkRccMEF0aNHj4j4328+LAy/LgyuLh6WXahr165x5plnLnHekpKSxByLKyoqigsvvHCF33hvvPFGPPdc5htWaWlp3HTTTbHlllsuYVRE796944477oh11818ACxYsCCuvvrqFul1oWuuuSZR23PPPePKK6+Mjh07LnFcfn5+DBs2LE444YTEsZtvvnmF7BI7bdq0OOmkk6KqqiqjfuaZZ8b222+/xHGfffZZ/OMfyd9AOP300+Occ87JumPv4gYMGBD33XdfrLPOOoljV1xxxUr9YAYAAAAAAAAAVqzVV+8du++e/JTbDz4YHb/+9SlZd3L9rsmTJ8UZZ5waCxZkfmJxfn5+HHXUL7OOyRawe/XVl2PkyFcb1Pe0adPi9NNPjrffXnKIdsGCBQ2aq60pLW2fqE2fPi3LmZla617Zd98DE/mrd98dFddee+Uy11vo6aefSAQ9U6lU7Lzzbksc0759h0StIV+n1vLDH+4T7dq1y6h99dWXceGF5yV2EV2Sd955Ox588L5Efdddd896/nbb7RD9+6+ZUautrY1f//rk+Oyzsctcb+bMmXHmmcn7YZtttkvMGxFx5JHHJO6FyZMnxsknHxvTpn2zzPWqq6vjvPN+G6+99kri2EEHHRqrrNJ9mXMsr0033Tw23niTRP3555+NP/zh3Abl2j7++L9x7rlnZeycHPHtTr4HHXRos/XKsq1Ugdju3bvHLbfcEl27ds1IV383xLr47q7t27ePv/71r9GtW7clztu/f/+McQul0+koKCiIa665JjbeeOPmfCkNctNNNyVqw4YNiw022GCZYzt06BA33nhjIow5fPjwFtsl9tVXX41PP/00o1ZeXh4XXHBBg7ckHzp0aPTq1SujNn369Bg5cmSz9ZlNfX19nHrqqTFlypSM+q677hpHHHHEUsc+8sgjiTer7bffPo499tgGr9+hQ4e49tprE7/R8/XXX7f4awcAAAAAAAAAcstpp50Zq6+e/KTkUaPeikMP/Wk88cTwrB+jXllZGf/85wNx1FGHxsSJExLHjznmhOjVa/Wsa+6ySzKImE6n45xzzowHHrgn63oR3+4medttN8Vhh/00Ro16a6mvqzG7RrYlXbp0SdSGD384selbNq1xr/Tp0zd23XWPRP3++++OYcNOiNGj31tiv1Onfh3XXHN5/OlP5yeO7bnnj6Jnz17JQf9ftq/TM888FXPmzM5yduvr2LFjHHjgwYn6c889E8cee0S8/vprUV9fn3Xs7Nmz4o47bolf//qURHh20KBNY5NNNss6Li8vL84//0+JT9CePn16HHvsEXH77TfH7NmzEuPq6upixIin4qijhiSCs+3atYvTTjsr63qDBm0ahx9+VKL+2Wdj47DDfhr33393zJ07N3G8trY2Xnzxufj5zw+KF174d+L4mmuutcRAdkv4/e//GJ06JXdDfuaZp+KIIw6Ol156IWuIec6cOXHHHbfECSf8ImbNmpU4fvrpZ0WHDskgNy0nuY90K1tzzTVj+PDhce6558azzz4bEdmDrBER66+/flx22WWx5prJ9Pni1lhjjUQtnU5H79694+KLL47NN9+8mbpvuAkTJsRrr72WUevatWsMGTKkwXP06NEjjjjiiLjhhv9tOV5bWxv//Oc/46STTmq2Xhf697+Tbz4HHnhgdO6c3DJ/SQoLC2OPPfaI22+/PaP+/vvvxw477LDcPS7JjTfeGG+9lflDV48ePeLiiy9e5tgnn3wyURs6dGije+jbt2/85Cc/iX/+858Z9eeffz523HHHRs8HAAAAAAAAAHw/tW/fIf74xz/HyScfF/PmZe7yOW3aN3HRRRfEFVdcEhtssFF069YtUqm8+OabqfHRR2OWuAvrD36wYxx22JI3Ddtoo41j221/EK+99nJGvaqqKq655oq45Zb/i/XWWz9WWaV7FBQUxJw5c2LcuM/jq6++TMxVUFAQAwcOinfeeTujPmXKpIZ+CdqUvn37JWoffDA6Djlk/9hkk00jP78gpk+fHsOGnRZ9+mSe2xr3SkTEr351Rrz77tsxffr0jPqoUW/FqFFvRdeuXWPAgHWivLxzFBQUxLx58+Krr8bFuHFfZA2BrrrqanHSsc7ISQAA2IxJREFUSb9a6prffe0RERMmjI8hQw6IzTbbIkpK2sXMmTPj4IMPjU03XfF5sGyOOuqX8corL8YXX3yeUf/kk4/j178+JcrKOsU666wbXbp0jcLCwqioqIgJE8bH55+PzRrA7NChQ5x11jlLXbN//7XitNPOij//+Y8Zm1JWVVXFrbf+X9xxxy2x3nobxKqrrhrFxSUxY8b0GDPmg5g3LxlczcvLi7PPPjd69Oi5xPWOOeb4+PTTjxO7Sc+bNy+uvfbKuOGGa2P99TeMVVbpHoWFhTFjxvT46KMPs64XEdG9+6pxySVXRUlJyVJfZ3NaddXV4ve/vzB+85vTE5/2/dVXX8Zvf/vr6NChY6y//gbRtWu3qK+vi0mTJsXHH/9niZ8OfuCBB8Vuu+25ItpnMStdIDYionPnznHdddfFqFGj4pFHHom33347Jk2aFPX19bHKKqvExhtvHHvvvXfsttuSt8he3MJA7MJv8PLy8jj44IPj2GOPXebH3beUp59+OvHm/uMf/ziKiooaNc/PfvazjEBsRMTjjz/eIoHY7wZKIyJ++MMfNnqePn36JGpff/11k3pqiNGjR8f111+fqF944YVZk/2Lmzp1aowfPz6j1rVr19h0002b1MvOO++cCMSOGzeuSXMBAAAAAAAAAN9fAwasEzfeeHucddavsu7gWVlZucwdWRfaeefd4rzzLkxsSvddZ599Tpxwwi+yrldRMb9B63Xvvmr8/vffBvG+G4h97713fHx4FoMGbRbl5eWJHSanTv06nn76fxu5/fe/P8waCm2Ne6VTp/K4/PLr4tRTT4xZs2Ymjk+fPj2mT38ty8ik7t1XjSuuuC7Ky8uXet4aa/SPfv36x7hxmeHSWbNmxb///cyiv2+wwYYrTSC2qKgoLr/82jjllONjwoTxieNz5syOt956o0FzdejQIS699Kro3TuZvfquvff+SZSUlMSf/nR+IrBZV1cXY8aMjjFjlj5Hfn5+nHnm77LuBry4vLy8uPjiy+OKKy6JRx99OHG8trZ2qbsGL27ttdeJSy65MlZZpXuDzm9OW221TVx11V/jt789I+s9PW/e3HjzzdcbNNdBBw1ZZsCblrFSBmIX2myzzWKzzbJv79wY/fv3j9VWWy223HLL2HbbbeOHP/xhYlvoFe3VV19N1HbZZZdGz9OzZ89YZ5114uOPP15U+/zzz2P8+PHRu3dyO/Tl8fDDD8eXX34ZY8eOjbFjx8a4ceNi3XXXbfQ82bZzz8vLa44WE2pqauJ3v/td4jcm9ttvv9h+++2XOf6zzz5L1DbccMMm97P66smt5KdNm9bk+QAAAAAAAACA769+/daIm266I2688bp44onhUVdX16jx7du3j+OPPzn23feAZQYcIyK6dOka11xzY5x//m/jgw9GN2qt/Pz8+MlP9o/jjhsaHTp0iIqK+VFUVBzV1f/LiYwa9XZUVMyP0tL2jZr7+65du3Zxxhm/jd///jdLvcZjx34ae+yRffO6FX2vRESstdaA+L//uz0uvfSiGDXqzUatt9DOO+8Wp512VoM/ofrss8+NYcOOz5o/Wuizz8Y2qZeW0r37qnHDDbfGlVdeFs8998yyB2Sx2WZbxFlnnRM9e/Zq8Jhdd90jevToGVdeeVn85z8fNmq9Xr1Wj/POuzDWX79hOamCgoI488zfxQYbbBS33HJjfPPN1Eat165duzj00CPisMOOjIKC1os0Dhw4KG655W9x3XVXxYsvPpexw25DdOnSNU499YzYZZeGbfRJ81upA7HNpby8PF544YXWbmOR+vr6GDVqVEatoKAgNt544ybNt+mmm2YEYiMi3n777WYPxBYUFMSaa64Za665Zuy5Z9O3c/7kk08StWxB0eZw2223Jdbr1q1b/OY3v2nQ+LKyshgyZEhMnTo1pk6dGl9//XWsssoqTe4n25bvLRUGBgAAAAAAAAByX6dO5XHWWefEYYcdGQ88cE+8/vprWXcBXdzqq/eJvff+ceyzz74NDhoutOqqq8V1190cTz/9RDz44P3xySf/Xer5/fqtEdtss33su+8B0avX//IfpaXt4wc/2CFj586KivkxfPgjdonNYscdd4krr7w+LrnkwiVe32UFPVf0vRLxbXDy6qv/GiNHvhpPPvlYvPbay1FZWbmMPjvFDjvsHIMHHxDrrrteo9bbcMON4sYbb4+LLjo/Pv00mUGKiPjss08bNeeK0Llzl/jDHy6OAw88KB577F/x0ksvxLx5c5c6prS0fWyzzXYxePD+Td7xdv31N4ybb74zXnjh3zF8+L/ivfdGLTFMnEqlYsCAdeKAA34We+zxwygsLGz0envv/ZPYbbc941//eiief/6Z+OijD5cazu7ff83Yddc9Yr/9DoyysqV/0veKstpqPeLCCy+JTz/9OP7xj/virbfeWGrAN5VKxVprDYh99hkce+21d7Rv32EFdst3pdKNjTGz3L744ovYa6+9Mmprr712DB8+vEnzPfDAA3Huuedm1A477LBEbWUwe/bs2GWXXWLevHkZ9QcffDA22mijZl1r/Pjxsc8++yQeshdddFEccMABzbpWQz311FMxbNiwjNoOO+wQN998c6v0s9DMmRVRW9u43wyi9XXp0j7y8/Oirq4+ZsyY39rtAMAK51kIQFvnWQhAW+dZCNC8pk6dEPX1dZGXlx/du7fMhkY0r/z8vEilItLpiLq65OZMfL9NmjQxPv/8s5g1a2bMnj0r0ul0dOxYFl27dov1198gunTp2mxrzZw5Iz78cExMmzY15s6dF/n5edGpU3l07twl1l13vWZdi283W/v44//E2LGfxsyZMyLi291bu3dfNdZYY81YffXGbZC3Iu+ViIi6urr46qsv4/PPx8bs2bNj/vz5UVdXG6WlpdGtW/fo12+NWGON/g3ehXZpPv98bPz3v/+J6dOn//812scqq6wSffuuEf37r9kMr6blpNPpmDhxQnz22bfXef78+VFTUxMlJSXRtWu36NOnX6y11oDIz89v1nWrqir///fzNzFr1syorKyMsrKy6NZtldhww42jvLy8WdebO3du/Oc/H8aMGdNj5syZUVNTHe3bd4jVVusRa6+9TqyySvflmn9FPQvHjfsivvrqy5g9e1bMmjUr8vPzomPHsujefdVYb70NoqysrMXWXtFW1M+EBQX50blzafPP2+wzskxjxyZ/W2ONNdZo8nx9+/ZN1L744osmz9dSqqur46yzzkqEYQcOHNjsYdiIiMsuuywRht1www1j//33b/a1Gurll19O1Jbn2gMAAAAAAAAAbU/Pnr0a9dHpy6Nz5y6x/fY7rJC1+PaThtdbb4NYb70NmmW+FXmvRETk5+fHGmv0jzXW6N/ia/Xvv1b0779Wi6/TElKpVKy+eu9GB5yXV3FxSZN3m22Kjh07xpZbbr3C1msp/fqtEf36yXjlAp/V3gomTpyYqPXq1fQHz2qrrdagNVrThx9+GIceemg8//zzGfXCwsIW2cn2nXfeiaeffjpR/93vftcsv2HSFLNmzYonnngiUd91111boRsAAAAAAAAAAAD4/rBDbCuYNm1aota9e9O3f+7WrVuiNnXq1CbPtzzq6+sjnU5HRUVFTJw4Md5///148skn4/XXX490Op1xbl5eXvzxj3+MgQMHNnsfl1xySaK2xx57xKabbtrsazXUzTffHBUVFRm1bt26xeabr7jfugAAAAAAAAAAAIDvI4HYVjB9+vREraysrMnztW/fPgoKCqK2tnZRraKiImpqaqKwsLDJ8zbF008/Haeeeuoyz+vatWtcdNFFsdNOOzV7Dy+++GK89957GbW8vLw4+eSTm32thvrwww/jjjvuSNSPOOKIyM/PX/ENAQAAAAAAAAAAwPdIXms30BbNmzcvUevQocNyzVlaWtqgdVra5MmTl3nODjvsEE8++WSLhGEjIm644YZE7Uc/+lGsvfbaLbLessyZMydOO+20jMByRESfPn3iiCOOaJWeAAAAAAAAAAAA4PvEDrGtoLq6OlErLi5erjmLiooatE5LmzRp0jLPeemll2Lw4MFx5JFHxiGHHLLcr31xr732Wrz77rsZtVQqFSeeeGKzrdEY1dXVcdJJJ8W4ceMy6vn5+XHxxRc362tfHmVlJa3dAk2Ql5da9O8uXdq3cjcAsOJ5FgLQ1nkWAtDWeRYCNK+ZMwuipqY+UqlU5OfbWysXpFL/+7drBo0zffq0Vl2/ffsOUVIiq9FSKioqYsGCilZbPy8vPzp37txq67clnoXNL5VKRV5eKgoLC3Lyv7UFYltBtqBqfn7+cs2Zbfx3dyRdEaZMmdKg8yZPnhwXX3xx/OMf/4hrrrkm1lxzzWZZ//bbb0/Udtppp2abvzFqamri1FNPjTfeeCNx7PTTT4/NN998hfe0JB4Iue3b/1Ei1dptAECr8SwEoK3zLASgrfMsBGge3wZKUov9mVzimkHj7LPPHq26/jnnnB/77POTVu3h++yee/4Wt956U6utv9pqPeKRRx5vtfXbKs/C5pTK2ZCxQGwrqKurS9RaIhBbX1+/XHM2xVZbbRW77757rLXWWtG5c+eYP39+jB8/Pl5++eV45JFHoqIi87cvxo4dG4ceemjce++9scYaayzX2l9++WW8/PLLifpRRx21XPM2RXV1dQwbNiyee+65xLGDDjoofvGLX6zwnpamrm7F3yssv7y8VKRSqUin01Ffn27tdgBghfMsBKCt8ywEoK3zLARoXul0RER6sT+zsls8+OOaQe7xffv95vquGJ6FLSUd6XTLZ8paInArENsKCgsLE7Xl3c21pqYmUSsqKlquOZvi8MMPT9QGDBgQu+yyS5x88slx3nnnxYgRIzKOz5w5M4YOHRqPPPLIcvV89913R/o772zrr79+bLXVVk2esynmz58fJ510Urz22muJY/vss0+cf/75K7SfhpgzpzJqa5NBbVZuXbq0j/z8VNTXp2PGjPmt3Q4ArHCehQC0dZ6FALR1noUAzaumpjbq69ORl5e2oU6OyM/Pi1QqVkhgBWhe9fXea1vSyvALc67viuFZ2PwW/tJpTU1ti/63dkFBfnTuXNrs8+benrbfAy0RiM2262y2dVpTly5d4pprromDDjooceyzzz6Lv/3tb02eu6amJv71r38l6tnWaknTpk2Lww8/PGsYdt99941LL7008vJ82wEAAAAAAAAAAEBzskNsKygtTSabFyxYsFxzVlRUJGrFxcXLNWdLSKVS8fvf/z4+/vjjeO+99zKO3X333XH00Uc3KTD60ksvxaxZszJqxcXFsffeey9Ht43z2WefxS9/+cuYOHFi4tiQIUPi97//faQW36cbAAAAAAAAAIAV7pVX3m7tFmhBv/jFcfGLXxzX2m0ArcBWla2gvLw8UZs/v+nbC9fV1UVlZWVGrbi4ONq3b9/kOVtSQUFBnHHGGYn6pEmTYsyYMU2a89FHH03Udt999+jYsWOT5musl19+OQ466KCsYdhTTjklzjvvPGFYAAAAAAAAAAAAaCECsa2gS5cuidr06dObPF+2sd26dWvyfCvC5ptvHr169UrUR48e3ei5Kisr44UXXkjUBw8e3JTWGu2uu+6K4447LubOnZtRLywsjIsuuiiGDh26QvoAAAAAAAAAAACAtqqgtRtoi7IFQadNm9bk+bKNXWWVVZo834qy2WabJXZUnTRpUqPnGTlyZGKH3I4dO8bWW2+9XP0tS11dXVx00UVx1113JY6VlZXFNddcE9tss02L9gAAAAAAAAAAAAAIxLaK3r17J2pfffVVk+fLNrZ///5Nnm9FyRba/e4uqw3x/PPPJ2o77rhjFBUVNamvhqiqqopTTz01nnvuucSx3r17x//93//Fmmuu2WLrAwAAAAAAAAAAAP8jENsK1llnnUilUpFOpxfVPvvssybPl23sWmut1eT5lqS6ujomTpwY48ePj/Hjx0f//v2XawfUxV//Qu3bt2/0PC+//HKitttuuzWpp4aYN29eHHfccfH2228njm2xxRZx7bXXRufOnVtsfQAAAAAAAAAAACCTQGwr6NixY/Tt2zfGjRu3qDZx4sSYMWNGdOnSpdHzjR49OlHbcMMNl6fFhCeffDJOO+20qK+vX1TbeeedlysQO3Xq1EStW7dujZpjwoQJMWnSpIxaXl5ebLfddk3ua2nmzZsXv/jFL+K9995LHBs8eHBceOGFLbozLQAAAAAAAAAAAJCU19oNtFVbbbVVojZy5MhGz1NdXR1vvfVWRq1du3axySabNLm3bPr27ZsRho2IeOutt6KqqqrJc44aNSpR69evX6PmyLZL6/rrrx9lZWVNbWuJqqqq4rjjjssahj3ppJPi0ksvFYYFAAAAAAAAAACAViAQ20p23HHHRO2JJ55o9DwvvvhizJ8/P6O29dZbN3swc6211oqSkpKM2rx58+KZZ55p0nxvv/12TJ48OaNWWFjY6B1n33nnnURtyy23bFJPy3LGGWckArh5eXlxwQUXxMknn9wiawIAAAAAAAAAAADLJhDbSn7wgx9EeXl5Ru3555+Pzz77rMFzpNPpuPXWWxP1Aw88cHnbSygqKorddtstUb/11lsTO8cuSzqdjiuvvDJR32677aJ9+/aNmmvMmDGJ2kYbbdSoORri5ptvjqeffjpR/8Mf/hAHH3xws68HAAAAAAAAAAAANJxAbCspKiqK/fffP6NWV1cXv/nNb6KqqqpBc9x2223x7rvvZtR69uwZO+20U3O1meGAAw5I1D766KO46667GjXP1VdfndhpNSJi6NChjZqntrY2Pv3000R9gw02aNQ8y/Lxxx/H1Vdfnagfd9xx8dOf/rRZ1wIAAAAAAAAAAAAaTyC2FR1zzDFRWlqaUXv//ffj9NNPX2Yo9rHHHou//OUvifqwYcOioKBgqWMnTJgQ66yzTuKfhx56aKnjtt1229h+++0T9UsuuSSeeuqppY6N+HZn2KuuuipuuOGGxLG99947Bg4cuMw5Fjdu3Liorq7OqJWWlkafPn0aNc+yXHjhhVFTU5NR22STTWLYsGHNug4AAAAAAAAAAAC0vlRrN9AkS09O0qK6du0ap5xySvz5z3/OqD/zzDPx05/+NH7/+9/H5ptvnnFs6tSpceONN8bdd9+dmG/zzTePwYMHt2jP5557buy3335RUVGxqFZbWxvDhg2Lgw46KE444YTo0aNHxph0Oh1vvfVWXHHFFYkdbSMi+vfvH+eff36je/nyyy8Ttd69e0cq1XzfjK+99lq8+eabifq7774b66+/frOt8/HHHzfbXAAAAAAAAACNlZeXF/X1dVFfX9/arQAA0ArS6fSinwXz8nJzr1WB2FZ25JFHxsiRI+PFF1/MqH/88cdx6KGHRr9+/WLAgAFRWloaEydOjPfffz+xW2nEt+HaK664olnDoNn069cvrr322jj++OMTfdx///3xwAMPxHrrrRdrrLFGFBcXx4wZM2LMmDExbdq0rPN169YtbrrppigrK2t0L5MmTcraX3P6+9//3qzzAQAAAAAAAKyMUqmFoYd0pNPpFv//ngEAWLmk0+mISEeEQCxNlEql4sorr4zjjz8+606k48aNi3Hjxi11jq5du8btt98eq666agt1mWn77bePq6++Os4888yYN29exrF0Oh0fffRRfPTRR8ucZ4MNNojrrrsuevbs2aQ+pkyZkqh9d3fa5VFZWRmvvvpqs80HAAAAAAAAsLLKzy+ImpqqiIiorq6M4uJ2rdwRAAAr0sKfBSMi8vLyW7GTpsvNGO/3TPv27ePWW2+Nww8/vNG/Zbf55pvH/fffH+uss04LdZfdrrvuGg8//HBssskmjR5bXFwcRx99dNx7771NDsNGRCKMG/HtjrPN5cMPP4yqqqplnwgAAAAAAACQ40pKShf9ubKyohU7AQCgNVRVLVj058V/NswldohdSRQVFcU555wTBx54YNx6660xYsSIqKyszHpuKpWKQYMGxWGHHRY/+tGPWm174j59+sR9990Xr7zyStx5553x5ptvLrHniIh+/frFLrvsEkceeWSz7Ga7YMGCRK05A7HffPNNs80FAAAAAAAAsDIrLi6JVCov0un6qKysiLKyLo3e0AkAgNyUTqejsnJhHi8VRUUlrdpPU6XS6XS6tZsgqbq6OkaPHh1ffPFFzJw5M+rr66OsrCx69OgRgwYNis6dO7d2iwnV1dXx3nvvxcSJE2PWrFlRXV0dnTt3ji5dusS6664bq6++emu3yBLMnFkRtbV1rd0GjdSlS/vIz8+Lurr6mDFjfmu3AwArnGchAG2dZyEAbZ1nIUDzmzVrWlRWfvueWlbWNUpLO7RyRyxNfn5epFIR6XREXV19a7cDACucZ2HzmTdvdsybNysiIoqK2kWXLt1bdL2Cgvzo3Ln5d6G1Q+xKqqioKDbffPPYfPPNW7uVBisqKoott9yytdsAAAAAAAAAoAlKSkoXBWLnzJkeeXl5OftxuQAANExFxbyYN2/2or936NCpFbtZPnmt3QAAAAAAAAAA0PqKi9tFu3b/2xV21qxvoqJiXvjgWQCA75+6utqYPXtGzJkzPSK+/XmvtLQsioqKW7ex5WCHWAAAAAAAAAAgUqlUlJV1iYiIBQvmRcS3O8XOnTszSkpKo6SkNIqKiiOVsvcWAECuSafTUVtbE1VVC6KysiJqa6szjpeWdoyOHctbp7lmIhALAAAAAAAAAERE9lBsOl0fCxbMW/T3iFTk5QnFtrZUKrXoz3bxBaAt8ixsuHS6filfo29//ist7bCE47lDIBYAAAAAAAAAWGRhKLa4uF1UVlZEVdWCSKfrFzsjHfX1da3WH9/Ky0tFRCq+vR5CQAC0PZ6Fy6egoChKStpFSUn7KCgobO12moVALAAAAAAAAACQIZVKRUlJaZSUlEY6XR9VVZVRWVkRdXW1kU7XR319/bInoUUVFhZEKhWRTkfU1NS2djsAsMJ5FjZcXl5epFJ5kZeXH8XFJVFc3C7y879/8dHv3ysCAAAAAAAAAJpNKpW3KBzLyqNLl/aRn58XdXX1MWPG/NZuBwBWOM9CviuvtRsAAAAAAAAAAAAAgOUhEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnFbR2AwAAuSaVisjPz4tUKhXpdDrq6tKRTqdbuy0AAAAAAAAAgDZLIBYAoIEKCvKjXUlBFBcXRCrvfxvtp9P1UVVZE5VVdVFTU9eKHQIAAAAAAAAAtE0CsQAAy5BKpaKsY1EUFRdF1dfjYtpbj8eCcWOivnpB5BWVREnv9aJs8x9Fea8BUVNVHXPmVUd9vR1jAQAAAAAAAABWFIHYldCkSZNi+PDhMWrUqBg7dmzMnDkzqquro0OHDtG7d+8YOHBg7LbbbrHNNttEKpVq7XYjImLkyJHx0ksvxbvvvhuTJ0+OWbNmRV1dXXTq1Cn69OkTAwcOjJ122im23nrrRvf8xhtvxM9//vMW6vx/TjrppDj55JMbNSYXrxUAjZNKpaK8rCiicm5MvPfyqJr4ccbx+gVzY97sb2LemJeiaNU1ovv+p0d5WbeYNadKKBYAAAAAAAAAYAURiF2JTJ8+PS666KJ48skno64u+XHLs2bNilmzZsUHH3wQd999dwwYMCB++9vfxrbbbtsK3X7rqaeeimuvvTbGjh2b9fi0adNi2rRp8c4778Qdd9wRffv2jRNPPDEGDx6c0wHRXLxWADRNp45FkV4wOybdcXbUzZu11HOrv/4iJt1+dvT8+YXRqdOqMXN21YppEgAAAAAAAACgjctr7Qb41qhRo2LvvfeOxx57LGvAMptPP/00jjrqqLjkkkuivr6+hTvMtGDBgjjttNNi2LBhSwzDZvPll1/GWWedFUcccUR88803Ldhhy8m1awVA0xUXF0RBUUFMufePywzDLlRfOS8m3/vHyMtLRUlJYcs2CAAAAAAAAABARAjErhTefvvtOOaYY2LmzJlNGn/bbbfF+eef37xNLUVFRUUce+yx8fjjjzd5jjfeeCOGDBkSX3/9dTN21vJy7VoBsHxKivKi4tNRUTN9YqPG1c2dHvM/fDlKiv2oBQAAAAAAAACwIhS0dgNt3dSpU2PYsGFRUVGRUc/Ly4s999wz9t577+jXr18UFRXFhAkTYsSIEfHoo48mzr///vtj3XXXjSFDhrR4z+eee268+eabiXp5eXkceOCBsd1220WvXr2ioKAgvvnmmxg1alQ88MADMW7cuIzzv/rqqzjppJPinnvuicLC1t1Br0OHDrHXXnst9ZxcvFYANF1+fl4UlRTH9LefbNL42aOeio4b7xKFhbVRU9OwHcUBAAAAAAAAAGiaVDqdTrd2E23ZCSecEM8991xGrVu3bnHllVfGlltumXXM+PHj41e/+lV88MEHGfV27drFk08+GT169GixfkeMGBEnn3xyor7XXnvFhRdeGB07dsw6rq6uLq677rr461//mjh29tlnx1FHHdXsvWbzwQcfxKGHHhpVVVWLagUFBfF///d/sf322y91bK5dq8aYObMiamuFtXJNly7tIz8/L+rq6mPGjPmt3Q5875SUFEb7krwYd+mQiGjaj0t9ht0alVESCxbUNG9zQER4FgKAZyEAbZ1nIQBtnWchAG2dZ2HuKijIj86dS5t9Xp/j24reeOONRMCytLQ0brrppiUGLCMievfuHXfccUesu+66GfUFCxbE1Vdf3SK9LnTNNdckanvuuWdceeWVSwzDRkTk5+fHsGHD4oQTTkgcu/nmm6OmpuWDQtOmTYuTTjopIwwbEXHmmWcuMwybi9cKgOWTSkXUV1VEU8OwERH1lfMjlUo1X1MAAAAAAAAAAGQlENuKbrrppkRt2LBhscEGGyxzbIcOHeLGG2+M0tLMlPTw4cNj8uTJzdbj4l599dX49NNPM2rl5eVxwQUXRF5ew26loUOHRq9evTJq06dPj5EjRzZbn9nU19fHqaeeGlOmTMmo77rrrnHEEUcsc3yuXSsAll86HZEqKFyuOZZ3PAAAAAAAAAAADSMQ20omTJgQr732Wkata9euMWTIkAbP0aNHj0SYs7a2Nv75z382S4/f9e9//ztRO/DAA6Nz584NnqOwsDD22GOPRP39999frt6W5cYbb4y33noro9ajR4+4+OKLlzk2F68VAMuvvj4decWlkd+xS5PG5xWXRn6HzlFXV9/MnQEAAAAAAAAA8F0Csa3k6aefjvr6zIDMj3/84ygqKmrUPD/72c8Stccff3y5eluS7wZKIyJ++MMfNnqePn36JGpff/11k3pqiNGjR8f111+fqF944YXRqVOnZY7PxWsFwPKrrq6NdF1tlA3arUnjO2y0U0QqL6qra5u3MQAAAAAAAAAAEgpau4G26tVXX03Udtlll0bP07Nnz1hnnXXi448/XlT7/PPPY/z48dG7d+/l6vG7Hn744fjyyy9j7NixMXbs2Bg3blysu+66jZ6nqqoqUcvLa5lsdk1NTfzud7+L2trMMNJ+++0X22+/fYPmyMVrBUDzqKyuj46b7RUzX/1nRH1do8aWbbF3VFXXRjrdQs0BAAAAAAAAALCIHWJbQX19fYwaNSqjVlBQEBtvvHGT5tt0000TtbfffrtJcy1NQUFBrLnmmrHnnnvG0KFD47LLLouCgsZnqj/55JNEbfXVV2+OFhNuu+22xHrdunWL3/zmNw0an6vXCoDmsWBBTeS36xhddjm8UePKtzsgCjuvGgsW2B0WAAAAAAAAAGBFEIhtBV9++WVUVlZm1Pr37x8lJSVNmm/99ddP1MaMGdOkuVra7NmzY8SIEYn6Ntts0+xrjR8/Pv76178m6qeddlp06tSpQXO05WsFQER9fTrmzquK8q1+HJ13OjQiUssc02nrwdFlpyExb15V1NXVt3yTAAAAAAAAAABE47f3ZLmNHTs2UVtjjTWaPF/fvn0TtS+++KLJ87WU6urqOOuss2LevHkZ9YEDB8ZGG23U7OtddtlliTDrhhtuGPvvv3+D52ir1wqA/6mqqo05cxZE+bb7Rrs1BsbsN4fH/P++HlG32O6vefnRfsAWUbbFj6Kkz/oxb15lVFbWtF7TAAAAAAAAAABtjEBsK5g4cWKi1qtXrybPt9pqqzVojdb04Ycfxvnnnx+jR4/OqBcWFsa5557b7Ou988478fTTTyfqv/vd7yKVWvbufgu1xWsFQFJVVW3U1dVHuy69o/vgU6N+z/lR+dVHUV81P/KKS6N49XUiv7RTVFfVxOzZC6Kmpq61WwYAAAAAAAAAaFMEYlvBtGnTErXu3bs3eb5u3bolalOnTm3yfMujvr4+0ul0VFRUxMSJE+P999+PJ598Ml5//fVIp9MZ5+bl5cUf//jHGDhwYLP3cckllyRqe+yxR2y66aaNmuf7fK0AaJza2vqYO7c65s+viZKSwsjvu0kURDrSkYqquvqonDE/6uvTy54IAAAAAAAAAIBmJxDbCqZPn56olZWVNXm+9u3bR0FBQdTW/u+jmysqKqKmpiYKCwubPG9TPP3003Hqqacu87yuXbvGRRddFDvttFOz9/Diiy/Ge++9l1HLy8uLk08+udFzfZ+vFQBNU1+fjoqK6tZuAwAAAAAAAACAxeS1dgNt0bx58xK1Dh06LNecpaWlDVqnpU2ePHmZ5+ywww7x5JNPtkgYNiLihhtuSNR+9KMfxdprr93oub7P1woAAAAAAAAAAAC+L+wQ2wqqq5O7yhUXFy/XnEVFRQ1ap6VNmjRpmee89NJLMXjw4DjyyCPjkEMOWe7XvrjXXnst3n333YxaKpWKE088sUnzfZ+v1eLKykpadX2aJi8vtejfXbq0b+VuAGDF8ywEoK3zLASgrfMsBKCt8ywEoK3zLOS7BGJbQbbwY35+/nLNmW18bW3tcs3ZFFOmTGnQeZMnT46LL744/vGPf8Q111wTa665ZrOsf/vttydqO+20U5Pn/z5fq8Xl59ssOpelUqnIz0+1dhsA0Go8CwFo6zwLAWjrPAsBaOs8CwFo6zwLWUggthXU1dUlai0Rsqyvr1+uOZtiq622it133z3WWmut6Ny5c8yfPz/Gjx8fL7/8cjzyyCNRUVGRcf7YsWPj0EMPjXvvvTfWWGON5Vr7yy+/jJdffjlRP+qoo5o85/f5Wi2urq5116dp8vJSkUqlIp1OR319urXbAYAVzrMQgLbOsxCAts6zEIC2zrMQgLbOszC3tcQmjgKxraCwsDBRW94dQmtqahK1oqKi5ZqzKQ4//PBEbcCAAbHLLrvEySefHOedd16MGDEi4/jMmTNj6NCh8cgjjyxXz3fffXek05lvbOuvv35stdVWTZ7z+3ytFjdnTmXU1ibDv6zcunRpH/n5qaivT8eMGfNbux0AWOE8CwFo6zwLAWjrPAsBaOs8CwFo6zwLc1dBQX507lza7PP6nPRW0BIhy2w7mWZbpzV16dIlrrnmmjjooIMSxz777LP429/+1uS5a2pq4l//+leinm2txmir1woAAAAAAAAAAAByiUBsKygtTSabFyxYsFxzVlRUJGrFxcXLNWdLSKVS8fvf/z4GDRqUOHb33XdHfX19k+Z96aWXYtasWRm14uLi2HvvvZs030Jt+VoBAAAAAAAAAABArhCIbQXl5eWJ2vz5Td+yua6uLiorKzNqxcXF0b59+ybP2ZIKCgrijDPOSNQnTZoUY8aMadKcjz76aKK2++67R8eOHZs030Jt/VoBAAAAAAAAAABALhCIbQVdunRJ1KZPn97k+bKN7datW5PnWxE233zz6NWrV6I+evToRs9VWVkZL7zwQqI+ePDgprSWwbUCAAAAAAAAAACAlZ9AbCvIFgSdNm1ak+fLNnaVVVZp8nwrymabbZaoTZo0qdHzjBw5MrHraseOHWPrrbducm8LuVYAAAAAAAAAAACw8hOIbQW9e/dO1L766qsmz5dtbP/+/Zs834qSLQg6d+7cRs/z/PPPJ2o77rhjFBUVNamvxblWAAAAAAAAAAAAsPIraO0G2qJ11lknUqlUpNPpRbXPPvusyfNlG7vWWms1eb4lqa6ujokTJ8b48eNj/Pjx0b9//9hmm22aPN/ir3+h9u3bN3qel19+OVHbbbfdmtTTd+XqtQIAAAAAAAAAAIC2RCC2FXTs2DH69u0b48aNW1SbOHFizJgxI7p06dLo+UaPHp2obbjhhsvTYsKTTz4Zp512WtTX1y+q7bzzzssViJ06dWqi1q1bt0bNMWHChJg0aVJGLS8vL7bbbrsm97W4XLxWAAAAAAAAAAAA0NbktXYDbdVWW22VqI0cObLR81RXV8dbb72VUWvXrl1ssskmTe4tm759+2aEYSMi3nrrraiqqmrynKNGjUrU+vXr16g53n777URt/fXXj7Kysqa2lZBr1woAAAAAAAAAAADaGoHYVrLjjjsmak888USj53nxxRdj/vz5GbWtt946ioqKmtxbNmuttVaUlJRk1ObNmxfPPPNMk+Z7++23Y/LkyRm1wsLCRu84+8477yRqW265ZZN6WpJcu1YAAAAAAAAAAADQ1gjEtpIf/OAHUV5enlF7/vnn47PPPmvwHOl0Om699dZE/cADD1ze9hKKiopit912S9RvvfXWxM6xy5JOp+PKK69M1Lfbbrto3759o+YaM2ZMorbRRhs1ao5lybVrBQAAAAAAAAAAAG2NQGwrKSoqiv333z+jVldXF7/5zW+iqqqqQXPcdttt8e6772bUevbsGTvttFNztZnhgAMOSNQ++uijuOuuuxo1z9VXXx1vv/12oj506NBGzVNbWxuffvppor7BBhs0ap5lycVrBQAAAAAAAAAAAG2JQGwrOuaYY6K0tDSj9v7778fpp5++zKDlY489Fn/5y18S9WHDhkVBQcFSx06YMCHWWWedxD8PPfTQUsdtu+22sf322yfql1xySTz11FNLHRvx7S6pV111Vdxwww2JY3vvvXcMHDhwmXMsbty4cVFdXZ1RKy0tjT59+jRqnoZorWsFAAAAAAAAAAAALJtAbCvq2rVrnHLKKYn6M888Ez/96U+z7qI6derU+MMf/hCnn3561NfXZxzbfPPNY/DgwS3Wb0TEueeemwiG1tbWxrBhw+L3v/99TJ48OTEmnU7Hm2++GYccckjWMGz//v3j/PPPb3QvX375ZaLWu3fvSKVSjZ5rWXLxWgEAAAAAAAAAAEBbYXvKVnbkkUfGyJEj48UXX8yof/zxx3HooYdGv379YsCAAVFaWhoTJ06M999/P2pqahLzdO3aNa644ooWCYMurl+/fnHttdfG8ccfn+jj/vvvjwceeCDWW2+9WGONNaK4uDhmzJgRY8aMiWnTpmWdr1u3bnHTTTdFWVlZo3uZNGlS1v5aSq5dKwAAAAAAAAAAAGgrBGJbWSqViiuvvDKOP/74ePPNNxPHx40bF+PGjVvqHF27do3bb789Vl111RbqMtP2228fV199dZx55pkxb968jGPpdDo++uij+Oijj5Y5zwYbbBDXXXdd9OzZs0l9TJkyJVHr0aNHk+ZqiFy8VgAAAAAAAAAAANAW5LV2A0S0b98+br311jj88MMbvWvo5ptvHvfff3+ss846LdRddrvuums8/PDDsckmmzR6bHFxcRx99NFx7733NjkMGxGJMG7EtzvOtqRcvFYAAAAAAAAAAADwfWeH2JVEUVFRnHPOOXHggQfGrbfeGiNGjIjKysqs56ZSqRg0aFAcdthh8aMf/Sjy8lon19ynT5+477774pVXXok777wz3nzzzSX2HBHRr1+/2GWXXeLII49slh1SFyxYkKi1dCA2IjevFQAAAAAAAAAAAHyfpdLpdLq1myCpuro6Ro8eHV988UXMnDkz6uvro6ysLHr06BGDBg2Kzp07t3aLCdXV1fHee+/FxIkTY9asWVFdXR2dO3eOLl26xLrrrhurr756a7fYInLxWn3XzJkVUVtb19pt0EhdurSP/Py8qKurjxkz5rd2OwCwwnkWAtDWeRYC0NZ5FgLQ1nkWAtDWeRbmroKC/OjcubTZ5xWIBQRic5SHOgBtnWchAG2dZyEAbZ1nIQBtnWchAG2dZ2HuaqlArM9vBwAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMKWrsBAJZPKpWKsrKSqK9PR21tfVRV1UQ63dpdAQAAAAAAAAAArDgCsQA5pqgoP9oVF0R+fl7UzpsV1V9/EfXVlZFX2jHa91on2pcWRmVVXSxYUB319ZKxAAAAAAAAAADA959ALEAOKS0tivbti6Pii9Ex463Ho2LsOxHp+kXH80o6RMeBO0XZFntHSXmXmDO3Ompq6lqxYwAAAAAAAAAAgJYnEAuQI0pLi6K0XWF889j1Mff957KeU185L2a/+VjMeWdErDJ4WHRae4uYNbsyamvrs54PAAAAAAAAAADwfZDX2g0AsGyFhfnRvn1xTHvixiWGYReXrq2OqQ9dHgu+GB1lHYtXQIcAAAAAAAAAAACtRyAWIAe0KymIinFjYu77/274oHR9fDP82shLpaK42IbgAAAAAAAAAADA95dALMBKLi8vFcUlRTHn7ccbPbZu/uyY//Hr0a44vwU6AwAAAAAAAAAAWDkIxAKs5EpKCqN2/uyo+OTtJo2fM+qpKCwuivx8b/kAAAAAAAAAAMD3k3QUwEouLy8vqqd+GZGub9L4qq/H/f95Us3YFQAAAAAAAAAAwMpDIBZgJZdKRaSrq5o8Pl1T/f/nEYgFAAAAAAAAAAC+nwRiAVZy6XQ68ko7Nnl8frv2i+YBAAAAAAAAAAD4PhKIBVjJ1dbWR0nPtSKvtKxJ40sHbB7p+vqora1v5s4AAAAAAAAAAABWDgKxACu5ysqaSEdEx413bdL4si32iaqqWjvEAgAAAAAAAAAA31sCsQA5oLKqPjpt8aNIFRY3alxJ3w2juHufWFBZ00KdAQAAAAAAAAAAtD6BWIAcsGBBdeS1K4vu+58ekVfQoDEFnVeLVQ/4dVRVVkdtbX0LdwgAAAAAAAAAANB6BGIBckB9fTpmz62KdmsMitUOOSfyO3ZZ6vklfTeMXkf9OerzimPuvKoV1CUAAAAAAAAAAEDraNg2gwC0utra+pg9pzLKeq0bfU76v6j49K2Y8/ZTUfX1F5GuqYq8dh2idK3NomyLH0XxKn2iqrI65s6tinS6tTsHAAAAAAAAAABoWQKxADmktrY+ZsyqjOLiguiw1mbRfp2tMo6n6+uisqouZs6cH7W19a3UJQAAAAAAAAAAwIolEAuQg6qqaqN9++KIiKirq4958yojnY6ora2zIywAAAAAAAAAANDmCMQCfA9UV9e1dgsAAAAAAAAAAACtJq+1GwAAAAAAAAAAAACA5SEQCwAAAAAAAAAAAEBOE4gFAAAAAAAAAAAAIKcJxAIAAAAAAAAAAACQ0wRiAQAAAAAAAAAAAMhpArEAAAAAAAAAAAAA5DSBWAAAAAAAAAAAAABymkAsAAAAAAAAAAAAADlNIBYAAAAAAAAAAACAnCYQCwAAAAAAAAAAAEBOE4gFAAAAAAAAAAAAIKcJxAIAAAAAAAAAAACQ0wRiAQAAAAAAAAAAAMhpArEAAAAAAAAAAAAA5DSBWAAAAAAAAAAAAABymkAsAAAAAAAAAAAAADlNIBYAAAAAAAAAAACAnCYQCwAAAAAAAAAAAEBOE4gFAAAAAAAAAAAAIKcJxAIAAAAAAAAAAACQ0wRiAQAAAAAAAAAAAMhpArEAAAAAAAAAAAAA5DSBWAAAAAAAAAAAAAByWkFrN0DSpEmTYvjw4TFq1KgYO3ZszJw5M6qrq6NDhw7Ru3fvGDhwYOy2226xzTbbRCqVau12IyJi5MiR8dJLL8W7774bkydPjlmzZkVdXV106tQp+vTpEwMHDoyddtoptt566xbpefLkyfHUU0/Fm2++GZ9//nlMnTp10desvLw8Nthgg9hiiy3iRz/6UXTq1KnZ1v3Pf/4TL774Yrz11lvx1VdfxcyZM6OysjI6deoUnTt3jvXXXz+22GKL2G233aJz587Nti4AAAAAAAAAAADwP6l0Op1u7Sb41vTp0+Oiiy6KJ598Murq6pZ5/oABA+K3v/1tbLvttiugu+yeeuqpuPbaa2Ps2LENOr9v375x4oknxuDBg5slGDtu3Li44oor4plnnon6+vplnl9aWhoHH3xwDBs2LEpKSpq87ujRo+Oqq66KV199tUHnt2vXLg488MA4+eSTmzWQ21xmzqyI2tpl33OsXLp0aR/5+XlRV1cfM2bMb+12AGCF8ywEoK3zLASgrfMsBKCt8ywEoK3zLMxdBQX50blzabPPKxC7khg1alQMHTo0Zs6c2eixRx99dJxxxhmRl5fXAp1lt2DBgvjd734Xjz/+eJPGb7XVVnH55ZfHKqus0uQe7rvvvrj44oujsrKy0WP79+8f1113Xay55pqNHnvHHXfEX/7yl6ipqWn02J49e8aVV14ZgwYNavTYliQQm5s81AFo6zwLAWjrPAsBaOs8CwFo6zwLAWjrPAtzV0sFYldcgpIlevvtt+OYY45pUhg2IuK2226L888/v3mbWoqKioo49thjmxyGjYh44403YsiQIfH11183afyVV14Z5513XpPCsBERn3/+eRx55JExfvz4Ro277rrr4uKLL25SGDYiYtKkSXHEEUfEO++806TxAAAAAAAAAAAAQJIdYlvZ1KlTY7/99otp06Zl1PPy8mLPPfeMvffeO/r16xdFRUUxYcKEGDFiRDz66KNRUVGRmOu8886LIUOGtHjPp59+ejz22GOJenl5eRx44IGx3XbbRa9evaKgoCC++eabGDVqVDzwwAMxbty4xJiBAwfGPffcE4WFhQ1e/4477oiLL744US8qKoof//jHsdtuu0X//v2jsLAwpkyZEiNHjoz77rsvvvnmm8SYddddN/75z39GQUHBMtd94okn4le/+lWinpeXF7vvvnvsueeesc4660T79u1jxowZ8d5778UDDzwQ//3vfxNjysvL46GHHopevXo18FW3LDvE5ia/5QJAW+dZCEBb51kIQFvnWQhAW+dZCEBb51mYu1pqh1iB2FZ2wgknxHPPPZdR69atW1x55ZWx5ZZbZh0zfvz4+NWvfhUffPBBRr1du3bx5JNPRo8ePVqs3xEjRsTJJ5+cqO+1115x4YUXRseOHbOOq6uri+uuuy7++te/Jo6dffbZcdRRRzVo/Q8//DAOOuigxA6t66+/flx55ZXRr1+/rOMWLFgQf/jDH+Khhx5KHDvrrLPi6KOPXuq6FRUVseeee8bUqVMz6quuumpcddVVsemmm2Ydl06n44477ojLLrss6uoyA6d77rlnXHPNNUtdd0URiM1NHuoAtHWehQC0dZ6FALR1noUAtHWehQC0dZ6FuaulArF5zT4jDfbGG28kwrClpaVx0003LTEMGxHRu3fvuOOOO2LdddfNqC9YsCCuvvrqFul1oWwBzj333DOuvPLKJYZhIyLy8/Nj2LBhccIJJySO3XzzzYmA65Kcf/75iXO33HLLuOeee5YYho34Nix88cUXx/777584duedd0Z9ff1S133wwQcTYdiysrK44447lhiGjYhIpVJx1FFHxTnnnJM49vTTT8cnn3yy1HUBAAAAAAAAAACAZROIbUU33XRTojZs2LDYYIMNljm2Q4cOceONN0ZpaWZKevjw4TF58uRm63Fxr776anz66acZtfLy8rjgggsiL69ht9LQoUOjV69eGbXp06fHyJEjlzn2mWeeidGjR2fUevXqFddff320a9euQeufffbZUVZWllGbMmVKvPrqq8tc+7uGDh0a/fv3b9C6Q4YMic033zxRHzFiRIPGAwAAAAAAAAAAAEsmENtKJkyYEK+99lpGrWvXrjFkyJAGz9GjR4844ogjMmq1tbXxz3/+s1l6/K5///vfidqBBx4YnTt3bvAchYWFscceeyTq77///jLH/u1vf0vU/vCHPyQCrkvTqVOnGDx4cKL+1ltvLXXcu+++m/H3vLy82HfffRu8bkTEAf+PvfsOk7I+98d/b192WWApIiAK9ooNJWIXS6IxeCzB6DHGFs3RSBJjSTS2o0HNMdYk9pgYFWKNxoYaa2JEsCDqsaM0QWDpZdv8/uCnX8dngJnZXZY5+3pdl5fs/TyfMoNwO7vv+cxhhyVqr7/+ek5zAAAAAAAAAAAAAEkCse3kiSeeiObm5rTawQcfHOXl5TnN893vfjdRe+SRR1q0t5XJFBr91re+lfM866+/fqI2c+bMVY6ZMmVKjBs3Lq02ZMiQ2G233XJef9999/3y12VlZdGrV6+YP3/+Su+vq6uLhoaGtFptbW1069Ytp3U33XTTRG3WrFk5zQEAAAAAAAAAAAAklbb3Bjqqf/7zn4naPvvsk/M8ffv2jc022yzefffdL2sfffRRTJkyJfr379+iPX7dAw88EJ988kl88MEH8cEHH8TkyZNj8803z3me5cuXJ2rFxavOZmc6nfb73/9+zmtHROy0007x1FNPRW1tbXTu3Hm19y9dujRRa2xszHnd0tLkH7evB20BAAAAAAAAAACA3AnEtoPm5uaYMGFCWq20tDS23XbbvObbYYcd0gKxERHjx49v9UBsaWlpbLTRRrHRRhvFAQcckPc87733XqK23nrrrXLMCy+8kPZ1VVVV7L777nmtX1JSktNz07Vr10Rt/vz5MXPmzOjdu3fW83z00UeJ2jrrrJP1eAAAAAAAAAAAACCzVR/LSZv45JNPYtmyZWm1DTfcMCorK/Oab8stt0zUJk2alNdcbW3+/PkxduzYRH2XXXZZ6ZhUKhVvvvlmWm277baLioqKVt9fJtXV1bH++usn6n/7299ymuehhx5K1Lbffvu89wUAAAAAAAAAAACsIBDbDj744INEbeDAgXnPt8EGGyRqH3/8cd7ztZX6+vo4++yzY9GiRWn1QYMGxTbbbLPScVOmTIn58+en1bbaaqtVrtXQ0BDz5s2L+vr6/Df8FcOGDUvUbrrppqyf58cffzyeeeaZtFpJSUkccsghrbE9AAAAAAAAAAAA6NBK23sDHdG0adMStX79+uU937rrrpvVGu3prbfeigsvvDAmTpyYVi8rK4tf/epXqxybKXT69RBwc3NzvPDCC/H444/HhAkTYsqUKdHc3BwREd26dYtNN900hg0bFgceeGCss846Oe//+9//fowePTqWLl36ZW3hwoVx/PHHx7XXXrvKQO/f/va3jI/x6KOPjgEDBuS8FwAAAAAAAAAAACCdQGw7mD17dqKWT0jzCz179kzUZs2alfd8LdHc3BypVCqWLFkS06ZNizfeeCMee+yx+Pe//x2pVCrt3uLi4vjv//7vGDRo0Crn/PTTTxO1rz5fzz77bFx22WUrPa113rx5MW7cuBg3blxcffXVccIJJ8SJJ54YnTp1yvpx9e3bN84999w477zz0urTp0+PESNGxAEHHBD7779/bLrpplFdXR3z5s2LN998Mx588MEYP358Yr7ddtstzjrrrKzXBwAAAAAAAAAAAFZOILYdzJkzJ1Hr0qVL3vNVV1dHaWlpNDY2fllbsmRJNDQ0RFlZWd7z5uOJJ56In/zkJ6u9r0ePHvHrX/869tprr9XeO3PmzIzjm5qa4tJLL40777wz6/0tXbo0rr/++nj66afjxhtvjN69e2c99ogjjoj6+vr49a9/nfZcNzU1xaOPPhqPPvroaucoKSmJY489Nn72s5+t8d8bAAAAAAAAAAAA+L+quL030BEtWrQoUevcuXOL5qyqqspqnbY2Y8aM1d6zxx57xGOPPZZVGDYioq6uLlErKyuLM888M6cw7Fe98847MWLEiJgyZUpO444++ui477774hvf+EbOax544IHx0EMPxdlnny0MCwAAAAAAAAAAAK3ICbHtoL6+PlGrqKho0Zzl5eVZrdPWpk+fvtp7nn/++Rg+fHj84Ac/iO9973urfewLFixI1G655ZZ45JFH0mpDhw6N4cOHx+DBg6NXr16xdOnS+PTTT+PZZ5+NO++8M+bNm5d2/4wZM+L000+P0aNH5/T8b7755jFy5MiIiPj3v/+d9bgXX3wx1llnnTj55JOje/fuWY9bE7p0qWzvLZCH4uKiL//dvXt1O+8GANY8vRCAjk4vBKCj0wsB6Oj0QgA6Or2QrxOIbQeZgqolJSUtmjPT+MbGxhbNmY/PPvssq/tmzJgRo0aNinvuuSeuvfba2GijjVZ677JlyxK1hx566Mtf19TUxOWXXx7Dhg1Lu6eioiK6desWgwYNimOPPTbOPffcePLJJ9Puefvtt+M3v/lNnHfeeVnte8KECXHFFVfE66+/ntX9X7VgwYK4/fbb44EHHojzzz8/vv3tb+c8R1spKXFYdCErKiqKkpKi9t4GALQbvRCAjk4vBKCj0wsB6Oj0QgA6Or2QLwjEtoOmpqZErS0Csc3NzS2aMx9DhgyJ/fbbLzbeeOOora2NxYsXx5QpU+KFF16IBx98MJYsWZJ2/wcffBBHH3103H333TFw4MCMczY0NKx0vZqamrjrrrti0003XeW+unbtGtdee22cccYZ8eijj6ZdGz16dJxwwgnRp0+fVc5x6623xpVXXpn4/evXr18ceeSRsdtuu0W/fv2iU6dOMXfu3Jg0aVI8/fTT8dBDD6WFk+fPnx9nnHFGTJs2LU4++eRVrrmmNDWt+f9WaLni4qIoKiqKVCoVzc2p9t4OAKxxeiEAHZ1eCEBHpxcC0NHphQB0dHphYWuLQxyLUqmU/xLWsBNOOCFefPHFtNrNN98ce+yxR95z7rbbbvH555+n1Z5//vno3bt33nO2trlz58YFF1wQY8eOTVzbaKON4sEHH4zy8vLEte9///vx8ssvZ5zz+uuvj/322y/rPSxevDiGDx8eU6ZMSaxx7rnnrnTc7bffHqNGjUrUTz755DjttNMy7vsLn3zySfzsZz+LSZMmJa5deeWVa8VJsXV1S6KxMRnUZu3WvXt1lJQUR1NTc8ydu7i9twMAa5xeCEBHpxcC0NHphQB0dHohAB2dXli4SktLora2qtXn9Tnp7aCsrCxR++oJovnIdOpspnXaU/fu3ePaa6+NESNGJK59+OGH8ec//znjuJU9jh133DGnMGxERHV1dfzwhz9M1J9++umVjvnf//3f+M1vfpOoX3DBBfGzn/1slWHYiIgNNtgg7rzzzthll10S1y6++OKYO3duFjsHAAAAAAAAAAAAVkYgth1UVSWTzUuXLm3RnEuWLEnUKioqWjRnWygqKorzzz8/tttuu8S1O++8M5qbmxP1lQVijzzyyLz2MHz48MRzM23atMSpsV+4/PLLE4Hlww47LI466qis16ysrIxrrrkm+vbtm1afP39+3HrrrVnPAwAAAAAAAAAAACQJxLaDbt26JWqLF+d/ZHNTU1MsW7YsrVZRURHV1dV5z9mWSktL48wzz0zUp0+fHpMmTUrUu3TpknGeTCeuZqOioiK23nrrRP3tt99O1D799NN46aWX0mqdOnWKn/3sZzmv27Vr1xg5cmSi/uCDD2Y84RcAAAAAAAAAAADIjkBsO+jevXuiNmfOnLznyzS2Z8+eec+3JgwePDj69euXqE+cODFRq62tTdSqqqqiV69eea+/4YYbJmpz585N1F588cVIpVJptT322CPv5/eggw6Kzp07p9Vmz54d77//fl7zAQAAAAAAAAAAAAKx7SJTEHT27Nl5z5dpbEvComvKjjvumKhNnz49UVt33XUTtUyn7Oaia9euiVpdXV2i9tZbbyVqQ4YMyXvdsrKy2GmnnRL1d955J+85AQAAAAAAAAAAoKMTiG0H/fv3T9Q+/fTTvOfLNDbTCahrm0yh3YULFyZq66+/fqLW0NDQ6vspLk7+cch0+u4666zTonUyBXwzhXEBAAAAAAAAAACA7JS29wY6os022yyKiooilUp9Wfvwww/zni/T2I033jjv+Vamvr4+pk2bFlOmTIkpU6bEhhtuGLvsskve83318X+huro6Udtkk00Stbq6uqivr4/y8vK81p4/f36iVlNTk6jV19cnakVFRXmt+YWqqqpErbGxsUVzAgAAAAAAAAAAQEcmENsOampqYoMNNojJkyd/WZs2bVrMnTs3unfvnvN8EydOTNS23nrrlmwx4bHHHouf/exn0dzc/GVt7733blEgdtasWYlaz549E7X1118/amtr005RbWxsjPfeey/vx5npVN1MJ9HW1tYmajNmzMhrzS9kOg22R48eLZoTAAAAAAAAAAAAOrLkZ8SzRgwZMiRRe+mll3Kep76+Pl555ZW0WqdOnWL77bfPe2+ZbLDBBmlh2IiIV155JZYvX573nBMmTEjUBgwYkPHeTM/Xc889l9e6jY2N8eabbybqW2yxRaKWKaD79ttv57XuF955551ErVevXi2aEwAAAAAAAAAAADoygdh2sueeeyZqjz76aM7zPPfcc7F48eK02je+8Y0oLy/Pe2+ZbLzxxlFZWZlWW7RoUTz55JN5zTd+/PjESatlZWUrPXF2n332SdTuv//+aGpqynntp556KpYsWZJW22KLLTKGX7fbbrtE7Yknnohly5blvG5ExPTp0+N///d/02plZWWtHmAGAAAAAAAAAACAjkQgtp3svvvu0a1bt7TaM888Ex9++GHWc6RSqbj11lsT9cMPP7yl20soLy+PfffdN1G/9dZbEyfHrk4qlYqrrroqUd91112juro645j99tsvampq0mpTp06N++67L6e1m5ubMz5nBx54YMb7d9999ygrK0urLV68OEaPHp3Tul/4wx/+EKlUKq22ww47JB4bAAAAAAAAAAAAkD2B2HZSXl4ehx56aFqtqakpfvGLX8Ty5cuzmuO2226L1157La3Wt2/f2GuvvVprm2kOO+ywRO3tt9+Ov/zlLznNc80118T48eMT9VNPPXWlY6qqqmLEiBGJ+uWXXx6TJ0/Oeu2bb745Jk6cmFarrKyMI444IuP9nTt3jm9961uJ+m9/+9t4//33s143IuLpp5+Oe+65J1E/+uijc5oHAAAAAAAAAAAASCcQ245OPPHEqKqqSqu98cYbccYZZ6w2FPv3v/89/ud//idRHzlyZJSWlq5y7NSpU2OzzTZL/HP//fevctzQoUNjt912S9Qvv/zyePzxx1c5NmLFybBXX311/OEPf0hcO+igg2LQoEGrHH/yySdHbW1tWm3RokVx3HHHZRVOHTNmTFx99dWJ+gknnJCY96tGjhwZ5eXlabXly5fHcccdlzHYm8lTTz0VP//5zxOnw2633XZxwAEHZDUHAAAAAAAAAAAAkJlAbDvq0aNHnH766Yn6k08+GUcccUTGsOWsWbPi4osvjjPOOCOam5vTrg0ePDiGDx/eZvuNiPjVr36VCPE2NjbGyJEj4/zzz48ZM2YkxqRSqRg3blx873vfyxiG3XDDDePCCy9c7dpdunSJSy+9NFGfPn16HHHEEXH99dfHvHnzMl4/88wz4/zzz088ZwMHDoyTTjppleuut9568bOf/SxR//zzz+PYY4+Nyy+/POPjjoj4+OOP4+yzz47TTjstlixZknatc+fOcckll6xybQAAAAAAAAAAAGD1ilJfP7KSNSqVSsXJJ58czz33XMbrAwYMiE022SSqqqpi2rRp8cYbb0RDQ0Pivh49esQDDzwQvXv3Xu2aU6dOjWHDhiXqo0aNikMPPXS141988cU45ZRTMu6jqKgotthiixg4cGBUVFTE3LlzY9KkSTF79uyMc/Xs2TNGjx4d/fv3X+26X7jlllviN7/5TcZrZWVlse2220b//v2joaEhPvnkk5g0aVLiZNaIiJqamhg9enRsvPHGWa17/vnnx5gxYzJeKyoqik033TQ23njj6NSpU8yfPz/ef//9mDx5csb7S0pK4oYbbog99tgjq7XbWl3dkmhsbGrvbZCj7t2ro6SkOJqammPu3MXtvR0AWOP0QgA6Or0QgI5OLwSgo9MLAejo9MLCVVpaErW1Vau/MUcCsWuBxYsXxymnnBLjxo3La3yPHj3ij3/8Y2y22WZZ3d/SQGxExNNPPx1nnXVWLFq0KKe9ftVWW20V119/ffTt2zfnsXfccUeMGjUqmpryC3F269Ytbrnllthmm22yHtPU1BRXXXVV3HLLLRkDtrmsfeWVV8Zuu+2W9xytTSC2MGnqAHR0eiEAHZ1eCEBHpxcC0NHphQB0dHph4WqrQGxxq89Izqqrq+PWW2+NY445JoqKinIaO3jw4BgzZkzWYdjWMmzYsHjggQdi++23z3lsRUVFHH/88XH33XfnFYaNiDjmmGPiL3/5S2y00UY5j911113joYceyikMG7HiVNef//zn8bvf/S7WW2+9nNf9Yu177713rQrDAgAAAAAAAAAAQKErbe8NsEJ5eXmcd955cfjhh8ett94aY8eOjWXLlmW8t6ioKLbbbrv4z//8zzjwwAOjuLh9cs3rr79+jB49Ol588cX405/+FOPGjVvpniMiBgwYEPvss0/84Ac/iN69e7d4/R122CEefvjh+Pvf/x5//etf49VXX43m5uaM95aVlcXQoUPjmGOOid13371F6w4bNiz23HPP+Pvf/x733XdfvP7661FfX7/S+7t16xZDhw6NY489NrbbbrsWrQ0AAAAAAAAAAAAkFaVa8tnvtJn6+vqYOHFifPzxx1FXVxfNzc3RpUuX6NOnT2y33XZRW1vb3ltMqK+vj9dffz2mTZsW8+bNi/r6+qitrY3u3bvH5ptvnvepqtmaP39+vPnmm/HJJ5/EwoULo6ioKGpqamLgwIGx9dZbR01NTZusu2zZsnjjjTfis88+i3nz5sXSpUujpqYmamtrY8CAAbH55pu3W2g5W3V1S6Kxsam9t0GOHPsOQEenFwLQ0emFAHR0eiEAHZ1eCEBHpxcWrtLSkqitrWr1eQViAYHYAqWpA9DR6YUAdHR6IQAdnV4IQEenFwLQ0emFhautArFr97GVAAAAAAAAAAAAALAaArEAAAAAAAAAAAAAFDSBWAAAAAAAAAAAAAAKmkAsAAAAAAAAAAAAAAVNIBYAAAAAAAAAAACAgiYQCwAAAAAAAAAAAEBBE4gFAAAAAAAAAAAAoKAJxAIAAAAAAAAAAABQ0ARiAQAAAAAAAAAAAChoArEAAAAAAAAAAAAAFDSBWAAAAAAAAAAAAAAKmkAsAAAAAAAAAAAAAAVNIBYAAAAAAAAAAACAgiYQCwAAAAAAAAAAAEBBE4gFAAAAAAAAAAAAoKAJxAIAAAAAAAAAAABQ0ARiAQAAAAAAAAAAAChoArEAAAAAAAAAAAAAFDSBWAAAAAAAAAAAAAAKmkAsAAAAAAAAAAAAAAVNIBYAAAAAAAAAAACAgiYQCwAAAAAAAAAAAEBBE4gFAAAAAAAAAAAAoKAJxAIAAAAAAAAAAABQ0ARiAQAAAAAAAAAAAChoArEAAAAAAAAAAAAAFLTS9t4AANkrKSmKysryqCwvjuKS4v+/VhzdulTEsvrmWLasoZ13CAAAAAAAAAAAra+oKKKioiwqK4qjrLz8y3pxNEd1dUUsXVofzc2pdtwh7U0gFqAAFBUVRU3nsqiorIjGhXNj3ouPR/3MydHcWB8llZ2jatOdovOWu0Z1VWksWdoUS5fWt/eWAQAAAAAAAACgVVRVlUenytKIVHMsmvR8zP3g1WhavjiKyyqifN2B0WXHb0an7l2jfnl9LFxUHym52A5JIBZgLVdcXBRdu1REasn8+Oyh38aSD16NSDWn3bP4f1+KOU/dHl13/GZ02/2IKC6OWLxYKBYAAAAAAAAAgMLWuXN5VFaURt1zd8eCV8dG87LFadeXvD8+5v3z/qjeZKfo8c2ToluXqpi/0GmxHZFALMBarKgoomtNeTTPnxnT7/hVNC9ZsNJ7m5csiLoX/hrLZ02O3oeeGalUxJIlQrEAAAAAAAAAABSm6uryqCwvic/G/DqWfvT6ym9sborF7/47lk1/L/oec0l06Vwb8xYsX2P7ZO1Q3N4bAGDlOnUqj6Lmxphx10WrDMN+1ZJ3x8WcJ2+LqqryKC4uauMdAgAAAAAAAABA6yspKY6qqor4/NEbVh2G/YqmhXNjxl0XRUlxKjp1KmvbDbLWEYgFWItVlhfHggmPR9PCuTmNW/Dqk9G0ZGFUVmrsAAAAAAAAAAAUnsrKsmiYPzsWTXw2p3GN82bGwjf+EZXl4pEdjd9xgLVUeXlpFJeWxsLXxuY+uLkxFr76RFRW+GseAAAAAAAAAIDCU1lRHAvGPxoRqZzHLpjwRJSWl0dZWUnrb4y1lqQUwFqqvLwklk97Lxrnf57X+EVvvRAlpWVRWuqvegAAAAAAAAAACkdZWUkUl5TGordeyGt8w+wpsfzzKVFeXtrKO2NtJiUFsJYqKiqKxoVz8x7ftKjuy3kAAAAAAAAAAKBQfJF3aVo0L+85mhbOjeJiuZmORCAWYC1WVNyCv6ZbMhYAAAAAAAAAANpbUcuyM6lUqvX2wlpPWgpgLZVKpaK0tk/e40u7rhMREc3NGjsAAAAAAAAAAIXji7xLWbd18p6jrFtvgdgORiAWYC21fHljVKyzfpSvOzCv8TXbDYvG+vpoampu5Z0BAAAAAAAAAEDbaWxsiqaGhqjZdp+8xlf23zLKuq0Ty5c3tvLOWJsJxAKspRoamqKxvj667PDNnMcWlXeKmkF7x7J6YVgAAAAAAAAAAArPsvrmqNlh/ygqKct5bJfB34qG5fXR2Cg705EIxAKsxZYub46aQXtFRZ+NchrXfc8jo6ikNJYta2ijnQEAAAAAAAAAQNtZtqwhiss7RbfdDstpXGX/LaN68yGxdHlTG+2MtZVALMBabNmyhqhvaI51j/xVlPcekNWYbrsdHl13/nYsXFQfqVTb7g8AAAAAAAAAANpCc3MqFi2uj9rdjoiuO387qzEVfTeJ3iN+EcvrG2P58sY23iFrm9L23gAAq7Zw0fLoUlMRfY/9dcz71/2x8LWnomnxvMR9FettHt12OSSqNhkcCxcu09QBAAAAAAAAAChoy5Y1RFFRRI/9jouKfpvG/JcfjuXT30/cV1LTPbpsv3903eWQaGhMxcKFy9tht7S3olTK+YHQ0dXVLYnGRkeEr+2qq8ujsrwkioqLYvG746J+5seRaqyP4k41Ub3pkCjvtV40LK+PJcsao77e7ycA//d1714dJSXF0dTUHHPnLm7v7QDAGqcXAtDR6YUAdHR6IQAdSXl5aVRVlkRZRXksnzk5lrz/SjQvWxxFZRVR0WejqNp4cDQ3N8Wy5c2xZEl9e2+X1SgtLYna2qrWn7fVZwSgTSxeXB+LF0dUVJRG5cAdomqTwVFUFJFKpWJ5Q0Rd3eJobGxu720CAAAAAAAAAECrqq9vjPr6xigtbYxOXfpE552+EyUlxSsuFhXFwkXLfZoyUdzeGwAgN8uXN8b8hfWRKiqJopKySBWVxqJFy4VhAQAAAAAAAAD4P62xsSkWLqqPeQtWZGeKS8siFcXCsESEQCwAAAAAAAAAAAAABU4gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUtNL23gBJ06dPj4cffjgmTJgQH3zwQdTV1UV9fX107tw5+vfvH4MGDYp99903dtlllygqKmrv7UZExEsvvRTPP/98vPbaazFjxoyYN29eNDU1RdeuXWP99dePQYMGxV577RXf+MY32mTPM2bMiMcffzzGjRsXH330UcyaNevL56xbt26x1VZbxU477RQHHnhgdO3atVXX/vDDD2Ps2LExfvz4+Pjjj7/8/erSpUv06NEjttlmmxgyZEgccMAB0alTp1ZdGwAAAAAAAAAAAIgoSqVSqfbeBCvMmTMnfv3rX8djjz0WTU1Nq71/k002iV/+8pcxdOjQNbC7zB5//PG47rrr4oMPPsjq/g022CD+67/+K4YPH94qwdjJkyfHb3/723jyySejubl5tfdXVVXFkUceGSNHjozKysoWrT1p0qS48sor41//+ldW93fr1i2OP/74OPHEE6OkpKRFa7e2urol0di4+v/mWLt0714dJSXF0dTUHHPnLm7v7QDAGqcXAtDR6YUAdHR6IQAdnV4IQEenFxau0tKSqK2tavV5BWLXEhMmTIhTTz016urqch57/PHHx5lnnhnFxcVtsLPMli5dGueee2488sgjeY0fMmRIXHnlldGrV6+89zB69OgYNWpULFu2LOexG264YVx//fWx0UYb5Tw2lUrF7373u/j973+fVXD567bffvu47rrrWvTYW5tAbGHS1AHo6PRCADo6vRCAjk4vBKCj0wsB6Oj0wsLVVoHYNZegZKXGjx8fJ554Yl5h2IiI2267LS688MLW3dQqLFmyJH74wx/mHYaNiHj55ZfjqKOOipkzZ+Y1/qqrrooLLrggrzBsRMRHH30UP/jBD2LKlCk5jWtubo6zzz47rrvuurzCsBERr732Whx33HF5/34DAAAAAAAAAAAA6UrbewMd3axZs2LkyJGxZMmStHpxcXEccMABcdBBB8WAAQOivLw8pk6dGmPHjo2HHnoocf+YMWNi8803j6OOOqrN9/yrX/0qxo0bl6h369YtDj/88Nh1112jX79+UVpaGp9//nlMmDAh/vrXv8bkyZPT7v/000/jtNNOi7vuuivKysqyXv/222+PG264IVEvLy+Pgw8+OPbdd9/YcMMNo6ysLD777LN46aWXYvTo0fH555+n3T9r1qw47bTT4r777ovS0uz+KIwaNSr+9re/JeqdO3eOQw89NPbcc89Yf/31o6ioKKZPnx4vvPBCjBkzJhYsWJB2//vvvx/nnHNO3HjjjVk/bgAAAAAAAAAAACCzolQqlWrvTXRkP/rRj+If//hHWq1nz55x1VVXxc4775xxzJQpU+KnP/1pvPnmm2n1Tp06xWOPPRZ9+vRps/2OHTs2fvzjHyfq3/zmN+OSSy6JmpqajOOampri+uuvj9///veJa+ecc04cd9xxWa3/1ltvxYgRI6KhoSGtvuWWW8ZVV10VAwYMyDhu6dKlcfHFF8f999+fuHb22WfH8ccfv9q1//GPf8SPfvSjRH3XXXeNyy+/PHr16pVxXF1dXZx55pnxwgsvJK5de+21ccABB6x27bZWV7ckGhvzO/GW9uPYdwA6Or0QgI5OLwSgo9MLAejo9EIAOjq9sHCVlpZEbW1Vq89b3OozkrWXX345EYatqqqKm266aaVh2IiI/v37x+233x6bb755Wn3p0qVxzTXXtMlev3DttdcmagcccEBcddVVKw3DRkSUlJTEyJEjMwZKb7755kTAdWUuvPDCxL0777xz3HXXXSsNw0asCAuPGjUqDj300MS1P/3pT9Hc3LzKdZcvXx4XX3xxon7QQQfFzTffvNIwbEREbW1t3HjjjbHLLrskrv3xj39c5boAAAAAAAAAAADA6gnEtqObbropURs5cmRstdVWqx3buXPnuOGGG6KqKj0l/fDDD8eMGTNabY9f9c9//jPef//9tFq3bt3ioosuiuLi7P5TOvXUU6Nfv35ptTlz5sRLL7202rFPPvlkTJw4Ma3Wr1+/+N3vfhedOnXKav1zzjknunTpklb77LPP4p///Ocqx919992J53WbbbaJyy67LEpKSla7bklJSVx00UVRWlqaVn/ttdfio48+ymrvAAAAAAAAAAAAQGYCse1k6tSp8a9//Sut1qNHjzjqqKOynqNPnz5x7LHHptUaGxvjvvvua5U9ft3TTz+dqB1++OFRW1ub9RxlZWWx//77J+pvvPHGasf++c9/TtQuvvjiRMB1Vbp27RrDhw9P1F955ZWVjkmlUvGXv/wlrVZaWhqXXXZZlJeXZ732BhtsELvvvntOawMAAAAAAAAAAACrJxDbTp544olobm5Oqx188ME5BSwjIr773e8mao888kiL9rYymYKb3/rWt3KeZ/3110/UZs6cucoxU6ZMiXHjxqXVhgwZErvttlvO6++7775f/rqsrCx69eoV8+fPX+n9L7/8ckyZMiWt9p3vfCc23njjnNfeb7/9vvx1RUVF9O7dO+bMmZPzPAAAAAAAAAAAAMD/U7r6W2gL//znPxO1ffbZJ+d5+vbtG5tttlm8++67X9Y++uijmDJlSvTv379Fe/y6Bx54ID755JP44IMP4oMPPojJkyfH5ptvnvM8y5cvT9SKi1edzc50Ou33v//9nNeOiNhpp53iqaeeitra2ujcufNq72/NtQ866KD4xje+EbW1tVFVVZXXHAAAAAAAAAAAAEA6gdh20NzcHBMmTEirlZaWxrbbbpvXfDvssENaIDYiYvz48a0eiC0tLY2NNtooNtpoozjggAPynue9995L1NZbb71VjnnhhRfSvq6qqordd989r/VLSkpyem6+vvYGG2wQW2yxRV5rV1ZWRr9+/fIaCwAAAAAAAAAAAGS26mM5aROffPJJLFu2LK224YYbRmVlZV7zbbnllonapEmT8pqrrc2fPz/Gjh2bqO+yyy4rHZNKpeLNN99Mq2233XZRUVHR6vv7ugULFsTkyZPTajvvvHObrwsAAAAAAAAAAABkTyC2HXzwwQeJ2sCBA/Oeb4MNNkjUPv7447znayv19fVx9tlnx6JFi9LqgwYNim222Wal46ZMmRLz589Pq2211VarXKuhoSHmzZsX9fX1+W84It56661IpVI5rV1fXx91dXXR2NjYorUBAAAAAAAAAACA7JS29wY6omnTpiVq/fr1y3u+ddddN6s12tNbb70VF154YUycODGtXlZWFr/61a9WOTZTuPfrIeDm5uZ44YUX4vHHH48JEybElClTorm5OSIiunXrFptuumkMGzYsDjzwwFhnnXWy3vdHH32UqA0YMCDt64aGhnjyySfjqaeeitdeey2mT58eERFFRUXRvXv32GqrrWLfffeNb37zm9G1a9es1wYAAAAAAAAAAACyIxDbDmbPnp2o5RLS/LqePXsmarNmzcp7vpZobm6OVCoVS5YsiWnTpsUbb7wRjz32WPz73/9OnLRaXFwc//3f/x2DBg1a5ZyffvppovbV5+vZZ5+Nyy67bKWn4s6bNy/GjRsX48aNi6uvvjpOOOGEOPHEE6NTp06rfTxTpkxZ5doPPvhg/Pa3v42ZM2cm7kulUjFnzpx4/vnn4/nnn4/f/va3ceqpp8ZRRx0VpaX+6AEAAAAAAAAAAEBrkcprB3PmzEnUunTpkvd81dXVUVpaGo2NjV/WlixZEg0NDVFWVpb3vPl44okn4ic/+clq7+vRo0f8+te/jr322mu192YKm/bo0SOampri0ksvjTvvvDPr/S1dujSuv/76ePrpp+PGG2+M3r1757x29+7dY8mSJXHOOefEE088kfXa8+bNi0svvTSeeeaZuO6666Jz585ZjwUAAAAAAAAAAABWrri9N9ARLVq0KFFraTiyqqoqq3Xa2owZM1Z7zx577BGPPfZYVmHYiIi6urpEraysLM4888ycwrBf9c4778SIESMyngC7urVTqVScfPLJOYVhv+pf//pXfO9734v58+fnNR4AAAAAAAAAAABI54TYdlBfX5+oVVRUtGjO8vLyrNZpa9OnT1/tPc8//3wMHz48fvCDH8T3vve91T72BQsWJGq33HJLPPLII2m1oUOHxvDhw2Pw4MHRq1evWLp0aXz66afx7LPPxp133hnz5s1Lu3/GjBlx+umnx+jRo1e6h0xrjxo1KsaNG5dW23///ePb3/52bLvtttG9e/dYtGhRfPTRR/HUU0/FmDFjYsmSJWn3v/fee3HmmWfGjTfeGEVFRat8/GtCly6V7b0F8lBcXPTlv7t3r27n3QDAmqcXAtDR6YUAdHR6IQAdnV4IQEenF/J1ArHtIFNQtaSkpEVzZhrf2NjYojnz8dlnn2V134wZM2LUqFFxzz33xLXXXhsbbbTRSu9dtmxZovbQQw99+euampq4/PLLY9iwYWn3VFRURLdu3WLQoEFx7LHHxrnnnhtPPvlk2j1vv/12/OY3v4nzzjsvr7V79+4dV199deywww5p93Tv3j26d+8egwcPjuOOOy5+8pOfxKuvvpp2z3PPPRe33357HHfccSt55GtOSYnDogtZUVFRlJS0f7AaANqLXghAR6cXAtDR6YUAdHR6IQAdnV7IFwRi20FTU1Oi1haB2Obm5hbNmY8hQ4bEfvvtFxtvvHHU1tbG4sWLY8qUKfHCCy/Egw8+mDgp9YMPPoijjz467r777hg4cGDGORsaGla6Xk1NTdx1112x6aabrnJfXbt2jWuvvTbOOOOMePTRR9OujR49Ok444YTo06dPTmv37ds3Ro8eHb17917l2r17944//vGPceKJJ8Yrr7ySdu3GG2+MESNGRFVV1SrnaGtNTWv+vxVarri4KIqKiiKVSkVzc6q9twMAa5xeCEBHpxcC0NHphQB0dHohAB2dXljY2uIQR4HYdlBWVpaotfQ010zBzfLy8hbNmY9jjjkmUdtkk01in332iR//+MdxwQUXxNixY9Ou19XVxamnnhoPPvhgxj2vKtg7atSo1YZhv1BcXByXXHJJvPnmmzFlypQv6w0NDXHbbbfFueeem/XaJSUlcc0116w2DPuFysrKuPLKK+Pb3/52LFiw4Mt6XV1d/PWvf40f/OAHWc3TVhYsWBaNjcmgNmu37t2ro6SkKJqbUzF37uL23g4ArHF6IQAdnV4IQEenFwLQ0emFAHR0emHhKi0tidra1j9E0uekt4O2CMRmOnU20zrtqXv37nHttdfGiBEjEtc+/PDD+POf/5xx3Moex4477hj77bdfTnuorq6OH/7wh4n6008/nfH+0tLMmfGDDjooBg0alNPavXv3jqOOOirrtQEAAAAAAAAAAIDsCMS2g6qqZLJ56dKlLZpzyZIliVpFRUWL5mwLRUVFcf7558d2222XuHbnnXdmPJF1ZYHYI488Mq89DB8+PPHcTJs2Le3U2C+s7JTdfNc+4ogjErXXX389li1bltd8AAAAAAAAAAAAgEBsu+jWrVuitnhx/kc2NzU1JQKVFRUVUV1dnfecbam0tDTOPPPMRH369OkxadKkRL1Lly4Z59lll13yWr+ioiK23nrrRP3tt9/Oau2qqqrYdttt81p7vfXWi3XXXTetVl9fHx988EFe8wEAAAAAAAAAAAACse2ie/fuidqcOXPyni/T2J49e+Y935owePDg6NevX6I+ceLERK22tjZRq6qqil69euW9/oYbbpiozZ07N6u111tvvSgtLW3ztQEAAAAAAAAAAIDsCMS2g0xB0NmzZ+c9X6axLQmLrik77rhjojZ9+vRE7esnqkZkPmU3F127dk3U6urqslo709i2WBsAAAAAAAAAAADIjkBsO+jfv3+i9umnn+Y9X6axmU4hXdtkCu0uXLgwUVt//fUTtYaGhlbfT3Fx8o9DprUbGxvXyNoAAAAAAAAAAABAdvL/3Hfyttlmm0VRUVGkUqkvax9++GHe82Uau/HGG+c938rU19fHtGnTYsqUKTFlypTYcMMNY5dddsl7vq8+/i9UV1cnaptsskmiVldXF/X19VFeXp7X2vPnz0/Uampqslp75syZea2Z69qwMkVFRVFRURJFRV98HVFcXBTNzck/U7kqKyuJ0tLiL/+OampKRX1964fAAQAAAAAAAAAAWpNAbDuoqamJDTbYICZPnvxlbdq0aTF37tzo3r17zvNNnDgxUdt6661bssWExx57LH72s59Fc3Pzl7W99967RYHYWbNmJWo9e/ZM1NZff/2ora2Nurq6L2uNjY3x3nvv5f04M52qm+k02G222SaKi4vTHveMGTPy/r3KZW34utLS4uhUWRYVFaWRam6K5sXzojnVHMWdaqJHj86xfNnyWLa8Kerrm3Kat6gooqKiLDpVFEdpeXk0LV0UzfVLo6i0PEq61ERzU2ksr2+OpUsbWiV0CwAAAAAAAAAA0NoEYtvJkCFD0gKxEREvvfRSHHTQQTnNU19fH6+88kparVOnTrH99tu3dItpNthgg7RQaETEK6+8EsuXL4+Kioq85pwwYUKiNmDAgIz3DhkyJB5//PG02nPPPZdXILaxsTHefPPNRH2LLbZI1Dp37hxbbbVV2v2pVCqef/75OOSQQ3Jee9asWTF16tS0WlVVVWywwQY5z0XHUlVVHtXVFbF81qcx+x9/j0VvvRiphuUrLhYVR9UmO0aXwQdG14GDYvmy+liwcHlW85aUFEWXmoooLopY9OZzseDVx6P+s4//3/Wa7tFl+/2iZodvRqfa6liwsN6JsQAAAAAAAAAAwFqnuL030FHtueeeidqjjz6a8zzPPfdcLF68OK32jW98I8rLy/PeWyYbb7xxVFZWptUWLVoUTz75ZF7zjR8/PmbMmJFWKysrW+mJs/vss0+idv/990dTU24nYUZEPPXUU7FkyZK02hZbbJHxdNqVrX3vvffmvG5ExMMPP5yoDR06NEpKSvKaj46huro8qjqVxqyHrotpN/80Fr7+9P8Lw0ZEpJpjyXuvxGd3XRTTbv9llKbqo2uX1QfVS0qKoluXymic/WlMuf7kmP3oH9LCsBERTQvnRt3zY+LTa0+KhW88E126VEZ5ufdSAAAAAAAAAAAAaxeB2Hay++67R7du3dJqzzzzTHz44YdZz5FKpeLWW29N1A8//PCWbi+hvLw89t1330T91ltvTZwcuzqpVCquuuqqRH3XXXeN6urqjGP222+/qKmpSatNnTo17rvvvpzWbm5uzvicHXjggSsdc8ghhyQCq6+88kq8+OKLOa29dOnS+Mtf/pLT2lBZWRadOpXHrPt/G4vefHa19y+f9m5Mv+O8KC1qjs7Vqw7Gd+lcHg2zp8SMO86PpsXzVz1xc2PMfvQPsfC1sdGlpjxKSrQPAAAAAAAAAABg7SHR1E7Ky8vj0EMPTas1NTXFL37xi1i+PLuPOr/tttvitddeS6v17ds39tprr9baZprDDjssUXv77bczhjxX5Zprronx48cn6qeeeupKx1RVVcWIESMS9csvvzwmT56c9do333xzTJw4Ma1WWVkZRxxxxErH9O3bN/bff/9E/bzzzou5c+dmvfaoUaNi+vTpabXevXtnnBu+0KmyOBa8+kQsfvffWY9p+HxKzBl7a1RWlkVRUVHGeyoqSqOkrDRm3nN5pBqWZT337MdviYb5n0enTmVZjwEAAAAAAAAAAGhrArHt6MQTT4yqqqq02htvvBFnnHHGakOxf//73+N//ud/EvWRI0dGaemqP8586tSpsdlmmyX+uf/++1c5bujQobHbbrsl6pdffnk8/vjjqxwbseJk2Kuvvjr+8Ic/JK4ddNBBMWjQoFWOP/nkk6O2tjattmjRojjuuOPi/fffX+36Y8aMiauvvjpRP+GEExLzft3PfvazKC9PP21zxowZcdxxx8Vnn3222rWvvvrqGDNmTKI+cuTIKCsTLCSz8vKSKC0rjwWvPJrz2EVvvRjN9ctWGlytrCiJJe+Nj8YFn+c2cao5FrzyaFSUl8RKsrYAAAAAAAAAAABrnEBsO+rRo0ecfvrpifqTTz4ZRxxxRMZTVGfNmhUXX3xxnHHGGdHc3Jx2bfDgwTF8+PA2229ExK9+9atEiLexsTFGjhwZ559/fsyYMSMxJpVKxbhx4+J73/texjDshhtuGBdeeOFq1+7SpUtceumlifr06dPjiCOOiOuvvz7mzZuX8fqZZ54Z559/fuI5GzhwYJx00kmrXXv99dePs846K1H/3//93xg+fHjccccdsXjx4sT1Dz74IE488cSMj3vnnXdOnBIMX1VZURpLP3k7GuZMy3lsqrE+Fr72ZFSWJ/+aLykpjvKK8lgw/rG89rVo4jMRqeaoqBDmBgAAAAAAAAAA1g5FqVQq1d6b6MhSqVScfPLJ8dxzz2W8PmDAgNhkk02iqqoqpk2bFm+88UY0NDQk7uvRo0c88MAD0bt379WuOXXq1Bg2bFiiPmrUqKwCmi+++GKccsopGfdRVFQUW2yxRQwcODAqKipi7ty5MWnSpJg9e3bGuXr27BmjR4+O/v37r3bdL9xyyy3xm9/8JuO1srKy2HbbbaN///7R0NAQn3zySUyaNCky/WdeU1MTo0ePjo033jjrtS+66KK46667Ml6rqqqKbbfdNvr06RNLly6NDz/8MN57772M96677rpx7733Rq9evbJeuy3V1S2Jxsam9t4GX1PbpTwWjvtb1D2fPF04G1WbDI51v/uL+PzzhWn18vLS6Nq1U3x02YiIpsa85u57/G+iuet6sXjxqk+zBoC21L17dZSUFEdTU3PMnZt8cxIA/F+nFwLQ0emFAHR0eiEAHZ1eWLhKS0uitrZq9TfmOm+rz0hOioqK4qqrropTTjklxo0bl7g+efLkmDx58irn6NGjR/zxj3/MKgzbGnbbbbe45ppr4qyzzopFixalXUulUvH222/H22+/vdp5ttpqq7j++uujb9++Oa1/4oknRkVFRYwaNSqamtJDnA0NDTF+/PiMp+t+Vbdu3eKWW27JKQwbEXH++edHdXV13HzzzYlrS5YsiZdeemm1c6y33npx++23rzVhWNZeRUVF0bx8ad7jm+uXfTnPV0PhRUURqaamvMOwERHNyxdHUVHewwEAAAAAAAAAAFpV8rO0WeOqq6vj1ltvjWOOOSaKckyYDR48OMaMGRObbbZZG+0us2HDhsUDDzwQ22+/fc5jKyoq4vjjj4+777475zDsF4455pj4y1/+EhtttFHOY3fdddd46KGHYptttsl5bFFRUfz85z+PP/zhD7HuuuvmPP7b3/52PPDAAzmdiEvHlUqloriiU97ji8srv5wnfd6IopKSiJL83xNRXFEdzhcHAAAAAAAAAADWFk6IXUuUl5fHeeedF4cffnjceuutMXbs2Fi2bFnGe4uKimK77baL//zP/4wDDzwwiovbJ9e8/vrrx+jRo+PFF1+MP/3pTzFu3LiV7jkiYsCAAbHPPvvED37wg1Y5zXaHHXaIhx9+OP7+97/HX//613j11Vejubk5471lZWUxdOjQOOaYY2L33Xdv8dr77LNP7LrrrnHvvffGfffdF2+99dZK762srIy99947jj/++Bg0aFCL16bjaEoVReX6W0fEmLzGV/bfMpoaGpLzNq34c9Kp/5axdPLEnOctrqiK8l79Y/HSptXfDAAAAAAAAAAAsAYUpb5+dCBrhfr6+pg4cWJ8/PHHUVdXF83NzdGlS5fo06dPbLfddlFbW9veW0yor6+P119/PaZNmxbz5s2L+vr6qK2tje7du8fmm28e6623XpuuP3/+/HjzzTfjk08+iYULF0ZRUVHU1NTEwIEDY+utt46ampo2W3v27NkxadKkmDJlSixatChKSkqia9eusdFGG8VWW20VnTrlf8rnmlBXtyQaG4Ub1zbl5SXRtWtVTLnh9GiYMy2nsUWl5bH+yFtjWVNJLFlSn7jetUtFNEx+PWbee3nO++qy00HRfdixMbduiVNiAWhX3btXR0lJcTQ1NcfcuYvbezsAsMbphQB0dHohAB2dXghAR6cXFq7S0pKora1q9XkFYgGB2LVYbbfKWDzx6Zjz+M05javZdp/oeeCPYs7cJZHpr/mKitKoqamIKb/7r2ic/3n2ExcVx3o/ui6aKrvHokXLc9oTALQ2L3AB6Oj0QgA6Or0QgI5OLwSgo9MLC1dbBWKLW31GAFrN0mVN0WWHA6J6s29kPaas1/rRY/8TYtmyhoxh2IiI5csbo6mhMXoffnYUlVVmPXfPb54YZV17xdKlDVmPAQAAAAAAAAAAaGsCsQBrsWXLGmLp0vpY59CfRedBe6/2/op+m0XfY/47GlPFsWhx/SrvXbCoPsp69o8+x1wcJdXdVj1xcWn0PPBHUbP9/rFgYX00NTXn8CgAAAAAAAAAAADaVml7bwCAVVu8uD5SqYh1Dj4tug75Tix45ZFY9NYLkWpYvuKGouKo2mRwdBl8YFQN3CaWL6uPBQuWr3bepqZUzFuwLLr0XD/6n3ZDLJr0XCyY8HjUf/bxl/eU1HSPLtvvHzU7HBAlnapjwYJlUV/f2FYPFQAAAAAAAAAAIC9FqZV9njbQYdTVLYnGxqb23garUVpaHJWVZVFZURqp5qZoXrYoork5ijt1juKyili+rD6WLW+M+vrcfi+LiiIqKsqiU0VxlJaXR9PSRdFcvzSKSiuipKpzNDc1xbLlzbFsWUM0N2sZAKw9unevjpKS4mhqao65cxe393YAYI3TCwHo6PRCADo6vRCAjk4vLFylpSVRW1vV+vO2+owAtInGxuZYtGh5LF5cH+XlJdG5c9coLi6O5ubmmDNnUd5h1VQqYtmyhli2LKKsrDFKS0ujqLRLpFKpaFqw3ImwAAAAAAAAAADAWk8gFqDApFKpWL68MaqrK/7/r6PVTm5taGiKhganBQMAAAAAAAAAAIWluL03AAAAAAAAAAAAAAAtIRALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQStt7A0D7KymRjS90paUl7b0FAGhXeiEAHZ1eCEBHpxcC0NHphQB0dHphYWmrvFpRKpVKtcnMAAAAAAAAAAAAALAGOBYSAAAAAAAAAAAAgIImEAsAAAAAAAAAAABAQROIBQAAAAAAAAAAAKCgCcQCAAAAAAAAAAAAUNAEYgEAAAAAAAAAAAAoaAKxAAAAAAAAAAAAABQ0gVgAAAAAAAAAAAAACppALAAAAAAAAAAAAAAFTSAWAAAAAAAAAAAAgIImEAsAAAAAAAAAAABAQROIBQAAAAAAAAAAAKCgCcQCAAAAAAAAAAAAUNAEYgEAAAAAAAAAAAAoaAKxAAAAAAAAAAAAABQ0gVgAAAAAAAAAAAAACppALAAAAAAAAAAAAAAFTSAWAAAAAAAAAAAAgIImEAsAAAAAAAAAAABAQROIBQAAAAAAAAAAAKCgCcQCAAAAAAAAAAAAUNAEYgEAAAAAAAAAAAAoaAKxAAAAAAAAAAAAABQ0gVgAAAAAAAAAAAAACppALAAAAAAAAAAAAAAFTSAWAAAAAAAAAAAAgIImEAsAAAAAAAAAAABAQROIBQAAAAAAAAAAAKCglbb3BgDWJtOnT4+HH344JkyYEB988EHU1dVFfX19dO7cOfr37x+DBg2KfffdN3bZZZcoKipq7+1GRMSiRYvikUceiXHjxsWkSZOirq4uFi9eHJWVlbHuuuvG5ptvHnvttVfsv//+UVFR0aprz507Nx5++OEYP358vPPOOzFv3rxYunRpVFVVRb9+/WLLLbeMffbZJ/bee+8oKSlp1bUBaBt6YW4mTJgQ//73v+PVV1+NqVOnxrx582LRokVRXV0d3bp1i969e8fgwYNjyJAhMWTIkLXmOQNg5fTC1vXYY4/FT37yk7Tau+++u0b3AEBu9MLczZgxIx5//PEYN25cfPTRRzFr1qwvn7Nu3brFVlttFTvttFMceOCB0bVr11ZfH4DWpRfmZvLkyfHMM8/Eyy+/HB9//HHMmzcvFi9e/GUf3GyzzWLnnXeOYcOGxbrrrtuqawPQNgqxF67Kr3/96/jTn/4UERH9+vWLf/zjH606v+zM2qUolUql2nsTAO1tzpw58etf/zoee+yxaGpqWu39m2yySfzyl7+MoUOHroHdZdbQ0BA33HBD/PGPf4zFixev9v7u3bvHqaeeGkcddVQUF7fsgPDFixfHVVddFWPGjIn6+vrV3t+vX78444wz4qCDDmrRugC0Hb0wNw8++GDceuut8d5772U9ZsMNN4yTTjop/uM//qMgvjkA0NHoha1v5syZ8Z3vfCfmzZuXVheIBVg76YW5mzx5cvz2t7+NJ598Mpqbm1d7f1VVVRx55JExcuTIqKysbPH6ALQuvTA3H3/8cVx99dUxduzYrPpgWVlZfPvb346RI0dGnz59WrQ2AG2jEHvh6rz99tvx3e9+NxoaGiKidQOxsjNrJ4FYoMObMGFCnHrqqVFXV5fz2OOPPz7OPPPMNfKDxK/6/PPP44c//GG8/fbbOY8dOnRoXH311XmfRPDhhx/GSSedFNOmTct57MEHHxyXXnrpGj+RCIBV0wuzN3v27PjlL38Zzz33XM5jv7DHHnvEFVdcEbW1tXnPAUDr0gtbXyqVihNPPDFefPHFxDWBWIC1j16Yu9GjR8eoUaNi2bJlOY/dcMMN4/rrr4+NNtoo7/UBaF16YW4effTROPfcc2PJkiU5j+3WrVtcdtllsffee+e1NgBtoxB74eosXLgwDj/88Jg8efKXtdYKxMrOrL0EYoEObfz48XHSSSfl9WLtCyNGjIiLL764FXe1arNnz46jjz46rWHnauutt44//elP0blz55zGffjhh3HMMcfEnDlz8l57r732it/97ndRWlqa9xwAtB69MPteOHfu3Pje977XonW/sP7668fo0aOjR48eLZ4LgJbRC3N7XZitO+64Iy655JKM1wRiAdYuemHuvfCqq66KG264Ie+1IyLWWWeduOuuu6J///4tmgeAltMLc+uFDzzwQJxzzjl5rxsRUVxcHFdffXUccMABLZoHgNZRiL1wderr6+OEE06IcePGpdVbIxArO7N2E4gFOqxZs2bFf/zHf8Ts2bPT6sXFxXHAAQfEQQcdFAMGDIjy8vKYOnVqjB07Nh566KGM/wNwwQUXxFFHHdXme25qaorjjjsuXn755cS17bffPg477LDYcssto2vXrvHZZ5/Fyy+/HPfcc0/MmDEjcf+3vvWtuPrqq7Nee8mSJXH44YfHhx9+mLi2++67xyGHHBIbb7xxVFdXx4wZM+LZZ5+N+++/P+O7h0488cQ488wzs14bgLahF2bfC+vr6+PII4+Mt956K3Gturo6DjnkkBg6dGisv/76UVNTEwsWLIiPP/44nnvuufj73/+e8WNSBg0aFHfccYePyQRoR3phbq8Ls/Xhhx/GoYceutIT8wRiAdYeemHuvfD222+PUaNGJerl5eVx8MEHx7777hsbbrhhlJWVxWeffRYvvfRSjB49Oj7//PPEmM033zzuu+8+PwAFaEd6YW69cMKECXHsscd++bHTXzV06NA4+OCDY6uttoouXbrE/Pnz480334y//e1v8corryTuLy8vj7vuuiu22WabrNcHoPUVYi9cneXLl8dpp50Wzz//fOJaSwOxsjNrP4FYoMP60Y9+lGhyPXv2jKuuuip23nnnjGOmTJkSP/3pT+PNN99Mq3fq1Ckee+yx6NOnT5vtNyLzN1tLSkri3HPPjaOPPjrjmCVLlsRFF10UDz74YOLaddddF/vvv39Wa19yySVxxx13pNWqqqrisssuW+m7N+fOnRtnnXVWvPDCC2n14uLi+Otf/+oFLkA70wuz74U33XRTXHnllYn6t771rbjwwgujW7duKx07Y8aM+PnPfx7jx49PXPvxj38cp5122mrXB6Bt6IW5vS7MRkNDQ4wYMSLjm0i+IBALsPbQC3PrhW+99VaMGDEiEQLacsst46qrrooBAwZkHLd06dK4+OKL4/77709cO/vss+P444/Pan0AWp9emH0vbG5ujsMOOyzefvvttHpNTU1cfvnlMWzYsJWOffjhh+NXv/pVLF26NK2+zTbbxD333BNFRUWrXR+AtlGIvXBV5s2bFz/+8Y8TJ8N+oaWBWNmZtV9xe28AoD28/PLLiQZXVVUVN91000obekRE//794/bbb4/NN988rb506dK45ppr2mSvX5g/f378/ve/T9QvuOCClb64jVjxuC6//PI4/PDDE9euuOKKaGpqWu3akydPjtGjR6fVSkpKVvtRJt27d48bbrghdtttt7R6c3NzXHHFFatdF4C2oxeukE0vnDdvXsaPwhwxYkRcffXVqwzDRkT06dMnbr/99kQ/jIi49dZbE++4BWDN0AtXyPZ1Ybauv/76VYZhAVh76IUr5NILL7zwwkQYduedd4677rprpWHYiBU/FB41alQceuihiWt/+tOform5Oav1AWhdeuEK2fbCZ555JhGGLSsrixtuuGGVYdiIiIMPPjiuvvrqRPD1zTffjOeee261awPQNgqxF67Ke++9F0ccccRKw7AtJTtTGARigQ7ppptuStRGjhwZW2211WrHdu7cOW644YaoqqpKqz/88MMZP2qktYwZMybmz5+fVhs2bFiMGDEiq/EXXXRRbL311mm1KVOmxGOPPbbasbfddlviG71HH3107LnnnqsdW1paGtdcc03iHUDjxo2L1157LYudA9AW9MIVsumFjz/+eCxevDittskmm8SvfvWrrNaNWPGN4d/+9reJ8OySJUti7NixWc8DQOvRC1fI9nVhNl599dW4+eabW2UuANqeXrhCtr3wySefjIkTJ6bV+vXrF7/73e+iU6dOWa1/zjnnRJcuXdJqn332Wfzzn//MajwArUsvXCHbXvjUU08lat/73vdi8ODBWa291157xXe+851E/YknnshqPACtrxB7YSapVCr+/Oc/x+GHHx6ffvppm60jO1MYBGKBDmfq1Knxr3/9K63Wo0ePOOqoo7Keo0+fPnHsscem1RobG+O+++5rlT1+XSqVir/+9a+Jei4fsVxaWho///nPE/VM837V4sWL4+9//3taraysLE4++eSs1+7cuXOceuqpOa8NQNvQC9Otrh89+uijidrJJ58cZWVlWa8dEdG1a9f4/ve/n6g/88wzOc0DQMvphela47XZ4sWL46yzzko7VWiPPfaIfv36tXhuAFqfXpgum1745z//OVG7+OKLEwHXVenatWsMHz48UX/llVeyngOA1qEXpsumF7766quJWqbTz1flsMMOS9Ref/31nOYAoHUUYi/M5J133okjjzwyLr300li+fHnatdLS0lZbR3amcAjEAh3OE088kfgIqoMPPjjKy8tzmue73/1uovbII4+0aG8rM2nSpJgyZUpabcstt4wtt9wyp3l22WWX6N+/f1pt3LhxMWvWrJWOeeGFFxKn4u21117Rs2fPnNY++OCDE+8MGjt2bOLdMwC0Pb0w+17Y3Nwcb7zxRlqtpKQk9t5775zW/UKmcZMnT85rLgDypxfm9rowG5deemna/rp16xaXXnppi+YEoO3ohbn1wilTpiQ+cnPIkCGJj7vMxr777vvlr8vKyqJXr16Jk/4AaHt6Ye6vCzNdHzhwYE5rb7rpplnNC0DbK8Re+FWffPJJnHnmmXHooYdmfHNF586d4/e//32rrSc7UzgEYoEOJ9PHT+2zzz45z9O3b9/YbLPN0mofffRR4oVoa2itPUesaMhflUql4vnnn2/ztSsrK+Mb3/hGWm3RokUxfvz4nOcCoGX0wr3Svl5VL5w6dWosW7YsrTZw4MDo3LlzXmuvt956idrs2bPzmguA/OmFe6V9vbrXhavz1FNPJU59uOCCC2KdddbJe04A2pZeuFfa16vrhU8//XSilukTQLKx0047xVNPPRUTJkyISZMmxYsvvhgXXXRRXnMBkD+9cK+0r7N5Xfj175NGrDgFMBeZPnVLAAigfRRiL/yq8847Lx566KFEqDciYosttoh777039txzz1ZbT3amcAjEAh1Kc3NzTJgwIa1WWloa2267bV7z7bDDDolaWzSpTB+ZteOOO+Y1V6Y9f/05+aqvn3ywJtcGoPXphbn1o6KiojjmmGPigAMOiO233z769esXvXv3zmvdiMj4ory42MsygDVJL2zd12azZ8+OX/3qV2m1b3/723HggQfmNR8AbU8vzL0XvvDCC2lfV1VVxe67757X2iUlJdG/f/+832gJQMvphfm9LuzSpUui9t577+W07kcffZSoeTMlwJpXqL1wdcrLy+O0006Le+65J+dTzFdHdqZw+Mkr0KF88skniXcvbrjhhlFZWZnXfJk+gmTSpEl5zbUq7777bqK2xRZb5DVXLntevnx54l071dXVscEGG7T52gC0Db0wtz33798/zjvvvLj22mtj9OjR8Y9//CNuu+22vNaNiIzvhm1JwBaA3OmFrbvnc889N+bOnfvl1+uss06cf/75ec0FwJqhF+a251QqFW+++WZabbvttouKioq81gag/emF+e0501p/+9vfclo30/3bb799TnMA0HKF2gtXZd99942HH344fvzjH2c8kbwlZGcKi0As0KF88MEHiVpL3hWSqbl9/PHHec+Xyfz58+Pzzz9Pq9XW1kZtbW1e86233npRWlqaVps8eXKkUqnEvR9++GE0NTWl1db25wuAVdMLc+uFre3rpwpFtOz5ByB3emHr9cK77747nn322bTar3/96+jatWte+wJgzdALc+uFU6ZMifnz56fVttpqq1XO39DQEPPmzYv6+vq89gdA29IL83tdOGzYsETt3nvvzfpEu1dffTXGjBmTqB966KFZjQeg9RRiL1yZnXfeOe6+++743e9+FwMGDGiTNWRnCotALNChTJs2LVHr169f3vOtu+66Wa3REpnm69u3b97zlZaWRo8ePdJq9fX1MWvWrKzWbsnz1bt37ygqKkqrTZ8+PePHRwPQNvTC3Hpha2psbIx77703Uc/0jWQA2o5e2Dq9cPLkyXHFFVek1b73ve/l/fHRAKw5emFuvTDTDyW//sPL5ubmeO655+IXv/hF7L///jFo0KAYMmRIbLPNNjFkyJA45phj4vbbb2/z150AZEcvzO914X/8x39Er1690mqNjY3xox/9KJ5//vlVrvfiiy/GKaecEg0NDWn1ffbZJ3bZZZccdw9ASxViL/y6/fffPx544IG44447YocddmjTtWRnCotALNChzJ49O1FbZ5118p6vZ8+eiVprf1OztfcckXnfX39XaVusXVZWljgpqL6+PnHCAgBtRy9cIdte2Jr++te/Jl4wl5WVxd57792m6wKQTi9coSW9sLGxMc4666xYsmTJl7UBAwbEWWed1aI9AbBm6IUrZNsLP/3001Wu/eyzz8aBBx4YP/zhD+P++++PTz75JO2HmPPmzYtx48bFqFGjYv/994/rrrsuli5d2qK9A9AyeuEKub4u7Ny5c4waNSpKSkrS6vPnz4+TTjopTjrppHjwwQfjvffei88++yzef//9ePjhh+OUU06JE044IfHzwM033zzxRksA1oxC7IVfd8wxx8SWW27Zpmt8QXamsJSu/haA/zvmzJmTqHXp0iXv+aqrq6O0tDQaGxu/rC1ZsiQaGhqirKws73m/KtOeW/rxk5ke84IFC7JauyXP1xfj582bl1g73490ASA3euEK2fbC1vLZZ5/FlVdemagfdthheiDAGqYXrtCSXnjDDTfEG2+88eXXJSUlcdlll0VVVVWL9gTAmqEXrpBtL5w5c2ai1qNHj2hqaopLL7007rzzzqzXXLp0aVx//fXx9NNPx4033hi9e/fObdMAtAq9cIV8Xhfuvvvucc011yTeJBkR8fzzz6/2pNgvDB8+PC644IKorq7OfsMAtJpC7IXtSXamsDghFuhQFi1alKh17ty5RXNm+oFfpnXy1RZ7zvTicuHChWvV2gC0Db1whTXZj+rr6+OnP/1p4nF07do1Tj/99DZZE4CV0wtXyLcXTpw4Mf7whz+k1U466aTYfvvtW7QfANYcvXCFbHthXV1dolZWVhZnnnlmTmHYr3rnnXdixIgRMWXKlLzGA9AyeuEK+b4u3G+//eKhhx6K/fffP4qLc4uc7LrrrjFmzJi44oorhGEB2lEh9sL2tDb1YVbPCbFAh1JfX5+oVVRUtGjO8vLyrNbJV6a5Mq2Zi2z3XIjPFwCrVoh/t7dnL2ypVCoVv/zlL+PVV19NXLvggguiR48erb4mAKumF658/Or2vHTp0jjzzDPTTnrYYost4rTTTmvRXgBYs/TClY/PtE6mk/JuueWWeOSRR9JqQ4cOjeHDh8fgwYOjV69esXTp0vj000/j2WefjTvvvDNx8s+MGTPi9NNPj9GjR7f4+QcgN3rhysdnu+f+/fvHqaeeGqWlpfHoo49mvearr74a99xzT/Tq1Sv69euX9TgAWlch9sL25PkqLE6IBTqUTM2jpKSkRXNmGv/VHw62VKY9l5a27P0M2e65EJ8vAFatEP9ub89e2FIXX3xxPPzww4n60UcfHQcddFCrrwfA6umFK+Sz58suuywmT5785dfl5eVxxRVX/J/42DOAjkQvXCHbPS9btixRe+ihh778dU1NTfz+97+PP/7xj3HIIYfEeuutFxUVFdGtW7cYNGhQnH766TF27NjYb7/9EvO8/fbb8Zvf/KZFjwOA3OmFK+S75/fffz9OOumkGD58eE5h2IgVb7S8995748ADD4zbb789p7EAtJ5C7IXtyfNVWARigQ6lqakpUWuLJtXc3NyiOb8q055z/fiRr8t2z4X4fAGwaoX4d3t79sJ8pVKpuPDCC+Ouu+5KXNtzzz3jl7/8ZautBUBu9MIVct3zc889F6NHj06r/eQnP4lNN920RfsAYM3TC1fIds8NDQ0rnaOmpibuuuuuGDZs2CrX6tq1a1x77bVx4IEHJq6NHj06ZsyYkcWOAWgteuEK+ez5oYceisMPPzyef/75tHptbW3813/9V4wZMyZeeumlePPNN+P555+P2267LY455pjo1KlT2v3Lli2LUaNGxQUXXNCixwBAfgqxF7Ynz1dhEYgFOpRMp9a09B0Wmb4h2tKPKPmqTHvO1GxzkekxZ9pzWzxf2a4NQNvQC1doy37U2NgYZ511Vtx9992JazvvvHNce+21LT69AYD86YUr5NIL586dG+eee25abfDgwXHccce1aA8AtA+9cIVse+GqfiA5atSorN8cUlxcHJdcckn0798/rd7Q0BC33XZbVnMA0Dr0whVy/R7p2LFj4+yzz06cnn7ooYfGU089FSNHjoztttsuunfvHuXl5dG7d+/Ydddd47zzzosnn3wydt9998Sco0ePjptuuqlFjwOA3BViL2xPsjOFRSAW6FDaokllerHZmh8XuaYaa6Z12nNtANqGXrjy8a2x58WLF8cpp5yS9vGZX9h1113jpptuisrKyhavA0D+9MKVj1/Zns8///z4/PPPv/y6qqoqLrvsshafRgRA+9ALVz4+2++RRkTsuOOOsd9+++W0ZnV1dfzwhz9M1J9++umc5gGgZfTClY9f2Z5nzpwZv/jFLxJvFDnxxBNj1KhR0blz51Wu1atXr7jxxhtj+PDhiWvXXnttfPjhhznsHICWKsRe2J7auw+TG9+1BjqUqqqqRG3p0qUtmnPJkiWJWkVFRYvm/KpMe860Zi6y3XMhPl8ArFoh/t3enr0wFzNnzoz//M//jBdeeCFxbd99940bbrgh8dFgAKx5euHKx2fa87333htPPvlkWu2Xv/xl4nQ7AAqHXrjy8Zn2vLIfSB555JF5rTt8+PDEOtOmTYspU6bkNR8AudMLVz5+ZXu+7rrrYtGiRWm1oUOHxhlnnJH1eiUlJXHJJZfE1ltvnVZvaGiI6667Lut5AGi5QuyF7cnzVVgEYoEOpVu3bona4sWL856vqakp8bEgFRUVUV1dnfecX9fae17Z+O7du69VawPQNvTClY9vST9666234ogjjoi33347cW3EiBFx7bXX+pgTgLWEXrjy8V/vhVOmTIlf//rXabW99947jjjiiBatDUD70gtXPj7T68IuXbpkHL/LLrvktW5FRUUiCBQRGV9PAtA29MKVj8/UCxctWhSPPPJIWq2oqCjOPvvsnD85pLy8PM4555xE/amnnop58+blNBcA+SvEXtieCuFnlfw/ArFAh5KpecyZMyfv+TKN7dmzZ97zZZJpz3Pnzm3RnJn23aNHj6zWbsnzFZHce3FxcdTW1rZoTgCypxeukG0vzMYTTzwRRx99dMycOTNx7fTTT4+LL744SkpK8pobgNanF66wul7Y3NwcZ599dto3Zmtra+O///u/W7QuAO1PL1wh29eFmb53WVVVFb169cp77Q033DBRa+njASB7euEK2fbCCRMmJE6x22qrrWLzzTfPa92ddtop0QsbGhpiwoQJec0HQO4KsRe2J9mZwlLa3hsAWJP69euXqM2ePTvv+TKNbck3QjNp7T1nGl9UVJTxf0Zae+358+dHfX19Wq1Hjx5CQgBrkF6YefzKeuHq3HTTTfHb3/42UqlUWr28vDxGjRoV3/72t1u0TwBan16YefzXe+H06dMTP4ysq6uL3XbbrUXrRkRsttlmidqoUaPi0EMPbfHcAKyeXph5/MpeF6677rqJWqbTgXLRtWvXRK2urq5FcwKQPb0w8/iV9cK33norUdt5551btPbQoUPjo48+Squ98847MWzYsBbNC0B2CrEXtifZmcIiEAt0KP3790/UPv3007znyzQ207v7W6JPnz5RVlYWDQ0NX9amTJkSqVQqioqKcp5v7ty5sWjRorRa3759o7KyMnHv+uuvn6i19vM1cODAvOcDIHd6YW69cGWam5vjoosuitGjRyeu1dbWxu9+97vYcccdc94bAG1PL2ydXghA4dILW/490q/uo7Xk+pHTAORPL8ytF2Y6ibZ37945r/lVmd5w4s0hAGtOIfbC9iQ7U1i8ugY6lM022yzxovDDDz/Me75MYzfeeOO858ukuLg4Ntlkk7Ta0qVLY/r06XnN9/V3W0ZEYv4vrLvuuonTDj799NO8v+Gb6fla2doAtA29MLdemElDQ0P85Cc/yRiG3WSTTeKee+4RhgVYi+mFLe+FABQ2vTC3XpipXldXlzjNJxfz589P1GpqavKeD4Dc6IW59cLly5cnavmEcL+qqqoqUWuLN5wAkFkh9sL2JDtTWARigQ6lpqYmNthgg7TatGnTMr6zMRsTJ05M1Lbeeuu85lqVbbbZJlF7880385rrjTfeSNRWteevX2toaIj//d//zWvtNfV8AbByemHuvfCr6uvrY+TIkfHEE08kru22224xevTojO+qBWDtoRe2rBcCUPj0wtx64frrrx+1tbVptcbGxnjvvffyWjsi82lAmU4cAqBt6IW59cKv98GIiBkzZuS17hcynQbbs2fPFs0JQPYKtRe2J9mZwiEQC3Q4Q4YMSdReeumlnOepr6+PV155Ja3WqVOn2H777fPe28pk2vO//vWvvObKNG7o0KE5rZ3P8xUR8c9//jNR23XXXfOaC4D86YW59cIvNDc3x1lnnRVPP/104trhhx8eN954Y3Tu3DmvPQGwZumFq++Fffr0iRdffLHF/2T6GMxM9x144IF5PRYA8qMXtvx7pM8991xeazc2NmYML22xxRZ5zQdAfvTC7HthpqDqW2+9lde6X3jnnXcStV69erVoTgByU4i9sD3JzhQOgVigw9lzzz0TtUcffTTneZ577rlYvHhxWu0b3/hGlJeX5723ldl1112jpKQkrfbUU0/l/LFcs2fPjpdffjmt1q1bt9h2221XOmaPPfZI1PJ5vt5+++2YPHlyWm3TTTeN3r175zwXAC2jF+bWC79wxRVXxGOPPZaon3LKKXHppZdGaWlpTnsBoP3ohavvhSUlJdGrV68W//P1PUdExvsqKytzehwAtIxemNvrwn322SdRu//++6OpqSmntSNW7HnJkiVptS222MKpeABrmF6YfS/cbrvtErVXXnkl71NilyxZEv/+978T9Z122imv+QDITyH2wvYkO1M4BGKBDmf33XePbt26pdWeeeaZ+PDDD7OeI5VKxa233pqoH3744S3dXkbdunVLNNc5c+bEgw8+mNM8t99+ezQ0NKTVvvOd76wywLP55pvHpptumlZ75513Mr5jZVVuvvnmRO2www7LaQ4AWodemFsvjFjxgvaPf/xjov6jH/0ofvrTn+a0BwDan16Yey8E4P8WvTC3XrjffvtFTU1NWm3q1Klx33335bR2c3NzxufMSekAa55emH0v3GabbRKnt67ssWfjz3/+cyxatCittt5668XGG2+c13wA5KcQe2F7kp0pHAKxQIdTXl4ehx56aFqtqakpfvGLX8Ty5cuzmuO2226L1157La3Wt2/f2GuvvVprmwlHHnlkonbllVfGJ598ktX4CRMmxO23355WKy4uzjhvNmtfcMEFMXfu3KzWfuyxxxLvjKmqqopDDjkkq/EAtC698P/Jphd+/vnnceGFFybq3/72t+MnP/lJVmsDsHbRC/+fbF8XAvB/i174/2TTC6uqqmLEiBGJ+uWXX5442WdVbr755pg4cWJarbKyMo444ois5wCgdeiF/8/qemFRUVHGYNNf/vKX+Ne//pXVul+YOHFi/P73v0/Ujz766JzmAaDlCrUXtifZmcIgEAt0SCeeeGJUVVWl1d54440444wzVtvY//73v8f//M//JOojR45c7Yk6U6dOjc022yzxz/3337/aPe+1116xzTbbpNXmzZsXP/zhD+Ozzz5b5dj33nsvTj311MS7PQ855JDYaKONVrv2EUccEX369EmrTZkyJf7rv/4r5s+fv8qx//73v+Occ85J1E844YTEu40AWHP0whWy6YX/8z//k+h3/fv3j4svvni1ewZg7aUXrpDt60IA/u/RC1fItheefPLJUVtbm1ZbtGhRHHfccfH++++vdvyYMWPi6quvTtRPOOGExLwArBl64QrZ9MITTzwxunfvnlZLpVLx4x//OJ544onV7jtiRRj35JNPTjy3/fr1i//8z//Mag4AWlch9sL2JDtTGARigQ6pR48ecfrppyfqTz75ZBxxxBExfvz4xLVZs2bFxRdfHGeccUY0NzenXRs8eHAMHz68zfb7hfPPPz/xPw6TJ0+O4cOHx9/+9rfEC9ilS5fGX/7yl/jud78bdXV1addqa2uz/ojn8vLy+OUvf5mov/baa/Ef//Ef8cwzzySekwULFsT1118fxx9/fCxbtizt2oABA+KEE07Iam0A2oZemF0v/Oijj+Khhx5K1KdMmRI77LBDxhfr+fwzderUPJ8RAPKlF+b2uhCA/3v0wtx6YZcuXeLSSy9N1KdPnx5HHHFEXH/99TFv3ryM188888w4//zzE8/ZwIED46STTspqfQBan16YfS/s3LlzXHjhhVFUVJRWX7RoUZx++unxi1/8YqUfsf3ZZ5/FpZdeGscee2ziBL3S0tK49NJLo7y8fLV7AKD1FWovbC+yM4WhKJVKpdp7EwDtIZVKxcknnxzPPfdcxusDBgyITTbZJKqqqmLatGnxxhtvJF5ARqz4H4QHHnggevfuvdo1p06dGsOGDUvUR40alTiKfmVuuummuPLKKzNe69GjR2y99dbRo0ePmDVrVkycODEWLFiQuK+4uDhuuumm2H333bNa8wsXXHBBjB49OuO1Pn36xBZbbBFdu3aNGTNmxOuvv55o5hErPgJszJgxsfnmm+e0NgCtTy9cfS+85JJL4o477shqXy3x9NNPx3rrrdfm6wCQTi/M/XVhrvbZZ5+YNm1aWu3dd99t0zUByJ5emHsvvOWWW+I3v/lNxmtlZWWx7bbbRv/+/aOhoSE++eSTmDRpUmT6UVxNTU2MHj06Nt5445zWB6B16YW59cIbb7wxfvvb3670+oABA2KzzTaLmpqaWLhwYUyePHmVrwH/+7//O7773e9mvT4Ara9Qe2G2Nttss7Sv+/XrF//4xz9aNKfszNpt1ecTA/wfVlRUFFdddVWccsopMW7cuMT1yZMnx+TJk1c5R48ePeKPf/xjVg29tfzwhz+Murq6uO222xLX5syZs9L/SflCaWlpXHbZZXn90PP888+PhQsXxiOPPJK4NmPGjJgxY8Yqx1dVVcUf/vAHDR1gLaEXrr4XtvQFMQBrN72wbcOwAKz99MLce+GJJ54YFRUVMWrUqGhqakq71tDQEOPHj894itJXdevWLW655RZhWIC1gF6YWy88+eSTo7KyMn7zm99kDENl83xFrAgBXXTRRXHIIYfktD4Ara9Qe2F7kp1ZuxW39wYA2lN1dXXceuutccwxxyQ+4mN1Bg8eHGPGjEm8m2RNOPvss+OSSy6JqqqqnMb17ds3brnlljj44IPzWrekpCSuvPLK+OlPfxplZWU5jd10003jrrvuim984xt5rQ1A29ALV27mzJmJE+0A+L9HLwSgo9MLc3fMMcfEX/7yl9hoo41yHrvrrrvGQw89FNtss03e6wPQuvTC3Bx77LHxpz/9Ke/HPGjQoLj77ruFYQHWIoXaC9uL7MzaTSAW6PDKy8vjvPPOiwcffDC+853vRGVl5UrvLSoqiu233z6uvPLKuOOOO6J///5rcKfpjjjiiHjqqafixBNPjJ49e67y3v79+8eZZ54ZDz/8cOyyyy4tWreoqChOOeWUeOyxx+LII4+MmpqaVd6/6aabxoUXXhj33XdfbLHFFi1aG4C2oRdmNmvWrNbYJgAFQC8EoKPTC3O3ww47xMMPPxxXXHFFDB48OIqLV/4jt7Kysthzzz3jlltuidtuu63DnJoEUEj0wtzsuOOO8be//S1+97vfxR577LHaUG51dXXsvffecfPNN8c999wTW265ZYvWB6D1FWovbC+yM2uvolQqlWrvTQCsTerr62PixInx8ccfR11dXTQ3N0eXLl2iT58+sd1220VtbW17bzEhlUrFu+++G++++258/vnnUV9fH507d46ePXvGNtts06b/89HY2Bhvv/12fPDBBzF79uxoamqKmpqaWGeddWLbbbf1zV2AAqQXAtDR6YUAdHR6Ye7mz58fb775ZnzyySexcOHCKCoqipqamhg4cGBsvfXWq/3hKABrF70wNw0NDTFp0qSYNm1a1NXVxaJFi6Jz585RW1sb6623Xmy99dZRWlraZusD0PoKsRe2J9mZtYdALAAAAAAAAAAAAAAFbeWf3wIAAAAAAAAAAAAABUAgFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAFrd/fffH5tttlnin+uuu669t5aXl19+OePjOeecc9p7awAAAACEQCwAAAAAAAAAAAAABU4gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEErbe8NAAAAAAAdR2NjYzz77LPxj3/8I955552YNm1aLF68OCoqKqJr164xcODA2GabbWLYsGExaNCgNttHc3NzvP/++/HWW2/Fxx9/HJ999lksWLAgli1bFs3NzVFeXh7V1dWxzjrrRP/+/WPLLbeMbbfdNsrLy9tsT1946qmn4p577ok33ngjFi1aFN26dYstttgi9thjjzjkkEOipqYm5zlnzZoVkyZNinfffTdmzJgRs2fPjmXLlkV9fX2UlZVFZWVl9OjRI9Zdd93YfPPNY9ttt41evXq1waPLbObMmfH888/HO++8E9OnT4/FixdHeXl5dOnSJQYOHBjbbrtt7LLLLlk//01NTfHaa6/FuHHj4oMPPoh58+ZFU1NTdO3aNXr06BHbbrttDBkyJPr06dPGj2zt8tFHH8Vbb70VH374YcycOTPq6upi2bJl0dTUFOXl5VFVVRU9e/aM9dZbL7bYYovYbrvtoqqqqr23vVqvv/56PPHEE/H666/HJ598EgsXLoyioqLo2rVr9O3bN7bZZpsYOnRo7LHHHlFaumZ+LLJ8+fJ49tln45///Ge89dZbMXXq1Fi8eHEUFRVFdXV1rLfeerHpppvGbrvtFnvuuWdUV1e32V6mTZsWb775ZnzwwQcxY8aMmDNnTixfvjwaGhqivLw8Kisro2fPntG3b98vf9+7du3aZvsBAAAAaCtFqVQq1d6bAAAAAAAK2znnnBMPPPBAWm2XXXaJ22+//cuvx44dG5dffnlMnTo1qzk32WSTOO200+Kb3/xmq+1z/Pjxce+998azzz4bdXV1OY2tqqqKffbZJ77//e/Htttum/Pa999/f/ziF79Iq/Xs2TP++c9/RkTE4sWL4+c//3n84x//WOUeTjjhhDjppJOioqJilevNnDkz7rnnnhg7dmy8++67Oe21qKgoBg0aFP9fe3cen+Od73/8nU0WSUTQGEsjthBLqyg6NN2N1liiTRlbS2o6DlWjLapa1BzTYzR6PCxT06Lp0SqSODRDj2V4jH1NrBMlkUgTQRCJRNbfH33wq97XfedeJem8nv/5fq/v5/pc7uu6/7i9fa/o6GgNGDDAriBweHi4ydgXX3yhHj163P3zwYMHtWzZMu3evVtV/VQdGBio0aNHa+zYsfL19TU85vbt21q1apXi4uKUm5trsZ6bm5ueeuop/cd//Ic6dOhgxRXVTqdPn9Y333yj7du3Kycnx6a1derUUe/evTV8+HD17t3b5nMb3fOSNGHCBE2cONHmtR4eHjp16tTdP//rX//S7NmzdfjwYav6adiwoUaPHq3Ro0dX+fwY2b9/v0aNGmUyPnjwYP35z3+W9ONzvGLFCn3xxRe6ceOGVXUDAgI0dOhQvf766/L397e5LyMXLlzQmjVrtG3bNqWnp9u01tPTU926ddOwYcP03HPPyd2dlw0CAAAAAIDagV8xAAAAAAAAALhUWVmZPvjgA02cONHqMKwknT17VpMmTdKoUaOqDDdW5fDhw3rxxRc1fPhwJSQk2ByGlaRbt25p06ZNio6O1sSJE5WXl+dQTz9VWlqqCRMmWAzD3ulh0aJFSklJMXtMXl6eZs+eraeeekqLFi2yOQwrSZWVlUpOTtaMGTPUr18/7dmzx+YalhQUFOidd97RiBEj9M9//rPKMKwk5efna9GiRYqKilJaWprJ/JEjR9S/f38tWLDAqvulsrJS27ZtU3R0tOLi4uy6jposNTVVY8eO1aBBg7R69Wqbw7CSVFJSou3bt2vs2LEaOXKkMjMzXdCpfdavX68hQ4ZYHYaVpCtXrmjBggXq16+fjh075vSeDh48qN/+9rdatGiR1WFYSbp586aWL1+uF154weKzbY2srCxNnjxZffv21WeffWZzGFb68Tt73759mjRpkgYPHqyTJ0861BMAAAAAAMD9QiAWAAAAAAAAgMtUVFRoypQp+vrrr+2usX//fkVFRdkVyqqsrNQnn3yi4cOH6/jx43b38HPfffedhgwZ4rSA4MKFC60OnbZo0ULdu3c3nDt8+LAGDBig1atXq6yszCm9Xbx4UWPHjtXatWudUu/SpUuKjo7Whg0b7Fp//vx5jRo1StnZ2XfHNmzYoFGjRikjI8PmemVlZZo7d+49uxnXdl999ZWioqL0z3/+02k1Dxw4oKioKJ04ccJpNe0VFxend999V6WlpXatz8rK0ogRI0x2tXbEunXr9MorrygrK8vuGjk5ORo5cqQOHTpk1/qtW7dqwIABSkpKsipkbo0zZ85o6NCh2rlzp1PqAQAAAAAAuBKBWAAAAAAAAAAuM3/+fG3evNlwzsfHRy1atFBERISCg4Mt1rl8+bLGjh2rc+fO2XT+uXPnasmSJU4Lh/3UDz/8oLffftvh2kePHtXnn39u9fFDhgwxHD906JDGjh2ry5cvO9SPkYqKCs2ePVupqakO1cnPz9eoUaNs/hx/Ljc3V++++64kKSkpSdOmTbM7HHnHX/7yF6eGpqvL559/rlmzZjn892EkPz9fb775poqLi51e21rbtm3Tn/70J8M5T09PNWnSRB07dlTjxo3l4eFhtk5paaneffddJSUlOdzT3r179d577xmG0N3c3NS8eXN17txZbdu2Vb169SzWKi4u1htvvKHr16/b1ENSUpImTpyogoICm9ZZo6SkRG+99ZauXLni9NoAAAAAAADO5FndDQAAAAAAAAD4ZTp16pT27t1rMv7oo49q9OjReuKJJ+Tp+f9/okxLS1NiYqJWrlxpGLi7du2axo8fr8TERPn6+lZ5/sTERH355Zdm53v27KnnnntO7du314MPPqi6devKy8tLBQUFunr1qk6dOqU9e/Zo8+bNunXrlmGNo0ePat26dXrppZeq7MdIRUWF5syZo4qKCquO9/T01KBBg0zG8/LyNGnSJBUVFRmua9q0qZ5//nl1795dLVu2VP369eXr66uioiLdvHlT586d07Fjx/S///u/unDhgmGN0tJSzZo1S6tXr7b6+n7uT3/60z07u0pSw4YN9eKLLyoyMlKtW7eWr6+vbty4oZMnT2r9+vXasmWLYa09e/Zo5cqVio2Nvefvz9PTUy+88IKefvppderUSQ0aNFBhYaEyMzO1ceNGxcfHq7Cw0PD6li5dqiVLlth9fdXtwIEDmj9/vtn5Tp06qV+/furUqZNCQ0MVEBAgb29vFRYW6tq1azpz5owOHjyojRs3mg1kZmZmatmyZXrzzTddcxEWVFRUaNq0aSYh9AcffFBjxoxR//79FRAQcHc8Ly9Pf//73/Xpp58qJyfHsN7UqVPVpk0btWnTxu6+jGo/9NBDGjlypJ588kn5+/vfHa+srNSZM2cUFxenxMRElZeXm6y9evWqlixZcjf0XZXz589r+vTpZr9HWrdurX79+umRRx5RWFiYAgIC7j7/169fV2pqqo4cOaINGzYoNzfXsEZ+fr4++ugji/cXAAAAAABAdXOrdMXWCAAAAAAAAAD+rUybNq3K1497eXlpxowZGjp0qNzc3Mwed+HCBU2ePFknT540nB85cqTee+89i+cqKCjQ008/bRjqe+CBBxQbG6tu3bpZrHFHfn6+5s2bp/j4eMP5Ll266Ouvv66yTnx8vKZPn27xGDc3N/Xv318vv/yy2rdvrzp16igrK0v79u3T2rVrFRISoqVLl5qsmzlzpr755hvDehMmTNC4ceNUp06dKnusrKxUYmKi/vM//1P5+fmGx2zevFlhYWFV1goPD7c47+bmpldeeUVvvPGG/Pz8zB6XkJCg6dOnW7UTb+fOnTV//ny1aNHC7DEZGRkaN26c0tLSTObc3d21detWNW3atMpz1TQVFRV64YUXdP78eZM5f39//fnPf9azzz5rVa3bt2/rk08+0YoVKwxDliEhIdq5c6fF51gyf89PmDBBEydOtGvtzw0dOlRTp061eA8VFBRozpw52rBhg+F8RESE1q1bZ3FHWUnav3+/Ro0aZfGYgIAAzZw5UwMHDqyy9127dmnSpEmGgfvAwEDt3r3bqud2zJgx2r17t8m4l5eX3nvvPUVHR8vdveoXBpaXl2vFihX65JNPVFJSYjJfp04d7d27956ALwAAAAAAQE1S9S8gAAAAAAAAAOAgLy8vLVq0SMOGDasyRBcaGqpVq1apc+fOhvNfffWVMjMzLdZYvXq1YRjW399fX375pdVhWOnHYNq8efM0cuRIw/ljx47p0qVLVtczx8PDQ7GxsfrLX/6i7t27y9/fX3Xq1FFYWJiGDRum+Ph4zZs3z2RdTk6O2bDulClTNGHCBKtCddKPIdXBgwfrb3/7m7y8vAyP+e6776y/KAs++OADTZs2zWKQUZIGDx6sqKioKuv16dNHX375pcUwrPTjbqLLly83/DupqKjQ/v37qzxXTbR582bDMKynp6eWL19udRhWkry9vfXOO+9o6tSphvOXLl3SsWPH7G3VaV5//XXNnj27ynvI399fH330kYYOHWo4f+rUKW3atMnhfurVq6e4uDirwrCS9Pjjj2vmzJmGc/n5+Tp48GCVNZKTkw3DsJL0X//1Xxo6dKhVYVjpx++gmJgYffzxx4bzJSUl+sc//mFVLQAAAAAAgOpAIBYAAAAAAACAy33wwQd68sknrT4+ICBAS5cuVVBQkMlcWVmZli9fbnH9+vXrDcffeusthYaGWt3HT02ePFn16tUzGa+srDS7m60tZs6cqX79+lk8xujvIzExUWVlZSbjDz/8sGJiYuzq5aGHHtKgQYMM506cOGFXzZ+KiorSsGHDrD7+tddeszjfpEkTLViwQN7e3lbVa968uaKjow3nakLQ0x7r1q0zHH/11Vf1yCOP2FVz1KhRZgPGzrgPHDFgwABNnjzZ6uPd3Nw0a9Yss2H4pUuXWrULsSXz5s1T+/btbVoTFRWlNm3aGM4lJydXud7c5/7888/r+eeft6mXO5599lk99thjhnPV/bkDAAAAAABYQiAWAAAAAAAAgEv17t1bL730ks3rGjZsaPaV6Zs2bVJxcbHhXGpqqtLT003GQ0JCNGTIEJv7uKNu3br69a9/bTh35coVu+tKP+5aai6gWRVzO7aOHz++yt14LXnuuecMxy9fvmx3TenH3YLffPNNm9aEhYUpLCzM7HxMTIxhWNkSc59lVbsP10Q3b97Uvn37TMZ9fHw0ZswYu+u6u7ub3VnW0XveEY0aNdJ7771n8zo3NzfNnTvXcHfgtLQ0HTlyxO6eevXqpaefftquteZ2lE1LS7O4rrKyUlu3bjWcGz9+vF293OGq5x8AAAAAAMCVCMQCAAAAAAAAcClzr123xoABA9S4cWOT8cLCQu3YscNwTXZ2ttq2bWvyGvUXXnjBMAhni3bt2hmOFxYWOlR32LBh8vDwsHldaWmpfHx81LBhw3vGGzZsqD59+jjUk6uuNTIyUiEhITavCw8PNxz38fExu5utJS1btjQcv3Hjhs21qltmZqbCw8Pl7+9/z3hkZKSCg4Mdqu2q+8ARf/jDH2wOQN8RFhZmNuy5adMmu3uyJ/R/x0MPPWQ4npOTY3Fdbm6umjZtarJzdMeOHc3uOmutmvi5AwAAAAAAVMWzuhsAAAAAAAAA8Mv18MMPq23btnavd3d316BBg7Rs2TKTud27d6tfv34m45GRkYqMjJT0426GGRkZyszMVJcuXezu4w5zIbzbt287VNfca9yr4uXlpdWrV0uSbt26dfdavby85O7u2H4IPw/Z3VFSUuJQXXuDug888IDheEREhOrWrWtzPXNB0YKCAptrVbeIiAglJCRIkvLy8pSZmamMjAy1atXK4dquuuft5ePjo9/+9rcO1RgyZIhh+HX37t1213zsscfsXtuiRQvD8fz8fIvrQkJCtG7durvHZmRkKCMjwyQgbw9zn7ujzz8AAAAAAIArEYgFAAAAAAAA4DIDBgxwuMZTTz1lGIg9ePBglWsbNWqkRo0aqWvXrg73IcnsDrPl5eV21/Tx8VH79u3tXn+Hn5+f2rVrZ3ZnR1u54lol2X2t5kKvHTt2tKuej4+P4XhZWZld9WqK4OBgBQcHm9111Fauug/sFRkZqcDAQIdq9OzZU35+frp169Y94xcuXNClS5ds3sG4SZMmql+/vt39BAQEGI7bEjoODAxUx44d7X4efq6mfe4AAAAAAADWcGyLAAAAAAAAAACwoHPnzg7XCA8Pl4eHh8l4enq6SaDNVcrKynTgwAHt2LHDcL6ystLu2u3bt5eXl5fd610hIyNDcXFxhnMVFRUO1Q4NDbVrndE9IP0YeraHucAfflRZWamUlBR9++23ZuergzOCvu7u7goPDzecO3PmjM31mjRp4lA/vr6+huPVtRtramqq1q5dazjn6PMPAAAAAADgSuwQCwAAAAAAAMAlvLy8zIbObOHj46MWLVro3LlzJnOZmZlOOcdPlZSU6Pz58zp79qzOnDmjlJQUnThxwmL41pFwoL2BTmf54YcfdPbsWaWmpur48eNKTk5WTk6OS87l5eVl9lXs9vL393dqvX9HZWVlunDhglJTU5WamqqUlBSlpKQoPz/f7JrqCsQ6awfUdu3a6ejRoybjGRkZNtdq0KCBM1q67yoqKpSZmXn3+b/zuV+9erW6WwMAAAAAALALgVgAAAAAAAAALvGrX/3KabtwNmjQwDAQm5OTY1cgtri4WOfPn1d6eroyMjKUmZmpzMxMXbx4UdnZ2fd1F0RHX/9elcrKSl28eFHnz583udbMzEwVFRW59Pw/5e/vLzc3N6fW9PHxcWq9X6rS0lKlpaUpLS1NGRkZdz//zMxMZWdnq7S0tLpbtIq9Owz/nLkQa3Z2ts21avJuw+Xl5bpw4YLS0tLuft6ZmZnKyMhQVlZWte1CCwAAAAAA4AoEYgEAAAAAAAC4REBAgNNq1a1b13C8sLDQ6hr/+te/tHHjRu3atUvff/+9ysvLndWeQ5y9Y6ok3bhxQ5s3b9aWLVuUnJysgoICp5/DHjU5OPhLlJGRoY0bN2rHjh06c+ZMrQm9WuKs7xVzOwtb2gnaHE/PmvVPLbm5ufr222+1detWnThxQsXFxdXdEgAAAAAAwH1Rs36lAQAAAAAAAPCL4cxArLnwmjVBr8OHD2v+/PmGr0e3lbu7u9N3j/X19XVarby8PC1evFhr1qxxOPzoimutacHBX6rU1FTNnz9fu3btcriWK+4De3l4eJgNx9vKke+UmiorK0sff/yxkpKSHP7MatLnDgAAAAAAYC1+fQQAAAAAAADgEs4MP5p7rbelHUdLS0s1Z84cffPNNw6du2nTpurZs6eefvppXblyRe+//75D9Vxl27ZteueddxzaDdbPz09du3bV448/rt/85jfq06ePEzvE/bBo0SItXbrUoR2QGzVqpB49eujJJ5+Uv7+/fv/73zuxQ/t5eHg4rdbt27cNx2vrLsZr1qzR3LlzzX5XWqNevXrq3r27nnjiCUVERCgqKsqJHQIAAAAAALgegVgAAAAAAAAALlFYWOi0WuZCnn5+fobjxcXFGj9+vHbv3m31Odzd3dWsWTO1bNlS4eHh6tChgzp16qQmTZrcPSY+Pt62xu+TNWvWaNasWTbt6BgUFKRWrVqpdevW6tChgzp27Kjw8HB2ca2lKisrNXXqVG3YsMHqNW5ubmrcuLFatWqltm3b3r0PWrRocfeY/fv3u6Bb+5SUlKikpMQpoVVbv1NqstjYWC1btsymNY0aNVLLli3Vtm1bRUREqGPHjmrdurXc3d0lSRcvXnRFqwAAAAAAAC7FL5sAAAAAAAAAXMKRnUqtrRUcHGw4/tFHH1kMw3p5ealLly56+OGH1b59e7Vq1UphYWFVBu0c2XXTVY4dO6Y5c+ZYDMO2aNFCjz76qDp06KDWrVurVatWql+/vsW6ZWVlzm4VLvTZZ59ZDMN6eHioQ4cO6tq1qyIiItSqVSu1bNlSvr6+FuvWtHu+oKDA7HNvax0jzqh9P23evNliGNbNzU3h4eHq1q2bIiIi7j7//v7+FuvWtM8dAAAAAADAGgRiAQAAAAAAALjE5cuXnVYrMzPTcDw0NNRkbPfu3Vq9erXh8b6+vho3bpxGjBihwMBAm/soLi62eY0rlZSU6K233jIbXn3iiSc0ZcoUtW3b1ubaNe1aYd7Zs2e1cOFCwzlPT08NHz5c48aNU8OGDW2uXdPugytXrjgltJqRkWE4bvSdUlNdvXpV77//vuGcm5ubBg4cqAkTJqh58+Y2165pnzsAAAAAAIA1CMQCAAAAAAAAcInr16/r0qVLCgkJcahOTk6O8vLyTMaDgoIMdzldtGiRYR1/f3/FxcUpIiLC7l6uXLli91pXSEhIMBsWHj9+vCZNmmR37atXr9q9FvfXsmXLVFpaajLu5eWlJUuW6PHHH7e7dk27D86cOWNXwPvnTp8+bTgeFhbmcO37ZdWqVbpx44bh3IcffqiXXnrJ7to17XMHAAAAAACwhnt1NwAAAAAAAADgl+vkyZMO1zhx4oTheLdu3UzGsrKydPToUcPjp02b5lAYVpIuXrxoOF5RUeFQXXtt2rTJcLxr164OhWEl87vyVte1wlhxcbG2bt1qOBcTE+NQGFaqeffBqVOnHK6Rn59veF1BQUFq3bq1w/XvF3PP/4ABAxwKw0o173MHAAAAAACwBoFYAAAAAAAAAC6zfft2h2skJSUZjvfq1ctkzFwY1t/fXwMHDnS4F3P1qyMkVlFRoZSUFMO5ESNGOFzf3LWWl5c7XBvOc/r0abOvtx8+fLjD9WvafbBjxw6HayQlJamystJkvEePHnJ3rx3/bJKbm6usrCzDOZ5/AAAAAADw76p2/LIDAAAAAAAAoFZKSkpSUVGR3evz8/MNd7/08PDQs88+azKenZ1tWCc0NFR16tSxuw9JOnLkiNkAmtHr6l3t2rVrZoOQju5yWVlZqW+//dZwrqyszKHacC5z93xQUJAaNWrkUO2cnBwdOnTIcK667oP09HSzPVkrPj7ecLxv374O1b2fcnJyzM45+vwXFRWZ3XWY5x8AAAAAANRkBGIBAAAAAAAAuExhYaFWrlxp9/pPPvlEt2/fNhn/9a9/rZCQEJNxo10fJefsahgbG2t2rjoCseauVXL8ehMSEpSWlmY4Vx3XCts5455fuHCh2d2Pq/M+WLx4sd1rt2zZouTkZJPxevXqGYbsaypXPv9/+9vfdPPmTcM5nn8AAAAAAFCTEYgFAAAAAAAA4FKLFy9WamqqzesOHDig//mf/zGce/XVVw3HGzRoYDh+7tw55efn29zDHZ9++qkOHDhgdt4otOtq9evXN/t69yNHjthd9/z585o3b57Z+eq4VpgXHBxsOH7z5k19//33dtf99ttvlZCQYHa+Ou+DPXv26JtvvrF5XV5enubMmWM4N2zYMId3kb6fzH3uknT06FG76x46dEh//etfzc7z/AMAAAAAgJqMQCwAAAAAAAAAlyotLdVrr71mdsdRI8eOHdP48eMNd0Hs1auXHnvsMcN1rVq1MtvDZ599ZvX5f2rlypX6+OOPLR5TVFRkV21HeHh4KDQ01HBu5cqVdgXXUlNTNWbMGIvh4ZKSEqfsPgrnaNmypdzc3Aznli5dalfNpKQkTZs2zeIx1XHP/9ScOXO0detWq4+/evWqRo8erStXrpjMBQUFKSYmxpntuVzjxo3l5+dnOPfXv/7V4g6y5hw4cEB/+MMfLO4CW92fOwAAAAAAgCUEYgEAAAAAAAC4XE5OjoYPH64tW7ZYPK6yslKrV6/Wq6++avjKbj8/P82cOdPs+s6dO5vdJfbTTz9VYmKi1T1nZ2drwoQJmjdvXpXhMnOvF3e1J5980nA8IyNDb775ptXhtdLSUq1cuVIvv/yysrOzqzzekd124VwPPPCAOnToYDi3adMmm0Kx165d08yZM/XHP/5RJSUlFo+trnv+jtLSUk2aNElLly61GOCUpL179+rll182u1P19OnTFRAQ4Io2XcbLy0t9+vQxnDt8+LA++OADlZWVWVXr1q1bio2N1auvvlrls82zDwAAAAAAajLP6m4AAAAAAAAAwL+Hq1ev6o033lD37t01cOBAdevWTSEhISovL1dOTo52796thIQEnTlzxmyNmTNnmt0FVpLc3d01dOhQLV682GSuoqJCU6dO1fbt2zVy5Eg9/PDD8vLyuueYgoICHTx4UH//+9+VlJRUZdDujsuXL1t1nLNFR0crLi7OsM/t27dr4MCBGjdunJ555hkFBQXdM19eXq7U1FRt27ZNa9euVU5OjtXnvXLliurXr+9o+3CS3/3ud3r33XcN5xYuXKh9+/ZpzJgx6tmzp7y9ve+ZLy4u1tGjR/Xdd98pMTFRt27dsuqc1XXP/1RZWZkWLlyoxMREDR48WJGRkWrSpIm8vb2Vm5ur5ORkbdy4UTt37jRbIyoqSoMGDbp/TTvR7373O7P/yWDNmjU6ceKEYmJiFBkZqbp1694zX1JSopMnT+r//u//tH79el2/ft2qc966dUu3bt0yuzstAAAAAABAdSIQCwAAAAAAAMBlWrRoofT09HvGDh48qIMHD9pc6+2331ZUVFSVx8XExCg+Pt7sTqdbtmzRli1b5O3trWbNmsnf31+lpaW6fv26srOzze4G6+npqXfeeUcJCQk6ffr0PXPnzp1TSUmJ6tSpY/N1OSIsLEwjRozQihUrDOcvXLigGTNmaMaMGWratKmCgoLk4eGhgoICZWVl6fbt22Zr9+7dWw899JBhuPj06dNq06aN064Djhk8eLBWr16tEydOGM7v27dP+/btk6enp5o1a6bAwECVl5crPz9fWVlZqqioMFv7tdde0/fff68dO3bcM37t2jXl5OSocePGTr2Wqhh9p6Snpys2NlaxsbE21XrmmWc0Z84cJ3Z3f/Xs2VPPPfecvvvuO8P5kydPavLkyXJ3d1ezZs1Ur149ST/u7puVlWUx8D9o0CB5e3trzZo1JnOnT59W165dnXMRAAAAAAAATuRe3Q0AAAAAAAAA+OV6//339cwzzzhUw8fHRx9++KFiYmKsOt7Pz0/Lli2r8hXot2/f1rlz55ScnKxTp07phx9+MBuGDQ0NVVxcnEaPHq327dubzBcVFeno0aNW9edsU6ZMUe/evas8LisrSydPnlRKSorOnz9vNgzr5eWlP/7xj1q+fLl69uxpeMyePXsc6hnO5e7ursWLF+tXv/qVxePKysqUnp6ulJQUnTx5UpmZmWbDsA0bNtTSpUv11ltvqWPHjobHVMd90L9/f7399tsO1xk6dKgWLlxoskt0bTNv3jzD76SfqqioUEZGho4fP67jx48rPT3dbBi2bt26mjt3rj766CN16dLF8BiefwAAAAAAUFMRiAUAAAAAAADgMp6enlq4cKFef/11eXra/sKqLl26aN26dYqOjrZpXbt27bRixQo1b97c5nP+lLe3t8aNG6cNGzbokUcekSR1797d8NjNmzc7dC57eXl5adGiRerfv7/DtXr27Kn4+Hj9/ve/l7u7uzp27Gj4avR//OMfKi4udvh8cJ7GjRtr1apV6tChg0N1PDw8FB0drU2bNumpp56SVPPu+ZiYGC1YsEBBQUE2r23atKkWL16s2bNn1/owrCT5+/vrs88+02OPPeZwrb59+2rTpk166aWXJEndunWTm5ubyXFbtmxx+FwAAAAAAACuQCAWAAAAAAAAgEt5eXlp8uTJWrdunXr16lXl8W5uburRo4eWLFmir7/+Wm3atLHrvJ06ddKGDRs0ZswYBQYG2rQ2MDBQr7zyirZs2aIpU6bI19f37lzfvn0NQ6IJCQnKy8uzq1dH+fn5acGCBYqNjVV4eLhNa93d3dW7d299/vnnWrVqldq2bXtP3b59+5qsuXbtmtavX+9w33Cu0NBQrVmzRpMnT1ajRo1sWuvr66sXX3xRGzdu1Icffqj69evfnXv00UfVrFkzkzW7du3S2bNnHe7bHv3791dSUpKGDBliVbC1TZs2mjFjhjZv3uzwrtU1TYMGDfT5559r1qxZevDBB21a6+Xlpd/85jdau3at/vu//1tNmjS5O9e8eXPDMPTZs2e1c+dOh/sGAAAAAABwNrdKc+8AAwAAAAAAAAArTZs2TQkJCSbjX3zxhXr06HHPWHp6unbt2qXTp08rNzdXJSUlCggIUOPGjdWpUyf16tVLjRs3dmp/RUVF2rZtm44cOaLjx4/r8uXLunHjhoqLi+Xj46Pg4GA1b95cHTp0UI8ePdSzZ0/VqVPHbL309HQVFRWZjDdr1kwBAQFO7d0eR44c0Z49e3Ts2DFlZGToxo0bKigokLu7uwICAtSkSRO1adNGjzzyiJ544gmL4clr164pJyfHZNzf39/hHXjhOqWlpdq5c6cOHTqklJQU5eTkKD8/X4WFhfL29lZQUJCaNWum9u3bq3v37urTp889we+fy8rKUn5+vsl4SEiIgoODnd5/fHy8pk+fbjI+YcIETZw48Z6xvLw87dq1S8nJycrKylJRUZH8/PwUHBysiIgIde/eXe3atXN6jzVRRUWF9u7dq/379ys5OVkXL17UzZs3VVBQIE9PTwUGBqpZs2YKDw9Xt27dFBkZafE/DOTm5urq1asm48HBwQoJCXHlpQAAAAAAANiMQCwAAAAAAAAAh9kSiAWAqtgSiAUAAAAAAAAkyb26GwAAAAAAAAAAAAAAAAAAAAAcQSAWAAAAAAAAAAAAAAAAAAAAtRqBWAAAAAAAAAAAAAAAAAAAANRqBGIBAAAAAAAAAAAAAAAAAABQqxGIBQAAAAAAAAAAAAAAAAAAQK1GIBYAAAAAAAAAAAAAAAAAAAC1mmd1NwAAAAAAAAAAQE31xhtv6PLly9XdhqGvvvqqulsAAAAAAAAAagwCsQAAAAAAAAAAmHHixAllZWVVdxsAAAAAAAAAquBe3Q0AAAAAAAAAAAAAAAAAAAAAjiAQCwAAAAAAAAAAAAAAAAAAgFqNQCwAAAAAAAAAAAAAAAAAAABqNbfKysrK6m4CAAAAAAAAAAAAAAAAAAAAsBc7xAIAAAAAAAAAAAAAAAAAAKBWIxALAAAAAAAAAAAAAAAAAACAWo1ALAAAAAAAAAAAAAAAAAAAAGo1ArEAAAAAAAAAAAAAAAAAAACo1QjEAgAAAAAAAAAAAAAAAAAAoFYjEAsAAAAAAAAAAAAAAAAAAIBajUAsAAAAAAAAAAAAAAAAAAAAajUCsQAAAAAAAAAAAAAAAAAAAKjVCMQCAAAAAAAAAAAAAAAAAACgViMQCwAAAAAAAAAAAAAAAAAAgFqNQCwAAAAAAAAAAAAAAAAAAABqNQKxAAAAAAAAAAAAAAAAAAAAqNUIxAIAAAAAAAAAAAAAAAAAAKBWIxALAAAAAAAAAAAAAAAAAACAWo1ALAAAAAAAAAAAAAAAAAAAAGo1ArEAAAAAAAAAAAAAAAAAAACo1QjEAgAAAAAAAAAAAAAAAAAAoFYjEAsAAAAAAAAAAAAAAAAAAIBajUAsAAAAAAAAAAAAAAAAAAAAarX/B8h0RLROjIWfAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABVMAAALHCAYAAACDjdI+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACB/UlEQVR4nOz9f5zVZZ0//j9mBlBAfgyFCEpKBoqAa2tiVmqmFZXlR81yIUqztFtKlpumhfauzXQtExXNUlJDbTUzy9w0QEjUoAyTXUBcWX+AgrL8GkB+DHC+f/CdCWKA1/zAOYP3++3GzcN5Xdf1eh58XXNmHnO9rlNRKpVKAQAAAABghypbuwAAAAAAgLZAmAoAAAAAUIAwFQAAAACgAGEqAAAAAEABwlQAAAAAgAKEqQAAAAAABQhTAQAAAAAKEKYCAAAAABTQrrULoGWUSqVs2lRq7TIAAAAAoM2prKxIRUXFTtsJU3cTmzaVsnTp6tYuAwAAAADanB49Oqeqaudhqtv8AQAAAAAKEKYCAAAAABQgTAUAAAAAKECYCgAAAABQgDAVAAAAAKAAYSoAAAAAQAHCVAAAAACAAoSpAAAAAAAFCFMBAAAAAAoQpgIAAAAAFCBMBQAAAAAoQJgKAAAAAFCAMBUAAAAAoABhKgAAAABAAcJUAAAAAIAChKkAAAAAAAUIUwEAAAAAChCmAgAAAAAUIEwFAAAAAChAmAoAAAAAUIAwFQAAAACgAGEqAAAAAEABwlQAAAAAgAKEqQAAAAAABQhTAQAAAAAKEKYCAAAAABQgTAUAAAAAKECYCgCwm7j99lsyfPgpuf32W1q7FAB2c95zgDcrYSoAwG5g3bp1eeih/8ymTZvy8MP/mXXr1rV2SQDsprznQNP5RUTbJ0wFANgNbNhQm1JpU5Jk06ZN2bChtpUrgrbBD7XQeN5zoGn8ImL3IEyFXcg35wAA5csPtQC8kfwiYvcgTIVdxDfnAADlzQ+1AEBjCVNhF/HNOTSdVd0AAACUI2EqAGXFqm4AAADKlTAVgLJiVTcAAADlql1rFwAAAABvlMrKilRWVrR2GW1au3aV2/z9H5+jcTZtKmXTplJrlwEUIEwFAFqdH2ybzw+2LcsPtbB7qqysSPfunVJV5etjc7Rvv/XXx+7dO2evvTq3UjW7h40bN2X58te990AbIEwFAFqVH2xbhh9sW5YfamH3VFlZkaqqytzwi8fz8msrWrucNmtD7dqt/v7dm/6Qdu33bKVq2r599+6Wc//lvamsrPC+A22AMBUAaFV+sG0ZfrBtOX6ohd3fy6+tyAsvL2vtMtqsTRu2/oDQl15Znsp2e7RSNbxR3EnUfO4kalmtdSeRMBWgBfkGo/l8g9Hy2srtyn6wbR4/2L45ed9pHu85La+tvOcAjeNOopbhTqKW1Vp3EglT2S7fnDePb85bXrl/c+4bjJbhG4yW53Zl2D1532k+7zktz3sO7J7cSdQy3EnUclrzTiJhKg3yzXnz+ea85ZX7N+e+wWgZvsFoWW5Xht2X953m857TsrznwO7PnUTN406i3YMwlQb55rz5fHPestrSN+e+wWge32AANI73nabzngMANJYwlR3yzXnT+eYcAAAAYPfiHm4AAACgsIrKqiR1n69R8f//O8CbgzAVAAAAKKyisl067T0wSUU67T0wFZVuegXePHzFAwDYDfx9lVApVgkBsKt16fvudOn77tYuA+ANZ2UqAMBuwCohAADY9XyXDUBZsboOms4qIQCA8uVnnd2DlakAlBWr6wAAgN2Rn3V2D/6vAVB2rK4DAAB2R37WafusTIVd5O/L9xPL9wEAyo/v1wCAxhKmwi5i+T4AQHnz/RoA0Fi+W4BdyPJ9AIDy5vs1AKAxrEwFAAAAAChAmAoAAAAAUIAwFQAAAACgAGEqAAAAAEABwlQAAAAAgAKEqQAAAAAABQhTAQAAAAAKEKYCAAAAABQgTAUAAAAAKECYCgAAAABQgDAVAAAAAKAAYSoAAAAAQAHtWruAljR37tzccsstmT59epYuXZru3btn8ODBGT58eI455pgmjztt2rTccccd+dvf/pbly5enuro6gwYNyqmnnpoPfvCD2+1XKpVyxBFHZOXKlTs9x4wZM9K5c+cm1wgAAAAA7Fq7TZg6adKknH/++amtra1/bvHixZk8eXImT56ckSNHZvTo0Y0e94orrshtt9221XOvvfZaXnvttUyePDnHHXdcrrvuunTo0GGbvi+99FKhIBUAAAAAKH+7RZg6e/bsXHDBBamtrc2QIUNy0UUXpX///lmwYEFuuummTJw4MePHj0+/fv0yYsSIwuOOHz++Pkg96qij8uUvfzkHHnhgFi9enLvvvjt33XVXJk+enO9+97v53ve+t03/WbNmJUnat2+fqVOnNhi41rEqFQAAAADK226xZ+q1116btWvXZv/998/tt9+eoUOHprq6OkOGDMnYsWMzbNiwJMl1112XVatWFRpz7dq1GTt2bJLk8MMPz7hx4zJ06NC85S1vycEHH5xvf/vbGTlyZJLkvvvuy6JFi7YZoy5MHTBgQKqrq9O5c+ft/gEAAAAAylubD1PnzZuXKVOmJEnOOeecbYLJioqKXHzxxamsrMzy5cszYcKEQuP+5S9/yfLly+vHraqq2qbNJz7xiSTJxo0b89///d/bHJ89e3aSZPDgwUVfDgAAAABQptp8mDp16tQkm0PT4447rsE2vXv3zsCBA5MkEydOLDTu0Ucfnccffzy33357jjrqqJ22b9++/TbP1YWphx56aKFzAgAAAADlq83vmTpnzpwkSZ8+fdKjR4/ttjvkkEMya9as+lvvi3jrW9+at771rQ0eK5VKGT9+fJLN+50edthhWx1fsGBB/crWnj175sorr8yUKVOyYMGCdOzYMQMHDswnP/nJfPzjH09FRUXhmgAAAACA1tHmw9SXX345SbLffvvtsF2fPn2SJIsWLcqGDRvSrl3jX/q6devy2muv5b//+78zfvz4/PWvf02SXHLJJenWrdtWbetWpSbJueeem9ra2vq/19bWZvr06Zk+fXoeeOCBjBkzxr6pAAAAAFDm2nyYumzZsiTZJsz8R126dEmyeUVpTU3NDlexbs+ll16a3/zmN/V/79q1a37wgx/k/e9//zZtt1wB261bt5x77rk5+uij07lz5zzzzDP58Y9/nD//+c959NFHc+GFF+bGG29sdD3/qF27ltu1oaqqze8AwW6qnK/Ncq4Nyvn6LOfaeHMr92uz3Ovjzaucr81yrg3K+fos59p4c2uNa7PNh6nr1q1Lkuyxxx47bLfnnnvWP16/fn2TzvXKK69s9feamppcccUV2bBhQ0444YStjq1evTpdunRJ586dc88996RXr171x97znvfkyCOPzPnnn58JEyZk0qRJmTx58nb3fC2isrIi1dVWt7L769q1Y2uXAG2SuQONZ95A05g70DTmDjRea8ybNh+mVlVVvWHn+t73vpfevXtn3bp1eeyxx/LDH/4wL7zwQkaNGpVrrrkmw4YNq287evTojB49OuvXr0+HDh0arPuyyy7LlClTUltbm1/96lfNClM3bSqlpub1Jvfftr5KX8gpSzU1a7Jx46bWLqNB5g3lzNyBxivneZOYO5Svcp475g3lzNyBxmvJedO1a8dCK13bfJjasePmybyz1aZr166tf7yzVazbc8ABB9T3/+hHP5rDDz88J598cpYsWZKrrroqxx9/fNq3b79Vn4aC1Dp77713hgwZkhkzZuTpp59uUk1b2rChPL/oQkvauHGTax2awNyBxjNvoGnMHWgacwcarzXmTZvf9KJuL9SVK1fusF1NTU2SzStCd7a/alG9evXKyJEjk2z+IKxnnnmm0WPUfTBW3d6vAAAAAEB5avNhar9+/ZJsu5/pP1q4cGGSzQFoZWXLvexBgwbVP16wYME2x0ul0g7719bWJvn7ClsAAAAAoDy1+TB1wIABSZL58+dn1apV2203e/bsJMnAgQMLjXvvvfdm5MiROe2003bYru4DsJK/f8jVokWL8oEPfCCHHXZYxo4du8P+zz33XJK/byEAAAAAAJSnNh+mHnvssUmSjRs3ZsqUKQ22WbhwYebMmZMkOfroowuNu2rVqvz5z3/OzJkzM3PmzO22mzp1apKkoqIihxxySJKkZ8+eWbFiRdasWZNHH310u31nz56defPmJUmOOeaYQnUBAAAAAK2jzYepffv2zeGHH54kuf7667fZO7VUKuXKK6/Mpk2bUl1dnZNOOqnQuMOGDav/MKkf/vCH2bhx4zZtnnzyydx3331Jkve///3p1atXks37sn7sYx9LksycOTP333//Nn1Xr16d0aNHJ0k6d+6c008/vVBdAAAAAEDraPNhapJccsklqayszAsvvJDhw4fnsccey9KlSzNr1qyMGjUqDz30UJJk1KhR6dSp01Z9hw0blmHDhuWiiy7a6vl99tknZ599dpJk+vTp+cxnPpMnnngiS5YsyYsvvpibbropZ511Vmpra1NdXZ1vfetbW/U/99xz07179yTJ6NGjc+211+Z//ud/snTp0jzyyCM5/fTTM2vWrCTJN7/5zfTs2XNX/NMAAAAAAC2kXWsX0BKGDBmSyy+/PJdeemmeffbZnHXWWdu0OfPMMzNixIhtnn/++eeTpMEwc9SoUVmxYkXuuOOOzJgxI2eeeeY2bfbdd9/ccMMN6du371bP9+rVKzfffHO+/OUvZ/Hixbnxxhtz4403btWmffv2ufDCC/PJT36yUa8XAAAAAHjj7RZhapKccsopGTRoUMaNG5fp06dnyZIl6dSpUwYPHpzhw4fnhBNOaPSYFRUVufTSS/PhD384d955Z2bMmJFly5alY8eOecc73pEPfehD+fSnP73Natc6hx56aH73u9/ljjvuyCOPPJLnn38+GzduTK9evXLUUUdl5MiR6d+/f3NfOgAAAADwBthtwtQkOeigg3LVVVc1qs/cuXN32mbo0KEZOnRok2rq3r17zjvvvJx33nlN6g8AAAAAlIfdYs9UAAAAAIBdTZgKAAAAAFCAMBUAAAAAoABhKgAAAABAAcJUAAAAAIAChKkAAAAAAAUIUwEAAAAAChCmAgAAAAAUIEwFAAAAAChAmAoAAAAAUIAwFQAAAACgAGEqAAAAAEABwlQAAAAAgAKEqQAAAAAABQhTAQAAAAAKEKYCAAAAABQgTAUAAAAAKECYCgAAAABQgDAVAAAAAKAAYSoAAAAAQAHCVAAAAACAAoSpAAAAAAAFCFMBAAAAAAoQpgIAAAAAFCBMBQAAAAAoQJgKAAAAAFCAMBUAAAAAoABhKgAAAABAAcJUAAAAAIAChKkAAAAAAAUIUwEAAAAAChCmAgAAAAAUIEwFAAAAAChAmAoAAAAAUIAwFQAAAACgAGEqAAAAAEABwlQAAAAAgAKEqQAAAAAABQhTAQAAAAAKEKYCAAAAABQgTAUAAAAAKECYCgAAAABQgDAVAAAAAKAAYSoAAAAAQAHCVAAAAACAAoSpAAAAAAAFCFMBAAAAAAoQpgIAAAAAFCBMBQAAAAAoQJgKAAAAAFCAMBUAAAAAoABhKgAAAABAAcJUAAAAAIAChKkAAAAAAAUIUwEAAAAAChCmAgAAAAAU0K61C2hJc+fOzS233JLp06dn6dKl6d69ewYPHpzhw4fnmGOOafK406ZNyx133JG//e1vWb58eaqrqzNo0KCceuqp+eAHP7jDvqVSKb/5zW9y7733Zs6cOamtrc0+++yTY489Np///OfTu3fvJtcFAAAAALxxdpswddKkSTn//PNTW1tb/9zixYszefLkTJ48OSNHjszo0aMbPe4VV1yR2267bavnXnvttbz22muZPHlyjjvuuFx33XXp0KHDNn03bdqUr3/963nwwQe3ev7FF1/Mz3/+8/z617/O2LFj8+53v7vRdQEAAAAAb6zd4jb/2bNn54ILLkhtbW2GDBmS8ePHZ9q0abn33ntzwgknJEnGjx+fO++8s1Hjjh8/vj5IPeqoozJ+/Pg88cQT+c1vfpPhw4cnSSZPnpzvfve7Dfa/5ppr6oPUM888Mw899FCeeOKJjBkzJr17987KlSszatSoLFq0qImvHAAAAAB4o+wWYeq1116btWvXZv/998/tt9+eoUOHprq6OkOGDMnYsWMzbNiwJMl1112XVatWFRpz7dq1GTt2bJLk8MMPz7hx4zJ06NC85S1vycEHH5xvf/vbGTlyZJLkvvvu2yYQffXVV3PrrbcmSb74xS/m4osvTr9+/fKWt7wlH/nIR3LnnXeme/fuqampyQ033NBS/xQAAAAAwC7S5sPUefPmZcqUKUmSc845J507d97qeEVFRS6++OJUVlZm+fLlmTBhQqFx//KXv2T58uX141ZVVW3T5hOf+ESSZOPGjfnv//7vrY7dcccdqa2tTadOnfKlL31pm7777rtvzjjjjCTJAw88kDVr1hSqCwAAAABoHW0+TJ06dWqSzaHpcccd12Cb3r17Z+DAgUmSiRMnFhr36KOPzuOPP57bb789Rx111E7bt2/ffqu///GPf0ySHHnkkdlrr70a7HP88ccnSdasWZPHH3+8UF0AAAAAQOto82HqnDlzkiR9+vRJjx49ttvukEMOSZLMmjWr8Nhvfetb8+53v7vBD5cqlUoZP358kqRz58457LDD6o/V1tZm3rx5SZLBgwdvd/z+/fvXh7CNqQsAAAAAeOO1a+0Cmuvll19Okuy33347bNenT58kyaJFi7Jhw4a0a9f4l75u3bq89tpr+e///u+MHz8+f/3rX5Mkl1xySbp161bfru4cO6uroqIivXv3zksvvZQFCxY0uh4AAAAA4I3T5sPUZcuWJclWYWZDunTpkmTzitKampodrmLdnksvvTS/+c1v6v/etWvX/OAHP8j73//+Bmuqa1OkrpqamkbX84/atWu5hcZVVW1+0TK7qXK+Nsu5Nijn67Oca+PNrdyvzXKvjzevcr42y7k2KOfrs5xr482tNa7NNh+mrlu3Lkmyxx577LDdnnvuWf94/fr1TTrXK6+8stXfa2pqcsUVV2TDhg054YQTGhx/y/M2pK7uutfRVJWVFamu7rzzhtDGde3asbVLgDbJ3IHGM2+gacwdaBpzBxqvNeZNmw9Tq6qq3rBzfe9730vv3r2zbt26PPbYY/nhD3+YF154IaNGjco111yTYcOGJUkqK9/4VHzTplJqal5vsfGqqip9Iacs1dSsycaNm1q7jAaZN5Qzcwcar5znTWLuUL7Kee6YN5QzcwcaryXnTdeuHQutdG3zYWrHjpsn885Wm65du7b+8c5WsW7PAQccUN//ox/9aA4//PCcfPLJWbJkSa666qocf/zxad++fTp16lTfZ2crTuuO72wFaxEbNpTnF11oSRs3bnKtQxOYO9B45g00jbkDTWPuQOO1xrxp85te1O05unLlyh22q9uTtKqqaqf7qxbVq1evjBw5MsnmD8J65plntqqpMXVVV1e3SE0AAAAAwK7R5sPUfv36Jdl2P9N/tHDhwiSbA9CWvA1/0KBB9Y8XLFiQJOndu3f9StMd1VUqlbJo0aL6PgAAAABA+WrzYeqAAQOSJPPnz8+qVau222727NlJkoEDBxYa9957783IkSNz2mmn7bDdlrfx1wWolZWVOfDAA7c6b0OeffbZ1NbWJkkOOeSQQnUBAAAAAK2jzYepxx57bJJk48aNmTJlSoNtFi5cmDlz5iRJjj766ELjrlq1Kn/+858zc+bMzJw5c7vtpk6dmiSpqKjYKhCtq2vatGl5/fWGPxjqkUceSZJ06NAhQ4cOLVQXAAAAANA62nyY2rdv3xx++OFJkuuvv36bPUpLpVKuvPLKbNq0KdXV1TnppJMKjTts2LC0b98+SfLDH/4wGzdu3KbNk08+mfvuuy9J8v73vz+9evWqP/aJT3wiVVVVWbFiRcaOHbtN31deeSW33XZbkuTUU09N165dC9UFAAAAALSONh+mJskll1ySysrKvPDCCxk+fHgee+yxLF26NLNmzcqoUaPy0EMPJUlGjRqVTp06bdV32LBhGTZsWC666KKtnt9nn31y9tlnJ0mmT5+ez3zmM3niiSeyZMmSvPjii7npppty1llnpba2NtXV1fnWt761Vf9+/fpl+PDhSZJx48blsssuy7x587J06dI8/PDDGTFiRJYvX57u3bvXnwcAAAAAKF/tWruAljBkyJBcfvnlufTSS/Pss8/mrLPO2qbNmWeemREjRmzz/PPPP58k6dmz5zbHRo0alRUrVuSOO+7IjBkzcuaZZ27TZt99980NN9yQvn37bnPswgsvzPz58zNlypTcfffdufvuu7c63qlTp9x0003p06dP4dcKAAAAALSO3SJMTZJTTjklgwYNyrhx4zJ9+vQsWbIknTp1yuDBgzN8+PCccMIJjR6zoqIil156aT784Q/nzjvvzIwZM7Js2bJ07Ngx73jHO/KhD30on/70p7dZ7Vpnjz32yE033ZT7778/9913X5555pmsWbMme++9d973vvfli1/8YoMhLAAAAABQfnabMDVJDjrooFx11VWN6jN37tydthk6dGiTPyCqoqIiJ598ck4++eQm9QcAAAAAysNusWcqAAAAAMCuJkwFAAAAAChAmAoAAAAAUIAwFQAAAACgAGEqAAAAAEABwlQAAAAAgAKEqQAAAAAABQhTAQAAAAAKEKYCAAAAABQgTAUAAAAAKECYCgAAAABQgDAVAAAAAKAAYSoAAAAAQAHCVAAAAACAAoSpAAAAAAAFCFMBAAAAAAoQpgIAAAAAFCBMBQAAAAAoQJgKAAAAAFCAMBUAAAAAoABhKgAAAABAAcJUAAAAAIAChKkAAAAAAAUIUwEAAAAAChCmAgAAAAAUIEwFAAAAAChAmAoAAAAAUIAwFQAAAACgAGEqAAAAAEABwlQAAAAAgAKEqQAAAAAABQhTAQAAAAAKEKYCAAAAABQgTAUAAAAAKECYCgAAAABQgDAVAAAAAKAAYSoAAAAAQAHCVAAAAACAAoSpAAAAAAAFCFMBAAAAAAoQpgIAAAAAFCBMBQAAAAAoQJgKAAAAAFCAMBUAAAAAoABhKgAAAABAAcJUAAAAAIAChKkAAAAAAAUIUwEAAAAAChCmAgAAAAAUIEwFAAAAAChAmAoAAAAAUIAwFQAAAACgAGEqAAAAAEABwlQAAAAAgAKEqQAAAAAABQhTAQAAAAAKaNfaBbSkuXPn5pZbbsn06dOzdOnSdO/ePYMHD87w4cNzzDHHNHncp556KnfddVf++te/ZvHixWnXrl369OmT9773vfnc5z6Xfffdt8F+pVIpRxxxRFauXLnTc8yYMSOdO3duco0AAAAAwK6124SpkyZNyvnnn5/a2tr65xYvXpzJkydn8uTJGTlyZEaPHt3ocX/wgx/klltu2eq59evX57nnnstzzz2XX/7yl/nBD36QE044YZu+L730UqEgFQAAAAAof7tFmDp79uxccMEFqa2tzZAhQ3LRRRelf//+WbBgQW666aZMnDgx48ePT79+/TJixIjC495xxx31Qeq73vWufPnLX87AgQOzfPny/PnPf84111yT5cuX52tf+1ruueeeDBw4cKv+s2bNSpK0b98+U6dOTYcOHbZ7LqtSAQAAAKC87RZ7pl577bVZu3Zt9t9//9x+++0ZOnRoqqurM2TIkIwdOzbDhg1Lklx33XVZtWpVoTHXr1+f6667LkkydOjQ3H777Xnve9+bHj165O1vf3tOP/30/OpXv0rXrl2zfv36jBkzZpsx6sLUAQMGpLq6Op07d97uHwAAAACgvLX5MHXevHmZMmVKkuScc87ZJpisqKjIxRdfnMrKyixfvjwTJkwoNO6f/vSnrFixIkkyatSotGu37SLe/fbbL6eddlqS5PHHH99qi4Fk84rZJBk8eHCjXhMAAAAAUH7afJg6derUJJtD0+OOO67BNr17966/BX/ixImFxl24cGE6deqUJPmnf/qn7bbbf//9kyS1tbVZtmzZVsfqwtRDDz200DkBAAAAgPLV5sPUOXPmJEn69OmTHj16bLfdIYcckuTvt97vzOmnn56nnnoqf/3rX7PHHntst92LL75Y/7hr1671jxcsWJDly5cnSXr27Jkrr7wyw4YNy+DBg3PEEUfks5/9bH7729+mVCoVqgcAAAAAaF1t/gOoXn755SSbb7nfkT59+iRJFi1alA0bNjR4235D9tprr+0eW7NmTX77298mSQYNGpQ999yz/ljdqtQkOffcc7faAqC2tjbTp0/P9OnT88ADD2TMmDH2TQUAAACAMtfmw9S6W+u7deu2w3ZdunRJkpRKpdTU1OxwFWtR//7v/57FixcnSUaMGLHVsS1XwHbr1i3nnntujj766HTu3DnPPPNMfvzjH+fPf/5zHn300Vx44YW58cYbm11Pu3Ytt9C4qqrNL1pmN1XO12Y51wblfH2Wc228uZX7tVnu9fHmVc7XZjnXBuV8fZZzbby5tca12ebD1HXr1iXJDm/FT7LVqtH169c3+7y33XZbfvGLXyRJ3vWud+Xkk0/e6vjq1avTpUuXdO7cOffcc0969epVf+w973lPjjzyyJx//vmZMGFCJk2alMmTJ293z9ciKisrUl1tdSu7v65dO7Z2CdAmmTvQeOYNNI25A01j7kDjtca8afNhalVV1Rt+zttuuy1XXHFFkqRXr1750Y9+lMrKrZPw0aNHZ/To0Vm/fn06dOiwzRhVVVW57LLLMmXKlNTW1uZXv/pVs8LUTZtKqal5vcn9t62v0hdyylJNzZps3LiptctokHlDOTN3oPHKed4k5g7lq5znjnlDOTN3oPFact507dqx0ErXNh+mduy4eTLvbLXp2rVr6x/vbBXr9pRKpVx99dW5+eabk2z+YKlbb711q1Wn/6ihILXO3nvvnSFDhmTGjBl5+umnm1TTljZsKM8vutCSNm7c5FqHJjB3oPHMG2gacweaxtyBxmuNedPmN72o2wt15cqVO2xXU1OTZPOK0J3tr9qQtWvX5vzzz68PUvfbb7/ceeedOfDAAxs91pbqPhirbu9XAAAAAKA8tfkwtV+/fkmSV155ZYftFi5cmGTzbfn/eEv+zixdujSf+9zn8vDDDydJBg0alLvvvjv777//TvuWSqUdHq+trU3y9xW2AAAAAEB5avNh6oABA5Ik8+fPz6pVq7bbbvbs2UmSgQMHNmr8V199Naeffnr+9re/JUmOO+643HHHHXnrW9+63T6LFi3KBz7wgRx22GEZO3bsDsd/7rnnkiQHHHBAo+oCAAAAAN5YbT5MPfbYY5MkGzduzJQpUxpss3DhwsyZMydJcvTRRxcee9myZTnjjDPy4osvJkk+/elP54YbbkinTp122K9nz55ZsWJF1qxZk0cffXS77WbPnp158+YlSY455pjCdQEAAAAAb7w2H6b27ds3hx9+eJLk+uuv32bv1FKplCuvvDKbNm1KdXV1TjrppMJjf+tb38r//u//Jkk++9nP5rvf/W6qqqp22q+qqiof+9jHkiQzZ87M/fffv02b1atXZ/To0UmSzp075/TTTy9cFwAAAADwxmvzYWqSXHLJJamsrMwLL7yQ4cOH57HHHsvSpUsza9asjBo1Kg899FCSZNSoUdusKh02bFiGDRuWiy66aKvnJ0+enEmTJiVJ3vnOd+YrX/lKVq9evcM/W+6Peu6556Z79+5JktGjR+faa6/N//zP/2Tp0qV55JFHcvrpp2fWrFlJkm9+85vp2bPnrvrnAQAAAABaQLvWLqAlDBkyJJdffnkuvfTSPPvssznrrLO2aXPmmWdmxIgR2zz//PPPJ8k2Yebtt99e//ipp57Ku971rp3WMWnSpOy3335JNn/Q1c0335wvf/nLWbx4cW688cbceOONW7Vv3759Lrzwwnzyk5/c+YsEAAAAAFrVbhGmJskpp5ySQYMGZdy4cZk+fXqWLFmSTp06ZfDgwRk+fHhOOOGERo339NNPN7umQw89NL/73e9yxx135JFHHsnzzz+fjRs3plevXjnqqKMycuTI9O/fv9nnAQAAAAB2vd0mTE2Sgw46KFdddVWj+sydO7fB55966qmWKCndu3fPeeedl/POO69FxgMAAAAAWsdusWcqAAAAAMCuJkwFAAAAAChAmAoAAAAAUIAwFQAAAACgAGEqAAAAAEABwlQAAAAAgAKEqQAAAAAABQhTAQAAAAAKEKYCAAAAABQgTAUAAAAAKECYCgAAAABQgDAVAAAAAKAAYSoAAAAAQAHCVAAAAACAAoSpAAAAAAAFCFMBAAAAAAoQpgIAAAAAFCBMBQAAAAAoQJgKAAAAAFCAMBUAAAAAoABhKgAAAABAAcJUAAAAAIAChKkAAAAAAAUIUwEAAAAAChCmAgAAAAAUIEwFAAAAAChAmAoAAAAAUIAwFQAAAACgAGEqAAAAAEABuzxMXbt2bWpra3f1aQAAAAAAdqkWD1OnTZuWb37zm/nwhz+cQw89NO985ztzxx131B//0pe+lKuvvjpLly5t6VMDAAAAAOwy7VpqoNdeey3/+q//mieffLL+uVKplIqKiq3a/fWvf80f//jH/OIXv8j3v//9fOhDH2qpEgAAAAAAdpkWWZm6cOHCfPKTn8yTTz6ZUqlU/+cf1dTUZOXKlUmSVatW5Wtf+1omTJjQEiUAAAAAAOxSLRKmfuUrX8lrr72WUqmUgw46KD/60Y8yadKkbdrttddeGTNmTA488MAkycaNGzN69OgsX768JcoAAAAAANhlmh2mPvTQQ/mv//qvVFRU5CMf+Uh+/etf56Mf/Wj23XffbU9WWZlhw4blvvvuy/HHH59k82rVe++9t7llAAAAAADsUs0OU3//+98nSbp165Z/+7d/S2Xlzofs0KFDvv/976dLly5Jkj/+8Y/NLQMAAAAAYJdqdpg6c+bMVFRU5Ljjjstee+1VuF+3bt1ywgknpFQq5bnnnmtuGQAAAAAAu1Szw9QlS5YkSfbff/9G9+3bt2+S1H8oFQAAAABAuWp2mLrnnnsmSdavX9/ovqtXr06SdO7cubllAAAAAADsUs0OU/fZZ58kydNPP93ovk888USSpHfv3s0tAwAAAABgl2p2mPqe97wnpVIpf/rTn/LMM88U7ve73/0uc+bMSUVFRY488sjmlgEAAAAAsEs1O0w97bTTUlVVlVKplFGjRuWll17aaZ8HH3wwo0ePTpJUVFTk1FNPbW4ZAAAAAAC7VLvmDnDggQfms5/9bG699dYsWLAgH//4x/PhD384hxxySH2bF154IRMnTsxzzz2XCRMmZPbs2SmVSvVB6oABA5pbBgAAAADALtXsMDVJLrrooixatCi///3vs27dujzwwAN54IEHUlFRkSS55557cs8999S3L5VKSZIjjzwyl112WUuUAAAAAACwSzX7Nv9k863611xzTb75zW+muro6pVKp/k+Srf5eKpXSsWPHnHPOORk3blzat2/fEiUAAAAAAOxSLbIytc5nP/vZfPrTn86ECRPy5z//OfPmzcuKFSuyYcOGdOvWLfvtt1+OOOKIDBs2LN27d2/JUwMAAAAA7FLNDlMXLlyYvfbaK126dEmS7LHHHjnxxBNz4oknNrs4AAAAAIBy0ezb/MeMGZP3vOc9OeecczJt2rSWqAkAAAAAoOw0O0x98sknU1tbm0cffTS1tbUtURMAAAAAQNlpdpj6f//3f/WPDz/88OYOBwAAAABQlpodpu6zzz71j5cvX97c4QAAAAAAylKzw9Qzzjij/vGNN97Y3OEAAAAAAMpSu+YO8C//8i9Zt25drr766vzqV7/Ka6+9ln/5l3/JYYcdlurq6paoEQAAAACg1TU7TP1//+//Jdm8X+q0adMyderUTJ06NUnSsWPHdO3aNVVVVTsco6KiIhMnTmxuKQAAAAAAu0yzw9T/+I//SEVFRZLU/zdJSqVSXn/99axZs2aH/Uul0lb9AAAAAADKUbPD1GRzINqUYwAAAAAAbUWzw9RnnnmmJepoEXPnzs0tt9yS6dOnZ+nSpenevXsGDx6c4cOH55hjjmnyuE899VTuuuuu/PWvf83ixYvTrl279OnTJ+9973vzuc99Lvvuu+92+5ZKpfzmN7/Jvffemzlz5qS2tjb77LNPjj322Hz+859P7969m1wXAAAAAPDGaZGVqeVg0qRJOf/881NbW1v/3OLFizN58uRMnjw5I0eOzOjRoxs97g9+8IPccsstWz23fv36PPfcc3nuuefyy1/+Mj/4wQ9ywgknbNN306ZN+frXv54HH3xwq+dffPHF/PznP8+vf/3rjB07Nu9+97sbXRcAAAAA8MaqbO0CWsLs2bNzwQUXpLa2NkOGDMn48eMzbdq03HvvvfUh5/jx43PnnXc2atw77rijPkh917velZ/97Gf505/+lN///vf5zne+k+7du+f111/P1772tcyZM2eb/tdcc019kHrmmWfmoYceyhNPPJExY8akd+/eWblyZUaNGpVFixY1818AAAAAANjVdsnK1BdeeCF/+ctfsmDBgixfvjwVFRXp2rVr+vbtm8MOOyz9+/dv0fNde+21Wbt2bfbff//cfvvt6dy5c5Kkuro6Y8eOzVe/+tU89NBDue6663LSSSdlr7322umY69evz3XXXZckGTp0aG699da0a7f5n6tHjx55+9vfnve97305+eSTU1NTkzFjxuQnP/lJff9XX301t956a5Lki1/8Yr7+9a/XH/vIRz6SQw89NKecckqWL1+eG264If/2b//WYv8eAAAAAEDLa9Ew9S9/+UvGjBmTGTNm7LBd//79881vfrNFbm+fN29epkyZkiQ555xz6oPUOhUVFbn44ovzhz/8IcuXL8+ECRNy8skn73TcP/3pT1mxYkWSZNSoUfVB6pb222+/nHbaaRk3blwef/zx1NbWpn379kk2r2qtra1Np06d8qUvfWmbvvvuu2/OOOOMjBkzJg888EC++c1vpmPHjo19+QAAAADAG6TFbvO/+eabc8YZZ2TGjBkplUo7/PPss8/m85//fMaOHdvs806dOjXJ5tD0uOOOa7BN7969M3DgwCTJxIkTC427cOHCdOrUKUnyT//0T9ttt//++ydJamtrs2zZsvrn//jHPyZJjjzyyO2uhD3++OOTJGvWrMnjjz9eqC4AAAAAoHW0yMrUX/3qV7n66qtTUVGRUqmUjh075uijj87BBx+c7t27Z9OmTVm2bFnmzJmTP/3pT1mzZk02bdqUG264IQcccEBOPPHEJp+7bq/SPn36pEePHtttd8ghh2TWrFmZNWtWoXFPP/30nH766Vm1alX22GOP7bZ78cUX6x937do1yeZgdd68eUmSwYMHb7dv//790759+9TW1mbWrFkNfogVAAAAAFAemh2mLlu2LN///veTJKVSKZ/5zGfy1a9+dburMVetWpUxY8bkjjvuSKlUyre//e28973vTXV1dZPO//LLLyfZfMv9jvTp0ydJsmjRomzYsKHB2/YbsqP9VdesWZPf/va3SZJBgwZlzz333OocO6uroqIivXv3zksvvZQFCxYUqgcAAAAAaB3NDlP/4z/+I6tXr05FRUXOPvvsfO1rX9th+7322iujR49O165dc+ONN+b111/PL3/5y5x99tlNOn/drfXdunXbYbsuXbok2Rz41tTU7HAVa1H//u//nsWLFydJRowYsU1Nyd9Xq+6srpqammbX065di+3akKqqlhsLWlI5X5vlXBuU8/VZzrXx5lbu12a518ebVzlfm+VcG5Tz9VnOtfHm1hrXZrPD1Lo9S/fdd9985StfKdzv3HPPzW9/+9u8/PLLmTJlSpPD1HXr1iXJDm/FT1K/ajRJ1q9f36Rzbem2227LL37xiyTJu971rq0+1GrL8bc8b0Pq6q57HU1VWVmR6urOO28IbVzXrj6oDZrC3IHGM2+gacwdaBpzBxqvNeZNs8PUF198MRUVFXn/+9+fqqqqwv2qqqpy3HHHZfz48fX7izZFY87ZUm677bZcccUVSZJevXrlRz/6USor/56Eb/n4jbJpUyk1Na+32HhVVZW+kFOWamrWZOPGTa1dRoPMG8qZuQONV87zJjF3KF/lPHfMG8qZuQON15LzpmvXjoVWujY7TF2xYkWSZO+9925037e+9a1JktWrVzf5/B07bp7MO1ttunbt2vrHO1vFuj2lUilXX311br755iRJz549c+utt6ZXr15btevUqVP9452tOK07vrMVrEVs2FCeX3ShJW3cuMm1Dk1g7kDjmTfQNOYONI25A43XGvOm2WFqly5dsnz58vq9Qxujrs/O9jvd2fmTZOXKlTtsV7cnaVVVVZPOt3bt2lx00UV5+OGHk2z+YKmf/exn2X///bdbU2PqauoHcAEAAAAAb4xm34/+9re/PaVSKVOmTMmmTcWT4I0bN2bKlCmpqKjI2972tiafv1+/fkmSV155ZYftFi5cmGTzbfmNvQ1/6dKl+dznPlcfpA4aNCh33313g0FqkvTu3bt+pemO6iqVSlm0aFF9HwAAAACgfDU7TD366KOTJAsWLMhNN91UuN9NN92UBQsWbDVGUwwYMCBJMn/+/KxatWq77WbPnp0kGThwYKPGf/XVV3P66afnb3/7W5LkuOOOyx133FG/RUFDKisrc+CBB2513oY8++yzqa2tTZIccsghjaoLAAAAAHhjNTtM/dSnPlW/b+n111+fq666Kq+/vv0PQnr99dfz7//+7xk7dmySzXuenn766U0+/7HHHpvk7ytdG7Jw4cLMmTMnSeOC22XLluWMM87Iiy++mCT59Kc/nRtuuGGrPVF3Vte0adO2++/xyCOPJEk6dOiQoUOHFq4LAAAAAHjjNXvP1B49euTiiy/Ot7/97VRUVOTWW2/N3Xffnfe+970ZOHBg/f6ky5cvzzPPPJPHH388r7/+ekqlUioqKnLhhRemR48eTT5/3759c/jhh+evf/1rrr/++hx77LFb7VlaKpVy5ZVXZtOmTamurs5JJ51UeOxvfetb+d///d8kyWc/+9l861vfKtz3E5/4RH7yk59kxYoVGTt2bC666KKtjr/yyiu57bbbkiSnnnpqunbtWnhsAAAAAOCN1+wwNdm8YnPFihX50Y9+lCRZvXp1JkyYkAkTJmzTtlQqJUkqKipy7rnn5l/+5V+aff5LLrkkn/rUp/LCCy9k+PDh+cY3vpFDDjkkCxcuzI9//OP6OkaNGrXNqtJhw4YlSQ499NBcddVV9c9Pnjw5kyZNSpK8853vzFe+8pWsXr16h3V06tQpFRUVSTbv5Tp8+PCMHz8+48aNy6pVq/K5z30u1dXV+ctf/pIrr7wyy5cvT/fu3XP22Wc3+98AAAAAANi1WiRMTZKzzz47hx56aMaMGZO//e1v9aFpQ+rCyaOOOqpFzj1kyJBcfvnlufTSS/Pss8/mrLPO2qbNmWeemREjRmzz/PPPP58k6dmz51bP33777fWPn3rqqbzrXe/aaR2TJk3KfvvtV//3Cy+8MPPnz8+UKVNy99135+67796qfadOnXLTTTelT58+Ox0bAAAAAGhdLRamJsm73/3u/Md//EdefvnlTJs2LQsWLMjy5ctTKpXSrVu37L///nnXu96Vt73tbS152iTJKaeckkGDBmXcuHGZPn16lixZkk6dOmXw4MEZPnx4TjjhhEaN9/TTTze7pj322CM33XRT7r///tx333155plnsmbNmuy999553/vely9+8Yvp27dvs88DAAAAAOx6LRqm1tl3331z6qmn7oqhd+iggw7a6lb9IubOndvg80899VRLlJSKioqcfPLJOfnkk1tkPAAAAACgdVS25GCrV6/OL3/5ywb3Sk2S+++/PyNHjsztt9+eVatWteSpAQAAAAB2qRYLU++///4cd9xxueyyy/L73/++wTbPPfdc/YcvffjDH87kyZNb6vQAAAAAALtUi4Spd955Zy655JKsXLkypVIpL7zwQoPtFixYkCQplUpZsmRJRo0alYkTJ7ZECQAAAAAAu1Szw9SXXnop//7v/55SqZRSqZSjjjoq5557boNtr7766vziF7/Ixz72sSTJhg0b8s1vfjNLly5tbhkAAAAAALtUs8PUu+66K+vXr09FRUW+9KUv5dZbb83xxx/fYNuqqqq8853vzNVXX51vfOMbSZKVK1fmrrvuam4ZAAAAAAC7VLPD1CeeeCJJ0r9//3z1q18t3O/MM8/MwQcfnFKplClTpjS3DAAAAACAXarZYerLL7+cioqKvPe9721032OOOSZJtrvHKgAAAABAuWh2mLpu3bokSZcuXRrdt3PnzkmS9evXN7cMAAAAAIBdqtlhao8ePZIk8+bNa3TfF198casxAAAAAADKVbPD1CFDhqRUKmXy5MlZvHhx4X41NTWZNGlSKioqcsghhzS3DAAAAACAXarZYeqwYcOSJGvWrMlXv/rVrFq1aqd91q9fnwsvvDArVqxIknzoQx9qbhkAAAAAALtUs8PUj370o3n729+eJJkxY0ZOPPHE3H777fW38G9pwYIF+cUvfpGPf/zjefTRR1NRUZG3v/3t+cQnPtHcMgAAAAAAdql2zR2gqqoqV199dUaOHJnVq1fn1VdfzZVXXpkrr7wy7du3r/9gqlWrVm31QVOlUindunXL9ddfn8rKZme6AAAAAAC7VIukmAMHDsydd96Z/v37p1Qq1f9Zv359li5dmqVLl2bdunVbHRs4cGD+4z/+o35VKwAAAABAOWv2ytQ6Bx10UH7zm9/k0UcfzcSJE/P444/ntddey4YNG+rb9OzZM//8z/+cj3/84zn++ONTUVHRUqcHAAAAANilWixMTZKKiooce+yxOfbYY+ufW758eTZs2JCuXbumQ4cOLXk6AAAAAIA3TIuGqQ3p3r17ks17pD755JN59dVX06tXr/zTP/1T2rdvv6tPDwAAAADQIlosTN2wYUMefPDB/Nd//VdGjx691bHZs2fn/PPPz4IFC+qf23vvvXPxxRfnIx/5SEuVAAAAAACwy7RImDp//vycddZZmT9/fioqKnLRRRfV39K/bNmynHnmmVmxYsVWfV599dX867/+a9asWZNTTjmlJcoAAAAAANhlKps7wKZNm3L22WfnpZdeSqlUSqlUyvz58+uP/+xnP8uKFStSUVGRdu3a5ZhjjsngwYPr+37/+9/P//3f/zW3DAAAAACAXarZYeqDDz6Y559/PhUVFenZs2e+//3vZ7/99qs//tvf/rb+8Y9+9KP89Kc/zb333puLL744SbJ69ercd999zS0DAAAAAGCXanaYOnny5CRJ+/btc9ddd+Xkk0/OHnvskSSZOXNmXn311VRUVKRfv3750Ic+VN/vjDPOyKGHHppSqZQ//vGPzS0DAAAAAGCXanaYOnPmzFRUVOSDH/xg+vbtu9WxRx99tP7xcccdt03fI444Ikny0ksvNbcMAAAAAIBdqtlh6tKlS5Mk/fr12+bYY489Vv/4Pe95zzbHu3XrlmTzh1QBAAAAAJSzZoepGzZsSLL5Nv8trVy5Mv/1X/+VJGnXrl0OP/zwbfouXrw4Seq3BQAAAAAAKFfNDlPf+ta3Jknmz5+/1fOPP/54Nm7cmIqKivzzP/9z9txzz2361oWtvXr1am4ZAAAAAAC7VLPD1CFDhqRUKuWRRx7JypUr65//5S9/Wf/4Ax/4wDb9Hn300fztb39LRUVFhgwZ0twyAAAAAAB2qXbNHeAjH/lIHn744Sxbtiz/8i//kk996lP529/+lscffzxJUlVVlY9+9KP17V977bX87ne/y7XXXlv/3Mc+9rHmlgEAAAAAsEs1O0z98Ic/nMMOOyx/+9vfMm/evFxxxRVJkoqKiiTJZz/72fTs2bO+/YknnpiVK1emVColSd73vvflmGOOaW4ZAAAAAAC7VLNv86+oqMiPf/zjvPvd706pVNrqzyc+8Yl87Wtf26r929/+9vog9eijj86YMWOaWwIAAAAAwC7X7JWpSVJdXZ3bbrstTz31VJ5++ulUVVXliCOOyMEHH7xN28MOOyxvectbcuqppza4lyoAAAAAQDlqkTC1zjvf+c68853v3GGbiy++uCVPCQAAAADwhmj2bf4AAAAAAG8GwlQAAAAAgAKEqQAAAAAABQhTAQAAAAAKEKYCAAAAABQgTAUAAAAAKECYCgAAAABQgDAVAAAAAKAAYSoAAAAAQAHCVAAAAACAAoSpAAAAAAAFCFMBAAAAAAoQpgIAAAAAFCBMBQAAAAAoQJgKAAAAAFCAMBUAAAAAoABhKgAAAABAAcJUAAAAAIAChKkAAAAAAAUIUwEAAAAAChCmAgAAAAAUIEwFAAAAAChAmAoAAAAAUIAwFQAAAACggHatXUBLmjt3bm655ZZMnz49S5cuTffu3TN48OAMHz48xxxzTIud57bbbssVV1yR8847L6NGjdpuu1KplCOOOCIrV67c6ZgzZsxI586dW6xGAAAAAKBl7TZh6qRJk3L++eentra2/rnFixdn8uTJmTx5ckaOHJnRo0c3+zxPP/10xowZU6jtSy+9VChIBQAAAADK324Rps6ePTsXXHBBamtrM2TIkFx00UXp379/FixYkJtuuikTJ07M+PHj069fv4wYMaLJ55k5c2a+8IUvZM2aNYXaz5o1K0nSvn37TJ06NR06dNhuW6tSAQAAAKC87RZ7pl577bVZu3Zt9t9//9x+++0ZOnRoqqurM2TIkIwdOzbDhg1Lklx33XVZtWpVk85x1113ZcSIEampqSncpy5MHTBgQKqrq9O5c+ft/gEAAAAAylubD1PnzZuXKVOmJEnOOeecbYLJioqKXHzxxamsrMzy5cszYcKERo0/c+bMjBgxIt/5zneyfv36DBo0qHDf2bNnJ0kGDx7cqHMCAAAAAOWnzYepU6dOTbI5ND3uuOMabNO7d+8MHDgwSTJx4sRGjf/Vr341Tz75ZCoqKjJixIjcddddhfvWhamHHnpoo84JAAAAAJSfNr9n6pw5c5Ikffr0SY8ePbbb7pBDDsmsWbPqb71vjCOPPDJf//rXGxWKLliwIMuXL0+S9OzZM1deeWWmTJmSBQsWpGPHjhk4cGA++clP5uMf/3gqKioaXRMAAAAA8MZq82Hqyy+/nCTZb7/9dtiuT58+SZJFixZlw4YNadeu2EsfN25c+vXr1+i66lalJsm5556b2tra+r/X1tZm+vTpmT59eh544IGMGTPGvqkAAAAAUObafJi6bNmyJEm3bt122K5Lly5JklKplJqamh2uYt1SU4LUJFutgO3WrVvOPffcHH300encuXOeeeaZ/PjHP86f//znPProo7nwwgtz4403Nuk8W2rXruV2baiqavM7QLCbKudrs5xrg3K+Psu5Nt7cyv3aLPf6ePMq52uznGuDcr4+y7k23txa49ps82HqunXrkiR77LHHDtvtueee9Y/Xr1+/S2tKktWrV6dLly7p3Llz7rnnnvTq1av+2Hve854ceeSROf/88zNhwoRMmjQpkydP3u6er0VUVlakutrqVnZ/Xbt2bO0SoE0yd6DxzBtoGnMHmsbcgcZrjXnT5sPUqqqq1i6hQaNHj87o0aOzfv36dOjQYZvjVVVVueyyyzJlypTU1tbmV7/6VbPC1E2bSqmpeb05Jf9DfZW+kFOWamrWZOPGTa1dRoPMG8qZuQONV87zJjF3KF/lPHfMG8qZuQON15LzpmvXjoVWurb5MLVjx82TeWerTdeuXVv/eGerWFtSQ0Fqnb333jtDhgzJjBkz8vTTTzf7XBs2lOcXXWhJGzducq1DE5g70HjmDTSNuQNNY+5A47XGvGnzm17U7YW6cuXKHbarqalJsnlF6M72V30j1X0wVt3erwAAAABAeWrzYWrdB0S98sorO2y3cOHCJEmvXr1SWfnGvexSqbTD47W1tUn+vsIWAAAAAChPbT5MHTBgQJJk/vz5WbVq1XbbzZ49O0kycODAXV7TokWL8oEPfCCHHXZYxo4du8O2zz33XJLkgAMO2OV1AQAAAABN1+bD1GOPPTZJsnHjxkyZMqXBNgsXLsycOXOSJEcfffQur6lnz55ZsWJF1qxZk0cffXS77WbPnp158+YlSY455phdXhcAAAAA0HRtPkzt27dvDj/88CTJ9ddfv83eqaVSKVdeeWU2bdqU6urqnHTSSbu8pqqqqnzsYx9LksycOTP333//Nm1Wr16d0aNHJ0k6d+6c008/fZfXBQAAAAA0XZsPU5PkkksuSWVlZV544YUMHz48jz32WJYuXZpZs2Zl1KhReeihh5Iko0aNSqdOnbbqO2zYsAwbNiwXXXRRi9Z07rnnpnv37kmS0aNH59prr83//M//ZOnSpXnkkUdy+umnZ9asWUmSb37zm+nZs2eLnh8AAAAAaFntWruAljBkyJBcfvnlufTSS/Pss8/mrLPO2qbNmWeemREjRmzz/PPPP58kLR5m9urVKzfffHO+/OUvZ/Hixbnxxhtz4403btWmffv2ufDCC/PJT36yRc8NAAAAALS83SJMTZJTTjklgwYNyrhx4zJ9+vQsWbIknTp1yuDBgzN8+PCccMIJb3hNhx56aH73u9/ljjvuyCOPPJLnn38+GzduTK9evXLUUUdl5MiR6d+//xteFwAAAADQeLtNmJokBx10UK666qpG9Zk7d26jz9OYPt27d895552X8847r9HnAQAAAADKx26xZyoAAAAAwK4mTAUAAAAAKECYCgAAAABQgDAVAAAAAKAAYSoAAAAAQAHCVAAAAACAAoSpAAAAAAAFCFMBAAAAAAoQpgIAAAAAFCBMBQAAAAAoQJgKAAAAAFCAMBUAAAAAoABhKgAAAABAAcJUAAAAAIAChKkAAAAAAAUIUwEAAAAAChCmAgAAAAAUIEwFAAAAAChAmAoAAAAAUIAwFQAAAACgAGEqAAAAAEABwlQAAAAAgAKEqQAAAAAABQhTAQAAAAAKEKYCAAAAABQgTAUAAAAAKECYCgAAAABQgDAVAAAAAKAAYSoAAAAAQAHCVAAAAACAAoSpAAAAAAAFCFMBAAAAAAoQpgIAAAAAFCBMBQAAAAAoQJgKAAAAAFCAMBUAAAAAoABhKgAAAABAAcJUAAAAAIAChKkAAAAAAAUIUwEAAAAAChCmAgAAAAAUIEwFAAAAAChAmAoAAAAAUIAwFQAAAACgAGEqAAAAAEABwlQAAAAAgAKEqQAAAAAABQhTAQAAAAAKEKYCAAAAABQgTAUAAAAAKECYCgAAAABQgDAVAAAAAKAAYSoAAAAAQAHCVAAAAACAAoSpAAAAAAAFCFMBAAAAAArYrcLUuXPn5sILL8wxxxyTwYMH533ve1++9KUv5dFHH23R89x222056KCDcv311++0balUyv3335/PfOYzOfzww3PooYfmQx/6UC6//PIsXLiwResCAAAAAHaddq1dQEuZNGlSzj///NTW1tY/t3jx4kyePDmTJ0/OyJEjM3r06Gaf5+mnn86YMWMKtd20aVO+/vWv58EHH9zq+RdffDE///nP8+tf/zpjx47Nu9/97mbXBQAAAADsWrvFytTZs2fnggsuSG1tbYYMGZLx48dn2rRpuffee3PCCSckScaPH58777yzWeeZOXNmvvCFL2TNmjWF2l9zzTX1QeqZZ56Zhx56KE888UTGjBmT3r17Z+XKlRk1alQWLVrUrLoAAAAAgF1vtwhTr7322qxduzb7779/br/99gwdOjTV1dUZMmRIxo4dm2HDhiVJrrvuuqxatapJ57jrrrsyYsSI1NTUFGr/6quv5tZbb02SfPGLX8zFF1+cfv365S1veUs+8pGP5M4770z37t1TU1OTG264oUk1AQAAAABvnDYfps6bNy9TpkxJkpxzzjnp3LnzVscrKipy8cUXp7KyMsuXL8+ECRMaNf7MmTMzYsSIfOc738n69eszaNCgQv3uuOOO1NbWplOnTvnSl760zfF99903Z5xxRpLkgQceKLzaFQAAAABoHW0+TJ06dWqSzaHpcccd12Cb3r17Z+DAgUmSiRMnNmr8r371q3nyySdTUVGRESNG5K677irU749//GOS5Mgjj8xee+3VYJvjjz8+SbJmzZo8/vjjjaoLAAAAAHhjtfkwdc6cOUmSPn36pEePHtttd8ghhyRJZs2a1ehzHHnkkbnnnnty2WWXZc8999xp+9ra2sybNy9JMnjw4O2269+/f9q3b9/kugAAAACAN0671i6guV5++eUkyX777bfDdn369EmSLFq0KBs2bEi7dsVe+rhx49KvX79G1VR3jp3VVVFRkd69e+ell17KggULGnUOAAAAAOCN1ebD1GXLliVJunXrtsN2Xbp0SZKUSqXU1NTscBXrlhobpG5ZU5J07dq1UF1FP9hqR9q1a7mFxlVVbX7RMrupcr42y7k2KOfrs5xr482t3K/Ncq+PN69yvjbLuTYo5+uznGvjza01rs02H6auW7cuSbLHHnvssN2Wt+evX79+l9a05fg72xagru6619FUlZUVqa7uvPOG0MZ17dqxtUuANsncgcYzb6BpzB1oGnMHGq815k2bD1Orqqpau4RtVFa+8an4pk2l1NS83mLjVVVV+kJOWaqpWZONGze1dhkNMm8oZ+YONF45z5vE3KF8lfPcMW8oZ+YONF5LzpuuXTsWWuna5sPUjh03T+adrTZdu3Zt/eOdrWJtrk6dOtU/3tmK07rjRT7Yamc2bCjPL7rQkjZu3ORahyYwd6DxzBtoGnMHmsbcgcZrjXnT5je9qNtzdOXKlTtsV7cnaVVV1U73V22pmhpTV3V19S6tCQAAAABonjYfptZ9QNQrr7yyw3YLFy5MkvTq1WuX34bfu3fv+pWmO6qrVCpl0aJF9X0AAAAAgPLV5sPUAQMGJEnmz5+fVatWbbfd7NmzkyQDBw7c5TVVVlbmwAMP3Oq8DXn22WdTW1ubJDnkkEN2eV0AAAAAQNO1+TD12GOPTZJs3LgxU6ZMabDNwoULM2fOnCTJ0Ucf/YbWNW3atLz+esMfDPXII48kSTp06JChQ4e+IXUBAAAAAE3T5sPUvn375vDDD0+SXH/99dvsUVoqlXLllVdm06ZNqa6uzkknnfSG1PWJT3wiVVVVWbFiRcaOHbvN8VdeeSW33XZbkuTUU09N165d35C6AAAAAICmafNhapJccsklqayszAsvvJDhw4fnsccey9KlSzNr1qyMGjUqDz30UJJk1KhR6dSp01Z9hw0blmHDhuWiiy5q0Zr69euX4cOHJ0nGjRuXyy67LPPmzcvSpUvz8MMPZ8SIEVm+fHm6d++es88+u0XPDQAAAAC0vHatXUBLGDJkSC6//PJceumlefbZZ3PWWWdt0+bMM8/MiBEjtnn++eefT5L07Nmzxeu68MILM3/+/EyZMiV333137r777q2Od+rUKTfddFP69OnT4ucGAAAAAFrWbhGmJskpp5ySQYMGZdy4cZk+fXqWLFmSTp06ZfDgwRk+fHhOOOGEN7ymPfbYIzfddFPuv//+3HfffXnmmWeyZs2a7L333nnf+96XL37xi+nbt+8bXhcAAAAA0Hi7TZiaJAcddFCuuuqqRvWZO3duo8/TmD4VFRU5+eSTc/LJJzf6PAAAAABA+dgt9kwFAAAAANjVhKkAAAAAAAUIUwEAAAAAChCmAgAAAAAUIEwFAAAAAChAmAoAAAAAUIAwFQAAAACgAGEqAAAAAEABwlQAAAAAgAKEqQAAAAAABQhTAQAAAAAKEKYCAAAAABQgTAUAAAAAKECYCgAAAABQgDAVAAAAAKAAYSoAAAAAQAHCVAAAAACAAoSpAAAAAAAFCFMBAAAAAAoQpgIAAAAAFCBMBQAAAAAoQJgKAAAAAFCAMBUAAAAAoABhKgAAAABAAcJUAAAAAIAChKkAAAAAAAUIUwEAAAAAChCmAgAAAAAUIEwFAAAAAChAmAoAAAAAUIAwFQAAAACgAGEqAAAAAEABwlQAAAAAgAKEqQAAAAAABQhTAQAAAAAKEKYCAAAAABQgTAUAAAAAKECYCgAAAABQgDAVAAAAAKAAYSoAAAAAQAHCVAAAAACAAoSpAAAAAAAFCFMBAAAAAAoQpgIAAAAAFCBMBQAAAAAoQJgKAAAAAFCAMBUAAAAAoABhKgAAAABAAcJUAAAAAIAChKkAAAAAAAUIUwEAAAAAChCmAgAAAAAUIEwFAAAAAChAmAoAAAAAUIAwFQAAAACgAGEqAAAAAEAB7Vq7gJY0d+7c3HLLLZk+fXqWLl2a7t27Z/DgwRk+fHiOOeaYJo+7YMGC3HzzzXnsscfy6quvZq+99spBBx2U0047LSeeeOJ2+5VKpRxxxBFZuXLlTs8xY8aMdO7cuck1AgAAAAC71m4Tpk6aNCnnn39+amtr659bvHhxJk+enMmTJ2fkyJEZPXp0o8edOXNmzjjjjKxevbr+uWXLlmXatGmZNm1aHn744VxzzTVp127bf8qXXnqpUJAKAAAAAJS/3SJMnT17di644ILU1tZmyJAhueiii9K/f/8sWLAgN910UyZOnJjx48enX79+GTFiROFxFy1alLPPPjurV6/OAQcckEsuuSSHHnpolixZkp///Oe555578oc//CFXX311vvGNb2zTf9asWUmS9u3bZ+rUqenQocN2z2VVKgAAAACUt91iz9Rrr702a9euzf7775/bb789Q4cOTXV1dYYMGZKxY8dm2LBhSZLrrrsuq1atKjzuT3/60yxbtixdu3bN+PHj8/73vz89evRI//7982//9m/5/Oc/nyQZP358FixYsE3/ujB1wIABqa6uTufOnbf7BwAAAAAob20+TJ03b16mTJmSJDnnnHO2CSYrKipy8cUXp7KyMsuXL8+ECRMKjVtTU5N77703STJy5Mjsvffe27Q577zz0rVr19TW1ub+++/f5vjs2bOTJIMHD27EKwIAAAAAylGbD1OnTp2aZHNoetxxxzXYpnfv3hk4cGCSZOLEiYXGnT59etatW5ckOf744xts07lz5xx11FHbHbcuTD300EMLnRMAAAAAKF9tPkydM2dOkqRPnz7p0aPHdtsdcsghSf5+633Rcdu1a5eDDz54u+3qQtpnn30269evr39+wYIFWb58eZKkZ8+eufLKKzNs2LAMHjw4RxxxRD772c/mt7/9bUqlUqF6AAAAAIDW1eY/gOrll19Okuy33347bNenT58kmz9UasOGDWnXbscvvW7cffbZJ1VVVTsdd+PGjVm0aFHe9ra3Jfn7qtQkOffcc1NbW1v/99ra2kyfPj3Tp0/PAw88kDFjxtg3FQAAAADKXJsPU5ctW5Yk6dat2w7bdenSJUlSKpVSU1Ozw1WsTRk3SVasWFH/eMsVsN26dcu5556bo48+Op07d84zzzyTH//4x/nzn/+cRx99NBdeeGFuvPHGHZ6niHbtWm6hcVVVm1+0zG6qnK/Ncq4Nyvn6LOfaeHMr92uz3Ovjzaucr81yrg3K+fos59p4c2uNa7PNh6l1+5ruscceO2y355571j/e8nb8lhy3rk+SrF69Ol26dEnnzp1zzz33pFevXvXH3vOe9+TII4/M+eefnwkTJmTSpEmZPHnydvd8LaKysiLV1Va3svvr2rVja5cAbZK5A41n3kDTmDvQNOYONF5rzJs2H6bu6Bb81hx39OjRGT16dNavX58OHTo0OP5ll12WKVOmpLa2Nr/61a+aFaZu2lRKTc3rzSn5H+qr9IWcslRTsyYbN25q7TIaZN5QzswdaLxynjeJuUP5Kue5Y95QzswdaLyWnDddu3YstNK1zYepHTtunsw7W226du3a+sc7W2265bhbrjbd2bhbrlKt01CQWmfvvffOkCFDMmPGjDz99NM7rWlnNmwozy+60JI2btzkWocmMHeg8cwbaBpzB5rG3IHGa4150+Y3vajbs3TlypU7bFdTU5Nk84rQne2DmiRdu3ZNkqxatarQuElSXV2903H/Ud0HWNXt0QoAAAAAlKc2H6b269cvSfLKK6/ssN3ChQuTJL169Upl5c5f9gEHHFDfr1Qq7XTcdu3apWfPntsc31HfJKmtrU3y95WwAAAAAEB5avNh6oABA5Ik8+fP3+Eq0tmzZydJBg4c2Khx169fn+eee26n477jHe+ov6V/0aJF+cAHPpDDDjssY8eO3eF56sauC28BAAAAgPLU5sPUY489NkmycePGTJkypcE2CxcuzJw5c5IkRx99dKFxhw4dWr9a9JFHHmmwzeuvv55p06ZtM27Pnj2zYsWKrFmzJo8++uh2zzF79uzMmzcvSXLMMccUqgsAAAAAaB1tPkzt27dvDj/88CTJ9ddfv83eqaVSKVdeeWU2bdqU6urqnHTSSYXG7dy5cz74wQ8mSX72s581uI3A9ddfn5qamrRv3z6f+cxn6p+vqqrKxz72sSTJzJkzc//992/Td/Xq1Rk9enT9uU4//fRCdQEAAAAAraPNh6lJcskll6SysjIvvPBChg8fnsceeyxLly7NrFmzMmrUqDz00ENJklGjRqVTp05b9R02bFiGDRuWiy66aJtxL7jggnTq1CnLly/PiBEj8vDDD2fp0qWZN29eLrvssvzsZz9LkowcOTL77LPPVn3PPffcdO/ePUkyevToXHvttfmf//mfLF26NI888khOP/30zJo1K0nyzW9+s8H9VgEAAACA8tGutQtoCUOGDMnll1+eSy+9NM8++2zOOuusbdqceeaZGTFixDbPP//880nSYJjZu3fvXHfddRk1alReeeWVfOUrX9mmzbBhw3LhhRdu83yvXr1y880358tf/nIWL16cG2+8MTfeeONWbdq3b58LL7wwn/zkJwu/VgAAAACgdewWYWqSnHLKKRk0aFDGjRuX6dOnZ8mSJenUqVMGDx6c4cOH54QTTmjSuEcffXQefPDB/PSnP81jjz2WV199NR06dMjBBx+cU089NaecckoqKioa7HvooYfmd7/7Xe6444488sgjef7557Nx48b06tUrRx11VEaOHJn+/fs352UDAAAAAG+Q3SZMTZKDDjooV111VaP6zJ07d6dt9t1333znO99pUk3du3fPeeedl/POO69J/QEAAACA8rBb7JkKAAAAALCrCVMBAAAAAAoQpgIAAAAAFCBMBQAAAAAoQJgKAAAAAFCAMBUAAAAAoABhKgAAAABAAcJUAAAAAIAChKkAAAAAAAUIUwEAAAAAChCmAgAAAAAUIEwFAAAAAChAmAoAAAAAUIAwFQAAAACgAGEqAAAAAEABwlQAAAAAgAKEqQAAAAAABQhTAQAAAAAKEKYCAAAAABQgTAUAAAAAKECYCgAAAABQgDAVAAAAAKAAYSoAAAAAQAHCVAAAAACAAoSpAAAAAAAFCFMBAAAAAAoQpgIAAAAAFCBMBQAAAAAoQJgKAAAAAFCAMBUAAAAAoABhKgAAAABAAcJUAAAAAIAChKkAAAAAAAUIUwEAAAAAChCmAgAAAAAUIEwFAAAAAChAmAoAAAAAUIAwFQAAAACgAGEqAAAAAEABwlQAAAAAgAKEqQAAAAAABQhTAQAAAAAKEKYCAAAAABQgTAUAAAAAKECYCgAAAABQgDAVAAAAAKAAYSoAAAAAQAHCVAAAAACAAoSpAAAAAAAFCFMBAAAAAAoQpgIAAAAAFCBMBQAAAAAoQJgKAAAAAFCAMBUAAAAAoABhKgAAAABAAcJUAAAAAIAC2rV2AS1p7ty5ueWWWzJ9+vQsXbo03bt3z+DBgzN8+PAcc8wxTR53wYIFufnmm/PYY4/l1VdfzV577ZWDDjoop512Wk488cQd9i2VSvnNb36Te++9N3PmzEltbW322WefHHvssfn85z+f3r17N7kuAAAAAOCNs9uEqZMmTcr555+f2tra+ucWL16cyZMnZ/LkyRk5cmRGjx7d6HFnzpyZM844I6tXr65/btmyZZk2bVqmTZuWhx9+ONdcc03atdv2n3LTpk35+te/ngcffHCr51988cX8/Oc/z69//euMHTs27373uxtdFwAAAADwxtotbvOfPXt2LrjggtTW1mbIkCEZP358pk2blnvvvTcnnHBCkmT8+PG58847GzXuokWLcvbZZ2f16tU54IAD8pOf/CR/+tOf8rvf/S6f+tSnkiR/+MMfcvXVVzfY/5prrqkPUs8888w89NBDeeKJJzJmzJj07t07K1euzKhRo7Jo0aJmvHoAAAAA4I2wW4Sp1157bdauXZv9998/t99+e4YOHZrq6uoMGTIkY8eOzbBhw5Ik1113XVatWlV43J/+9KdZtmxZunbtmvHjx+f9739/evTokf79++ff/u3f8vnPfz7J5qB2wYIFW/V99dVXc+uttyZJvvjFL+biiy9Ov3798pa3vCUf+chHcuedd6Z79+6pqanJDTfc0EL/EgAAAADArtLmw9R58+ZlypQpSZJzzjknnTt33up4RUVFLr744lRWVmb58uWZMGFCoXFrampy7733JklGjhyZvffee5s25513Xrp27Zra2trcf//9Wx274447Ultbm06dOuVLX/rSNn333XffnHHGGUmSBx54IGvWrClUFwAAAADQOtp8mDp16tQkm0PT4447rsE2vXv3zsCBA5MkEydOLDTu9OnTs27duiTJ8ccf32Cbzp0756ijjmpw3D/+8Y9JkiOPPDJ77bVXg/3rxl2zZk0ef/zxQnUBAAAAAK2jzYepc+bMSZL06dMnPXr02G67Qw45JEkya9asRo3brl27HHzwwdttVxfSPvvss1m/fn2SpLa2NvPmzUuSDB48eLt9+/fvn/bt2zeqLgAAAACgdbT5MPXll19Okuy33347bNenT58kmz9UasOGDYXH3WeffVJVVbXTcTdu3Fj/QVJbnmNHdVVUVKR3795Jss2eqwAAAABAeWnX2gU017Jly5Ik3bp122G7Ll26JElKpVJqamp2uIq1KeMmyYoVK7bqmyRdu3Yt1L+mpmaH7XamsrIiPXp03nnDgioqNv/3G2d9IBs3bmqxcaGpqqo2/+6nW7eOKZVauZjtMG8oR+YONF5bmDeJuUP5aQtzx7yhHJk70Hi7Yt5UVlYUatfmw9S6fU332GOPHbbbc8896x/X3Y7f0uPW9dly/C2PN6Ru/Lq+TVVRUZGqqmL/0xuj2147rh/eaJWV5b+g3ryhHJk70HhtYd4k5g7lpy3MHfOGcmTuQOO1xrwp/5m6Ezu6Bb+1xm0LXwABAAAAgMZp86lfx44dk+x8tenatWvrH+9stemW4+5sxeiW49atQu3UqVP9czvrX3d8ZytYAQAAAIDW1ebD1Lo9R1euXLnDdnV7klZVVe10H9Tk73udrlq1qtC4SVJdXb1VTY2pq64vAAAAAFCe2nyY2q9fvyTJK6+8ssN2CxcuTJL06tWr0G34BxxwQH2/0g52sq0bt127dunZs2eSpHfv3vUrTXdUV6lUyqJFi+r7AAAAAADlq82HqQMGDEiSzJ8/f4erSGfPnp0kGThwYKPGXb9+fZ577rmdjvuOd7wjHTp0SLJ5z9QDDzxwq+MNefbZZ1NbW5skOeSQQwrVBQAAAAC0jjYfph577LFJko0bN2bKlCkNtlm4cGHmzJmTJDn66KMLjTt06ND6fVMfeeSRBtu8/vrrmTZtWoPj1tU1bdq0vP766w32rxu3Q4cOGTp0aKG6AAAAAIDW0ebD1L59++bwww9Pklx//fXb7FFaKpVy5ZVXZtOmTamurs5JJ51UaNzOnTvngx/8YJLkZz/7WYO3619//fWpqalJ+/bt85nPfGarY5/4xCdSVVWVFStWZOzYsdv0feWVV3LbbbclSU499dT6PVoBAAAAgPLU5sPUJLnkkktSWVmZF154IcOHD89jjz2WpUuXZtasWRk1alQeeuihJMmoUaPSqVOnrfoOGzYsw4YNy0UXXbTNuBdccEE6deqU5cuXZ8SIEXn44YezdOnSzJs3L5dddll+9rOfJUlGjhyZffbZZ6u+/fr1y/Dhw5Mk48aNy2WXXZZ58+Zl6dKlefjhhzNixIgsX7483bt3z9lnn70r/lkAAAAAgBZUUdrRpyu1Iffdd18uvfTSbNiwocHjZ555Zi6++OJtnj/ooIOSbL6tf/z48dscnzp1akaNGpU1a9Y0OO6wYcNyzTXXNPihVuvWrctXvvKV7W4/0KlTp/zsZz/LO9/5zu29LAAAAACgTOw2YWqSzJ07N+PGjcv06dOzZMmSdOrUKYMHD87w4cNzwgknNNhnZ2Fqkrz88sv56U9/msceeyyvvvpqOnTokIMPPjinnnpqTjnllFRUVGy3plKplPvvvz/33XdfnnnmmaxZsyZ777133ve+9+WLX/xi+vbt2/wXDgAAAADscrtVmAoAAAAAsKvsFnumAgAAAADsasJUAAAAAIAC2rV2AdAavve972X8+PG54oorcsopp7R2OVmwYEFuvvnm+n1599prrxx00EE57bTTcuKJJ+60/5w5c/Lzn/8806dPz+LFi9OhQ4ccdNBBOfnkk3Pqqac2+AFp0Fi7y7wplUo54ogjsnLlyp2eY8aMGencuXNLls1uYu7cubnlllsyffr0LF26NN27d6/fp/2YY45p8rjNeT8olUr5zW9+k3vvvTdz5sxJbW1t9tlnnxx77LH5/Oc/n969e++yc/+jVatW5cQTT8zChQszd+7cRvXlzW13nFv/6LbbbssVV1yR8847L6NGjWrya4KiynFe/SPvG7Q1u2pe/SPvGeXJnqm86UycODGjRo3Kpk2byiIUmjlzZs4444ysXr26weMf+tCHcs0116Rdu4Z/9/HTn/40Y8aMycaNGxs8/t73vjc//vGPs8cee7RYzbz57E7z5sUXX8yHPvShQucRptKQSZMm5fzzz09tbW2Dx0eOHJnRo0c3etzmXNebNm3K17/+9Tz44IMN9u3SpUvGjh2bd7/73S1+7oZq+drXvpaHHnooSfxQTGG749z6R08//XQ+97nPZc2aNX4w5g1RjvPqH3nfoK3ZVfPqH3nPKF+Wq/Gm8sgjj+SrX/1qNm3a1NqlJEkWLVqUs88+O6tXr84BBxyQn/zkJ/nTn/6U3/3ud/nUpz6VJPnDH/6Qq6++usH+99xzT66++ups3Lgxhx12WG699dY8/vjj+eUvf5kPf/jDSZLHH388P/jBD96w18TuZ3ebN7NmzUqStG/fPtOmTcuMGTO2+0eQyj+aPXt2LrjggtTW1mbIkCEZP358pk2blnvvvTcnnHBCkmT8+PG58847GzVuc6/ra665pj7sOfPMM/PQQw/liSeeyJgxY9K7d++sXLkyo0aNyqJFi1r83Fuqra3NJZdcUv8DMRS1O86tfzRz5sx84QtfyJo1axr1GqCpynVebcn7Bm3NrppX/8h7RpkrwZvAxo0bS9dee23p4IMPLg0YMKD+z69+9atWres73/lOacCAAaV3vetdpVdffXWb41deeWVpwIABpUGDBpXmz5+/1bH/+7//Kx1++OGlAQMGlEaOHFlas2bNNv2/8pWvlAYMGFAaPHhwadmyZbvqZbCb2h3nTalUKl111VWlAQMGlE4++eQ3olx2M2effXZpwIABpQ9+8IOlVatWbXVs06ZN9V93hw4dWlq5cmXhcZtzXS9atKg0aNCg0oABA0o/+MEPtum7YMGC0tChQ0sDBgwojR49ukXPvaWFCxeWPv3pT2/19WLAgAFFXj7slnNrS3feeWdp8ODBW82N6667rvDrgKYox3m1Je8btEW7al5tyXtG+bMyld3e1KlTc9JJJ+WGG27Ipk2bMmjQoNYuKUlSU1OTe++9N8nm2wD23nvvbdqcd9556dq1a2pra3P//fdvdez+++/PypUrs8cee+Tyyy/PnnvuuU3/M844I0nSrl27zJ49u8VfA7uv3XXeJKmfC4MHD96ltbL7mTdvXqZMmZIkOeecc7ZZuVxRUZGLL744lZWVWb58eSZMmFBo3OZe13fccUdqa2vTqVOnfOlLX9qm77777lv/fvDAAw9stcKhJebU2rVrc+ONN+YjH/lInnrqqbRr1y4HH3xwodcOye45t+rMnDkzI0aMyHe+852sX7++bN5P2f2V67xKvG/Qdu2qeVXHe0bbIUxlt/eFL3whzz77bNq3b59Ro0ZlzJgxjer/+uuv5+abb86nPvWpHHHEERkyZEiOP/74jB49OvPmzWtyXdOnT8+6deuSJMcff3yDbTp37pyjjjoqyeY9K7f0n//5n0mSj3zkI+nbt2+D/d/5zndm5syZeeqpp/Ke97ynybXy5rO7zpvk72HqoYce2uQ6eHOaOnVqks3fKB933HENtundu3cGDhyYpOHrryHNva7/+Mc/JkmOPPLI7LXXXg32rxt3zZo1efzxx1vs3Mnm96Nrr702r7/+evr27Ztbb721/jY3KGJ3nFt1vvrVr+bJJ59MRUVFRowYkbvuuqtQ7dBc5TqvEu8btF27al7V8Z7RdghT2e1VVFTkQx/6UH7zm9/kvPPOa9Qn28+dOzcf+9jH8sMf/jBPP/10ampqsn79+ixYsCC//OUv8/GPfzzjx49vUl1z5sxJkp3+JrbuC/Gzzz6b9evXJ0nWr19fvzH7P37gwcaNG7fa29IHT9EUu+O8STZ/6uzy5cuTJD179syVV16ZYcOGZfDgwTniiCPy2c9+Nr/97W9T8tmMNKDu+uvTp0969Oix3XaHHHJIkr/vz1t03KZc17W1tfW/oNjRauv+/funffv229TV3DlVp2vXrvnqV7+aBx54IEOHDt3uONCQ3XFubenII4/MPffck8suu6zBO4lgVyjHebUl7xu0RbtqXm3Je0bbsPOP1oM27ve//3369evX6H6vvfZazjzzzCxZsiQ9evTIqFGjcuyxx6ZTp0559tln85Of/CSPP/54vve976VHjx752Mc+1qjxX3755STJPvvsk6qqqu2269OnT5LNIemiRYvytre9Lc8//3z9Jwfuv//+ef311/Ozn/0sDz74YF566aUkyYABA3Laaafl05/+9A7Hh4bsjvMmyVbbXZx77rlbfQJnbW1tpk+fnunTp+eBBx7ImDFjfAAVW6m7/vbbb78dtqu7/hYtWpQNGzbs9JOMm3Nd151jZ3VVVFSkd+/eeemll7JgwYIWOXed9773vfnjH/+YTp067fB1wvbsjnOrzrhx45r0fgrNVY7zqo73DdqqXTWv6njPaDusTGW319QvRj/84Q+zZMmSdOvWLXfffXeGDx+efffdN9XV1TnyyCNzyy231N/acvnll9ff7lLUsmXLkiTdunXbYbsuXbrUP16xYkWSZPHixfXPrVmzJv/f//f/5frrr8///u//ZsOGDdmwYUNmz56d73znO/nCF76Q119/vVG1we44b5KtfzvcrVu3fPvb387EiRPzpz/9Kbfeemv9yohHH300F154YaNqY/fX2OuvVCqlpqamxcdN/n5d1/VNNq/yKdJ/y5qaO6eSpFevXn4gpll2x7lVxw/FtJZynFd1vG/QVu2qeVXHe0bbIUyFBqxYsaJ+T9LPfOYzW/0mtU5lZWW+8Y1vJEmWLFmSSZMmNeocdSHSzm7D33Jpf12f1atX1z/3jW98I/Pnz8/ZZ5+diRMn5r/+67/yu9/9LieeeGKS5Iknnshll13WqNqgKcp93iSb506XLl2yzz775L777svw4cPTt2/f9OjRI+95z3ty22235YMf/GCSZNKkSZk8eXKj6mP31pTrr6FbG1ti3Lo+W46/s1vB6sbfck40d05BS9gd5xa0tnKcV9DW7ap5RdsjTIUGPPXUU/W3/x588MFZvXp1g3/e+ta3pmfPnkmSv/71r406R3Nuvd/y02IXL16c7373u/nXf/3X9O3bNx06dEj//v1z9dVX57TTTkuy+RNmm7JfCzRGuc+bJBk9enSefPLJTJgwIb169Wpw/Msuu6x+/7tf/epXzTofu5ddtWVKc8ZtzH7GLX1uaCm749yC1laO8wraOtc/deyZCg2YP39+/eNRo0YV6rNw4cIkm/cFWrt27Xbb7bnnnqmqqkrHjh2T7Pw3tVuOVfcbrrq+SXLQQQfVh6b/6IILLsh9992XjRs35g9/+EMGDRpU6LVAU5T7vNlShw4dttt37733zpAhQzJjxow8/fTTOzwPby5119/OVhhsef0V+RDA5lzXW94mubP+dce3nBMtNaegOXbHuQWtrRznFbR1u2pe0fYIU6EBq1atanKfJ598Mp/97Ge32+7nP/95jjzyyPr9t3Z2ri33WKmurk6SrT4U58gjj9xu3x49euTAAw/Ms88+W/+JtLCrlPu8aYw+ffpkxowZW+2ZB3X7X61cuXKH7equv6qqqp3uqZWkWdf1lnvSFa1ryznxRs0p2JHdcW5BayvHeQVt3a6aV7Q9wlRowJYrP//zP/8zBx54YIuf44ADDkiyeWVeqVRKRUVFg+3qVu61a9eu/tboLT89cGe/6aoLXne06g9aQrnPmy3tqG+S+u0KtnxN0K9fv/z5z3/OK6+8ssN2dddfr169Ct0q3Jzrunfv3tlzzz2zdu3aHdZVKpWyaNGi+j4tcW5oKbvj3ILWVo7zCtq6XTWvaHuEqdCALb8Zfvnll3cYCv3jNxFHHnlk5s6du9NzDBgwIMnmWwSee+659O/fv8F2s2fPTpK84x3vqL81+W1ve1s6deqU119/fatbqxuyZMmSJGlwf0hoSeU+bxYtWpThw4dn6dKlOeuss3a4FcFzzz2X5O8/MEDy9+tv/vz5WbVqVfbaa68G29VdfwMHDmzUuE25risrK3PggQdm1qxZ9ccb8uyzz9b/kuCQQw5pkXNDS9kd5xa0tnKcV9DW7ap5RdsjIocGHH744fW/QdrRp42//PLLeec735kTTjghP//5zxt1jqFDh9avenvkkUcabPP6669n2rRpSZKjjz66/vnKysocc8wxSZLHHnssq1evbrD/Sy+9lJdeeilJcthhhzWqPmiscp83PXv2zIoVK7JmzZo8+uij2z3H7Nmz67fFqJtnkCTHHnvs/6+9Ow+q6jrgOP5jeQhoENGokRBLAnHBpRqVuiW4BquNip1iEBqNRq1ba6QNiZrEmXSMNcRpYOqSYKJ1XDNKasQdY6NTpRgbd1QWFTVqQBQBZe0fDHd48h48BQTl+/mL+86555x3uXcYf557jqTSNX6/++47i3WuXr2q06dPSzK//ypTnfu6/LgOHTqk3Nxci+eXtevk5KRevXrVWN9ATXgSny2grtXX5wp4nNXWc4XHD2EqYEGLFi00YMAASaW7eVvacby4uFgLFy5UXl6eLl26pE6dOj1QH40bN9aQIUMkSStXrrT4qkBUVJRu374tk8mk0NBQs7Lg4GBJpesVffzxx1bHJ5VuohAYGPhA4wMeVH1/bhwcHDR8+HBJ0rFjxxQbG1vh3JycHM2bN8/oa+zYsQ80PjzZvLy89NJLL0kqvc/uXy+rpKREH3/8sYqLi9WsWTONHDnSpnar+/fgtddek4ODg27duqXo6OgK5165ckVfffWVJGnMmDHGenc10TdQE57EZwuoa/X1uQIeZ7X1XOHxQ5gKWPHOO++oSZMmKigo0MSJE7V06VKlpaUpMzNTiYmJmjp1qnbv3i1JGjFihLp37/7Afbz99ttydXVVVlaWxo0bp507dyozM1PJycl6//33tXLlSklSWFiYWrdubXZunz599Nprr0mSNm7cqGnTphkb5hw7dkxTpkwx/rc4PDzcbCMFoLbU9+dm+vTpcnd3lyTNmzdPf//733Xu3DllZmYqPj5eY8eO1cmTJyVJ7733Hmt8oYJ3331X9vb2SktLU0hIiA4cOKDMzEydPHlSM2fO1I4dOyRJM2fONNsNXJICAwMVGBiov/zlLxXarc597e3trZCQEElSTEyM3n//fSUnJyszM1M7d+7UuHHjlJWVJXd3d02ePLlG+wZqypP4bAF1rT4+V8DjrraeKzxe7EpKSkrqehDAo5Senq5BgwZJkhYuXKigoCCrdY8ePaoZM2bo559/tlpnwIABWrJkyUNvVPP9999r5syZysvLs1geGBioJUuWWFy4Oj8/X++8847i4uKstj9p0iSFh4dXutkOUJUn6bk5duyYpk2bphs3blg812Qy6c9//rPeeOONhxobnnybN2/W/PnzVVhYaLF8woQJioiIqPB5u3btJJW+IvnPf/6zQnl17ut79+5p1qxZVl85c3V11cqVK9WtWzeL5dXp25KoqChjJp8t6yED0pP5bFlSNt4ZM2ZUun43UBPq43NlCX838DiprefKEv5m1E9sQAVUolu3btqxY4fWrl2r+Ph4paamKicnR25uburcubNGjx6tYcOGVauP/v37a9u2bVqxYoUOHDiga9euycnJSe3bt9eYMWMUFBRkNQh1cnLSkiVLNHLkSG3atEk//vijsrKy1KJFC3Xp0kWhoaGs34VHrr4/N126dNG3336rNWvWGOMrKipSq1at1Lt3b4WFhVndTAGQpKCgIPn5+SkmJkaHDx9WRkaGXF1d1alTJ4WEhGjw4MEP1W517utGjRpp2bJlio2N1ebNm3XmzBnl5eWpZcuW6tevn9566y15eXnVSt9ATXkSny2grtXH5wp43NXWc4XHBzNTAQAAAAAAAMAGrJkKAAAAAAAAADYgTAUAAAAAAAAAGxCmAgAAAAAAAIANCFMBAAAAAAAAwAaEqQAAAAAAAABgA8JUAAAAAAAAALABYSoAAAAAAAAA2IAwFQAAAAAAAABsQJgKAAAAAAAAADYgTAUAAAAAAAAAGxCmAgAAAAAAAIANHOt6AAAAAAAevXbt2kmSPD09FR8fX2v9DBw4UJcvX5YkJSUl1Vo/AAAAjwIzUwEAAAAAAADABoSpAAAAAAAAAGADwlQAAAAAAAAAsAFhKgAAAAAAAADYgDAVAAAAAAAAAGzgWNcDAAAAwKMTFhamhIQEYwf3O3fuaNWqVdqxY4fS09NVUlKitm3bKiAgQGFhYWrRokWl7WVlZSk2NlaHDh3S2bNnlZWVpfz8fLm5ucnT01P+/v4KDg6Wl5eXxfMjIiK0ZcsWOTk56fjx4zpz5owWLVqko0ePysXFRb6+vgoNDdXQoUPNzjt+/Lji4uKUmJioq1evKisrSyaTSU2bNlX79u01YMAAjR49Wk5OThb7LdthPiAgQMuXL1dmZqbWrVunXbt2KT09XZLUpk0bvfrqqwoNDZW7u7txblxcnDZt2qSkpCRlZ2erZcuW6tevn6ZMmaI2bdo8wG+jeqp7DSoTFRWl6OhoSdLevXvl6empLVu26Ouvv1ZycrJycnLUunVr+fv7KywsTO3bt7e57by8PK1du1a7du1Samqq7t27p5YtW6pHjx4KDg7WL3/5yyrb+Omnn7RlyxYlJCQoNTVVWVlZKioqUtOmTdW2bVv17t1br7/+upo3b/7A3x0AAKAydiUlJSV1PQgAAAA8GuXD1FWrVmnSpElKS0uzWLdJkyaKiopSnz59LJavW7dOixcvVk5OTqV9Ojo6au7cuQoJCalQVj5M3bZtm8aMGaPbt2+b1Zk/f75CQ0MlSXfu3FFERIR2795d5Xf18vLS559/Lm9v7wpl5cPUt956S3/6059048YNi+384he/0KpVq+Tm5qY5c+YoPj7eYj13d3etWrXqgYLFh1FT16Bdu3aSZATr5ZUPU7dv366//e1v2rdvn8U+7O3tNXv2bE2ePNliedm1lqTNmzdr+vTpunr1qsW6dnZ2mjJlimbPnm31O0VFRWnFihXKz8+3WkeSXF1dtXjxYg0ePLjSegAAAA+CMBUAAKABKQtTmzdvrmbNmun8+fNycnLS4MGD5evrq4yMDO3atUvXr1+XJJlMJi1fvlx9+/Y1a2f9+vX64IMPjOOuXbvqpZdeUrNmzXT37l2dO3dO+/fv17179ySVBm4bNmxQly5dzNopH6Z269ZNhw8fNiu3t7fX/v371bJlSxUXFyskJERHjx6VJDk7O+uVV16Rj4+PnJ2ddfPmTSUkJOjEiRPG+e3atVNsbKzs7c1XtyoL+Hx8fHT9+nXdvn1brVq10uDBg+Xh4aHz589r165dKioqkiQNHTpUxcXF2rNnj9zd3TV06FC1adNG6enpiouLU25uriSpY8eO2rJly0P/fqpSk9fA1jC1V69eSkhIkCT5+/urZ8+eys/P1/79+5WUlGScM3PmTM2YMaPCmMuHqY0bN1ZOTo4aN26sIUOGqG3btsrOztZ3332nlJQU45zIyEiNGDGiQluRkZFasWKFpNLg1d/fX126dNFTTz2lnJwcnTp1SgcPHjR+by4uLoqLi3ukM4YBAMCTjdf8AQAAGqCMjAxlZGTIy8tLy5cv1wsvvGCUzZkzRxEREdq5c6cKCgr0wQcfKC4uznhd/NatW/rkk0+M+gsXLlRQUFCFPq5cuaKJEycqJSVFxcXFWrduXYUwtUx+fr4OHz4sb29vLViwQF26dNHly5d1+PBhtWzZUpK0ZcsWI0T09PTU6tWr9eyzz1Zoa9u2bQoPD1dxcbGSkpJ05MgR9ezZ02K/58+flyQFBwdr/vz5MplMRll8fLz+8Ic/SJJ27dolSerZs6eio6PNXvsfP368fve73yk3N1enTp3S6dOn1aFDB4v9VVdtXIOqJCQkyNnZWZGRkWazPN9++219/vnnioyMlCQtXbpUgYGB8vHxsdpWTk6OBg4cqEWLFsnNzc34PDw8XHPnzjWC6GXLllUIU1NTU7Vy5UpJ1kN+SUpKStKECROUkZGhvLw8bd682WLICwAA8DDYgAoAAKCBcnFxUUxMjFmQKpW+Hv3pp5+qY8eOkqRLly5p06ZNRvmePXuUnZ0tSRoyZIjFIFUqXXN01qxZxvHJkycrHY/JZFJMTIz8/f3l4uIiHx8fjRs3zigvP+Nz7ty5FkNESRo+fLj69+9vc79+fn5asGCBWZAqlc6o7Ny5s3Hs6uqqzz77zCxIlSRfX1/95je/MY7LzwqtabV1Dary17/+tcLr8nZ2dpo8ebLCwsIkSYWFhfrss88qbefFF19UVFSUWZAqSQ4ODpo3b55cXV0lSefOnVNWVpZZna1bt6qwsFCSNG7cOItBqlQ64/bNN980jqv73QEAAMojTAUAAGigQkJC1LZtW4tljo6Omj59unFcNjNTktq3b6+IiAiFhoZq/PjxlfZR9iq5pCrXVg0ICJCnp6fV8rFjx2rmzJkKDg5WQECAzf3euXOn0rpvvPGG7OzsLJaVn2E6aNAgeXh4WKxXfjZmZmZmpf1VR21dg8p07tzZ4iv3ZaZNm2YE0d9//72xtIMlEyZMkKOj5ZfjmjRpoq5duxrH96+r+qtf/Urh4eEaO3asgoODKx3zg9x3AAAAD4LX/AEAABqo4cOHV1r+8ssvy9HRUYWFhUpMTNTdu3fl7OwsPz8/+fn5Vdl+UVGR2TqYZbMKralqF/fKAr3ybt26pWvXrtncr7WlBySpRYsWxs+VvbpfNqNSUpUbI1VHbV2DylR1n3h4eKhr165KTExUbm6ujhw5YnXTsh49elTaVvnrfX8I2qtXL/Xq1avK8ebn5+vChQvGcXW+OwAAwP0IUwEAABogk8lkNnvPEicnJz333HNKSUlRYWGhrl+/rueee65CvYKCAl24cEEXL17UxYsXlZaWpnPnzunUqVPGxkySVNW+p9ZeWbfm1q1bSktLM/pNSUnRmTNnlJycbNZXVf22atXKaln5TZvufzXdWr1HqaauQWVsCc59fHyUmJgoScZmU5ZYm9lbpvys1bJNpKy5d++eUlNTze67s2fP6vTp02aBNvvtAgCAmkSYCgAA0AC5ublZfd26vKZNmxo///zzz2Zh6n//+1/FxMTo4MGDVmdjOjg4VBmKlR9TVfLz87V+/Xpt2rRJZ8+etVrvQfp1cXGxqZ6Dg4NN9WpbbVyDyjRv3rzKOuXvk4yMDKv1mjRpUu3x7N27V6tXr1ZiYqLVWac19d0BAADuR5gKAADQANkSpErmswPLb9C0ePFiffHFFxXqu7u7y8fHRx07dlT37t3l7e2tkSNH2tRXVWHljRs3NGnSJJ05c8bsc3t7e3l6esrX11edO3eWv7+/Dhw4oH/84x829WttvdT6qLauQWVsuVes3Sc1qbCwUBEREdq6dWuFsqefflovvPCC/Pz81LNnT9nb22vy5Mm1Mg4AANCwEaYCAAA0QNnZ2TbVu3XrlvHz008/LUmKjY01glR7e3uNGjVKgYGB6tSpU4VZjOfPn6+hEUvh4eFGiNi8eXONHz9effr0ka+vrxo1amRWd+/evTXWb31SF9fAlnul/H1Sft3TmrR8+XIjSDWZTHr99dc1cOBA+fn5VZjVvH///loZAwAAAGEqAABAA5Sbm6uffvpJrVu3tlonLy9Ply5dklS6wVJZSLZ8+XKjzpw5czRp0iSrbZTf2b46a1f++OOPOnTokDGWDRs2yMvLy2r9mzdvPnRf9VVdXYPk5GR16tSp0jrllxuwtK5udd27d09fffWVcbx48WINGzbMav2auu8AAADuVzcr5QMAAKDO/fvf/660fN++fSouLpYk9e/fX46OjsrOzlZKSopRZ+zYsZW2cfjwYePn6oRa//vf/4yf+/btW2mIWFJSooSEBOO47Ds87urqGlR1n1y7dk0nTpyQVDpbtmvXrg/dlzWpqam6ffu2pNL1WSsLUqWau+8AAADuR5gKAADQQMXExOju3bsWy/Lz87V06VLjODAw0Pi8vMpmP16+fFmrVq0yjgsKCh56rOX7rWrG5erVq5Wenm4cW9uk6HFTV9dg586dlS7XEB0dbayZOnToUNnb1/w/Mcp/99zcXKsbnknS8ePH9e233xrH1bnvAAAA7keYCgAA0EClpaVp1qxZxoy/MtnZ2Zo1a5bx6nb37t2NmYAeHh7G2qmS9Mknn1gMqxITExUaGmq23qa14NYW7du3N34+cuSIdu/eXaFOfn6+li1bpkWLFpl9npeX99D91id1dQ0KCgo0depUJScnm31eVFSk6Ohobdy4UVLpjNEZM2Y8dD+Vef75542NrQoKCvTpp59anHG6Z88eTZo0yeyerM59BwAAcD/WTAUAAGigTCaT9u/fr6FDh+rVV1/VM888o6tXr2rnzp3GzEcPDw999NFHxo73dnZ2+v3vf6/IyEhJ0o4dO3TixAkFBASoRYsWysjI0A8//KCTJ08a/Tg6OqqwsFB3797V3bt35ezs/MBjLdtk6dy5cyopKdGMGTPUr18/dezYUY0aNdLly5e1b98+Y9wmk8kI1LKysqpzmeqNuroGJpNJly5d0siRIzV48GC1a9dO2dnZ2rdvn7Hkg6Ojoz788MNa23yqSZMmCgoK0oYNGyRJX375pQ4ePKjevXurWbNmun79uv7zn/8oNTXVGE9RUZFKSkqemN8/AACoHwhTAQAAGqiFCxfqo48+0s2bN7V+/foK5T4+Plq2bFmFtTknTpyopKQk41Xq9PR0rVmzpsL57u7uWrBggdatW2dsnHTixAn16NHjgcfq4OCgqKgovfnmm7py5Yok6cCBAzpw4ECFuj169NDs2bM1btw4STILdh9ndXUN/vjHP2rbtm06ffq0tm/fru3bt5uVP/XUU1qyZIn69+//0H3Y4t1339WFCxeMe+ns2bNmG1+VadOmjRYtWqT33ntPly5dUkZGRpWbrQEAANiKMBUAAKCB6tatm+Li4vTFF19o7969unr1qpydndWhQweNGDFCo0aNkpOTU4XzHBwcFBkZqWHDhunrr7/WiRMnlJWVJQcHBzVr1kw+Pj7q06ePfvvb38rNzU0XL140ArBvvvnmocJUSfL29tY333yjNWvWKD4+XqmpqcrLy5OLi4ueeeYZdejQQb/+9a8VEBAgOzs7Pf/880pJSdHFixf1ww8/qHv37tW6XvVBXVyD5s2ba+PGjVq7dq3+9a9/KTU1VSUlJfL29tagQYMUEhIiDw+PWvi25lxcXPTll18qNjZWW7du1enTp3X79m01atRIHh4eevHFF/XKK69o1KhRcnZ2Vt++fY3/JIiNjdXUqVNrfYwAAODJZ1fC9pYAAAANRlhYmLHL+969e/Xss8/W8YhQH0VFRSk6OlpS6QzmoKCgOh4RAABA/cAGVAAAAAAAAABgA8JUAAAAAAAAALABYSoAAAAAAAAA2IANqAAAAIBasHHjRmVnZ9dIW76+vnr55ZdrpC0AAAA8PMJUAAAAoBYsW7ZMly9frpG2Ro8eTZgKAABQD/CaPwAAAAAAAADYwK6kpKSkrgcBAAAAAAAAAPUdM1MBAAAAAAAAwAaEqQAAAAAAAABgA8JUAAAAAAAAALABYSoAAAAAAAAA2IAwFQAAAAAAAABsQJgKAAAAAAAAADYgTAUAAAAAAAAAGxCmAgAAAAAAAIAN/g+oRHl1R5tgEwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "execution_count": 8, - "metadata": { - "image/png": { - "height": 710, - "width": 1378 - } - }, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9MAAAVtCAYAAABAxG74AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AACBn0lEQVR4nOzdeZzVdb348feZDRgQYZhQwHFBCUQQt0y9NzX15k1Tc6Mky6uZy3UhEy3Nn1uFSxlZ3eK65b1ZN3dTEbc064qpoJdFy0RFFlEERhGGbZbfX3k9n++wzFlm4PZ8Ph4+at7nfN/n4/zhP6/5fk+ura2tLQAAAAAAAACAD1V09QEAAAAAAAAAYFMjpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgERVVx8g1draGscdd1y89NJLERFx9NFHx9VXX93Fp/pfy5cvj0mTJsVzzz0Xs2bNisbGxlixYkV07949tt566xg2bFgceOCB8ZnPfCa6devW1ccFAAAAAAAAoACbXEz/9a9//WFI35SsXbs2Jk6cGL/4xS9ixYoVmdeXL18es2fPjtmzZ8eDDz4YdXV1cdZZZ8WYMWOiosIDAAAAAAAAAAA2J5tU5X3ppZfi2muv7epjZLz77rsxevTo+OlPf9puSG/P0qVL4zvf+U589atfjffff7/MJwQAAAAAAACglDaZmL5gwYI4/fTTY/Xq1V19lDyLFy+OE088MV5++eWCrp8yZUqccsopsXz58hKfDAAAAAAAAIBy2SQe8z5//vw46aST4t133+3qo+RpaWmJb3zjGzFnzpzMa7vvvnsce+yxMXz48Nhyyy3j7bffjmeffTbuvPPOWLhwYd57Z82aFZdcckn86Ec/6pyDAwAAAAAAAFCULo/pf/nLX+L000+Pt99+u6uPkvHLX/4ynn322bxZZWVlfPvb344vfelLefNtttkm9tprrzj55JPjiiuuiPvuuy/v9cmTJ8dhhx0Wn/nMZ8p9bAAAAAAAAACK1KWPeX/44YfjhBNO2CRD+vvvvx8/+9nPMvPLLrssE9I/qra2Nq655po47rjjMq9de+210dLSUtJzAgAAAAAAAFB6XRLTV6xYEZdcckmMHTs2mpqauuIIG3T77bfH+++/nzc7+OCD4wtf+MJGXX/FFVfEiBEj8mbz5s2LyZMnl+yMAAAAAAAAAJRHp8f0hx9+OA477LC48847M69VVXX5U+cjIqKtrS3uuOOOzPzss8/e6B1VVVUxbty4zLy9vQAAAAAAAABsWjotpv/pT3+KE044IcaOHdvuY9132GGHuOKKKzrrOOs1a9asmDdvXt5s+PDhMXz48A7t2XfffaOhoSFv9txzz8WiRYuKPiMAAAAAAAAA5dNpMf2kk06KF154od3XDjvssLjrrrsy4bmrPP3005nZQQcdVNCuAw88MO/ntra2+MMf/lDQLgAAAAAAAAA6R5d8Z/rf1NfXx4QJE2LChAnRq1evrjxKnueffz4z23PPPQvatccee2Rm06ZNK2gXAAAAAAAAAJ2jS76kvKamJk488cQ488wzo3fv3l1xhPV65ZVXMrOdd965oF3tPRp+1qxZBe0CAAAAAAAAoHN0akyvrq6Oww8/PM4999wYNGhQZ370Rnv//ffj3XffzZv17ds3+vbtW9C+bbbZJqqqqqK5ufnD2Zw5c6KtrS1yuVxRZwUAAAAAAACgPDotpp9xxhkxZsyY2GqrrTrrIwuyYMGCzGzgwIEF76uqqop+/frFO++88+FszZo1sWjRok3+dwEAAAAAAADw96rTvjP9vPPO2yzi8eLFizOz/v37F7Wzvr4+M0vvfgcAAAAAAABg09FpMX1zsWTJksxsyy23LGpne98Lv2zZsqJ2AgAAAAAAAFA+Ynpi+fLlmVmvXr2K2tmzZ8/M7IMPPihqJwAAAAAAAADlI6Yn1qxZk5nV1NQUtbO969v7HAAAAAAAAAA2DWJ6or3IXVVVVdTOysrKzKy5ubmonQAAAAAAAACUj5ieaGlpycwqKor7NbUX01tbW4vaCQAAAAAAAED5iOmJ6urqzKy9wN4R7d2FXuyj4wEAAAAAAAAon+KeX/5/UHsxvdhHsrd3fXuf05mWLVsVLS3uji9G797do7KyIlpaWmPZslVdfRwAAAAAAAA2I1pTaVVWVkTv3t1LulNMT9TW1mZmTU1NRe1s7/pu3boVtbNYLS2t0dxc3B33/C+/SwAAAAAAAAqlNW2aPOY90adPn8xsxYoVRe1s7/q6urqidgIAAAAAAABQPmJ6or3IvXTp0qJ2LlmyJDPr169fUTsBAAAAAAAAKB8xPTFo0KDMbPHixUXtTK/P5XJRX19f1E4AAAAAAAAAykdMTwwYMCCqq6vzZvPmzYu2traC9i1dujSWL1+eNxs4cGB079694DMCAAAAAAAAUF5ieqKioiKGDBmSN1u5cmW89dZbBe17/fXXM7N0PwAAAAAAAACbFjG9HSNHjszMZs6cWdCu6dOnZ2YjRowoaBcAAAAAAAAAnUNMb8cnP/nJzGzKlCkF7Wrvuv3226+gXQAAAAAAAAB0DjG9Hf/wD/8QlZWVebPHH3881qxZ06E9ixcvjmeffTZv1qdPnxg1alTRZwQAAAAAAACgfMT0dvTp0yf233//vNmSJUvivvvu69CeW2+9NdauXZs3O/LII6OqqqrYIwIAAAAAAABQRmL6Onzxi1/MzK677rp48803N+r6adOmxa233po3q6ioaHcvAAAAAAAAAJuW/9Mxff78+TF06NDMP/fcc88Grz3wwANj5MiRebP33nsvTjvttHj77bfXe+1f//rXOOusszJ3pX/+85+PHXfcseP/IgAAAAAAAAB0qv/TMb1Yl156aeaR7HPmzImjjjoqfvvb32Zi+cqVK+O2226L0aNHR2NjY95rffv2jfPOO6/sZwYAAAAAAACgeL68ez123XXXGDt2bFx33XV58/feey8uvPDCuOaaa2LEiBHRr1+/WLRoUcyYMSOWLVuW2VNRURHf//73o3///p11dAAAAAAAAACKIKZvwGmnnRaNjY1xyy23ZF5bsmRJPPXUU+u9vqqqKq6++ur41Kc+Va4jAgAAAAAAAFBiHvO+Eb75zW/Gd7/73aitre3QdQMHDoybbropjjjiiDKdDAAAAAAAAIByENM30vHHHx+PP/54nHrqqVFfX7/e9zY0NMQFF1wQDzzwQOy7776ddEIAAAAAAAAASiXX1tbW1tWH2Ny0tbXFK6+8Eq+88kq8++67sWbNmujVq1fU19fHyJEjo6GhoauPuEGNjU3R3NzS1cfYrNXV9YzKyopoaWmNpUtXdPVxAAAAAAAA2IxoTaVVVVUZfft27EnjG9xZ0m1/J3K5XAwbNiyGDRvW1UcBAAAAAAAAoAw85h0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACBR1VUf/NZbb8UDDzwQ06ZNi9mzZ0djY2OsWbMmevXqFQ0NDbHrrrvGIYccEvvuu2/kcrmuOmaed955Jx5//PF47rnn4q9//Ws0NjbG8uXLo2fPntGnT5/YYYcdYu+9945Pf/rTscMOO3T1cQEAAAAAAAAoUK6tra2tMz9wyZIlMX78+Jg8eXK0tLRs8P1DhgyJiy++OPbbb79OOF37Fi1aFD/+8Y/jvvvui7Vr127w/blcLg455JAYO3ZsDBkypBNO2HGNjU3R3Lzh3z/rVlfXMyorK6KlpTWWLl3R1ccBAAAAAABgM6I1lVZVVWX07Vtb0p2dGtOnTZsWZ511VjQ2Nnb42lNOOSUuuOCCqKjo3CfTP/PMMzFu3LhYvHhxh6/t3r17XHLJJXH88ceX4WTFEdOL5z9wAAAAAAAAFEprKq1yxPROK9NTp06NU089taCQHhFxyy23xOWXX17aQ23AlClT4mtf+1pBIT0iYtWqVXHJJZfErbfeWtqDAQAAAAAAAFBWnfKd6YsWLYqxY8dGU1NT3ryioiIOPfTQOPzww2P77bePmpqamD9/fjz66KNx//33Z95/++23x7Bhw2LMmDFlP/Obb74Z55xzTruPdR85cmQce+yxMWrUqOjbt2+sWLEi/vznP8ekSZPiySefzLz/6quvjoaGhjj44IPLfm4AAAAAAAAAitcpj3k/88wz44knnsib1dfXx4QJE2Lvvfdu95p58+bFeeedFzNnzsyb9+jRIyZPnhwDBgwo23kj2j9zdXV1XHrppTF69Oh1XjdlypT4xje+kbkDf+DAgfHQQw9Fjx49ynLejvKY9+J59AYAAAAAAACF0ppKa7N8zPuzzz6bidK1tbVxww03rDOkR0Q0NDTErbfeGsOGDcubr1y5Mq6//vqynPVv/vKXv2TOHBFx7bXXrjekR0Tst99+cdNNN0X37t3z5m+99Vbcc889JT0nAAAAAAAAAOVR9ph+ww03ZGZjx46NXXbZZYPX9urVKyZOnBi1tfl/QfDAAw/EwoULS3bG1OOPP56ZHXzwwXHYYYdt1PUjRoyIU045JTN/+OGHiz4bAAAAAAAAAOVX1pg+f/78mDJlSt6sX79+HfrO8wEDBsRJJ52UN2tubo677767JGdszwsvvJCZHXPMMR3aceyxx2Zm06dPL/hMAAAAAAAAAHSessb0Rx55JFpbW/NmRxxxRNTU1HRoT3uPVp80aVJRZ1ufd999NzPbYYcdOrRjm222ydxRv3r16nj//feLOhsAAAAAAAAA5VfWmP70009nZgcddFCH9wwcODCGDh2aN3v99ddj3rx5BZ9tfZqamjKztWvXdnhPdXV1SfYAAAAAAAAA0LnKFtNbW1tj2rRpebOqqqoYNWpUQfv22GOPzGzq1KkF7dqQLbfcMjN79dVXO7RjyZIlmbvQq6uro0+fPsUcDQAAAAAAAIBOULaY/uabb8aqVavyZoMHD47u3bsXtG/48OGZ2axZswratSE777xzZvbb3/62Qzvae/+uu+4aVVVVBZ8LAAAAAAAAgM5Rtpg+e/bszKyj3zv+Udttt11m9sYbbxS8b30OPvjgzOyPf/xjPPTQQxt1/Zw5c+LnP/95Zn7MMccUfTYAAAAAAAAAyq9sMX3BggWZ2aBBgwret/XWW2/UZ5TCAQccEMOGDcvMv/Wtb8V999233mtnzZoVJ598cixbtixvvssuu8TRRx9dymMCAAAAAAAAUCZle+b44sWLM7P+/fsXvK++vj4zW7RoUcH71qeysjKuvvrqGDNmTDQ1NX04X716dXzzm9+M3/zmN3H00UfHrrvuGn369ImmpqZ47bXX4pFHHonJkydHS0tL3r6BAwfGv/3bv0VlZWVZzgsAAAAAAABAaZUtpi9ZsiQz6927d8H7evbsGVVVVdHc3PzhrKmpKdauXRvV1dUF712XnXfeOW666aY455xzMv8uL774Yrz44osbtWf//fePq666qt0/BgAAAAAAAABg01S2x7wvX748M+vVq1dRO2trazfqc0plzz33jAcffDCOO+64Dgf7ESNGxI033hg33nijkA4AAAAAAACwmSnbnelr1qzJzLp161bUzpqamo36nFKqq6uL008/Pbp37x633XbbRl/3yiuvxN133x1bbbVVDB06tIwnLEzv3t27+gibvYqK3If/W1fXs4tPAwAAAAAAwOZEa9r0dWpML/Y7w9u7/qOPfS+1t956K6677rqYNGlStLW1dejatWvXxsMPPxyPPfZYnHLKKXHeeedtUt+ZXllZtocS/N3J5XJRWZnr6mMAAAAAAACwGdKaNl1li+ktLS2ZWTliemtra1E712XKlClx3nnnxXvvvZc3r62tjdGjR8enP/3p2GmnnaJ3796xbNmymDNnTjz11FNxxx135F3T0tISN954Y8yePTt+8pOflOX73QvR0lKe39vfk4qKXORyuWhra4vW1o79sQUAAAAAAAB/37Sm0iv1DcVli+ntReNi7yJfu3ZtZtbeo9+L9cILL8SZZ54Zq1atypvvv//+cfXVV0e/fv3y5vX19VFfXx977bVXnHbaafG9730v7r333rz3PPnkk/Gd73wnrrzyypKftxDLlq2K5ubsHzyw8erqekZlZS5aW9ti6dIVXX0cAAAAAAAANiNaU2lVVVVG3761Jd1Ztmd9lyOmt3e3e6nv9G5qaopx48ZlQvrnPve5mDhxYiakp7bYYou4+uqr44wzzsi8dvvtt8czzzxT0vMCAAAAAAAAUHpli+m1tdnqv3LlyqJ2NjU1ZWbdunUramfqP/7jP2LBggV5syFDhsT3vve9Dj2m/utf/3ocdNBBmfkPf/jDos8IAAAAAAAAQHmVLab36dMnM1uxovDHE7S0tGTuFu/WrVv07Nmz4J2ptra2uOOOOzLzb3zjG9G9e/cO7crlcnHRRRdl7pyfMWNG/PWvfy3qnAAAAAAAAACUV9liel1dXWa2ZMmSgve1d219fX3B+9rz+uuvx1tvvZU3q6uri09/+tMF7dt2221jn332ycz/9Kc/FbQPAAAAAAAAgM5Rtpg+aNCgzGzx4sUF72vv2o997GMF72vPrFmzMrNPfOITkcvlCt653377ZWZ//vOfC94HAAAAAAAAQPmVLaY3NDRkZnPnzi14X3vXDh48uOB97Vm6dGlm1r9//6J2br311plZY2NjUTsBAAAAAAAAKK+yxfShQ4dm7uh+7bXXCt7X3rU77bRTwfvas3r16sysoqK4X1F73+m+du3aonYCAAAAAAAAUF5li+lbbLFFbLfddnmzBQsWtHv398aYMWNGZjZixIiCdq1L3759M7OFCxcWtbO9u9BL/V3vAAAAAAAAAJRW2WJ6RMQnP/nJzOyZZ57p8J41a9bE888/nzfr0aNH7L777gWfrT3tRe6XX365qJ3tXV/q73oHAAAAAAAAoLTKGtMPOOCAzOyhhx7q8J6nnnoqVqxYkTfbZ599oqampuCztWfUqFGZR9PPnz8/pk2bVtC+1tbW+P3vf5+Zf+ITnyhoHwAAAAAAAACdo6wx/VOf+lT06dMnb/bkk0926LvT29ra4uabb87MjzvuuGKPl1FfXx8jR47MzG+66aaC9k2aNCnefPPNvFmPHj1in332KWgfAAAAAAAAAJ2jrDG9pqYmjjnmmLxZS0tLXHTRRbF69eqN2nHLLbfEiy++mDcbOHBgHHjggaU6Zp7Ro0dnZk888UTceeedHdozf/78+N73vpeZH3vssdGtW7eCzwcAAAAAAABA+ZU1pkdEnHrqqVFbW5s3mz59epx//vkbDOoPPvhg/OAHP8jMx44dG1VVVeu9dv78+TF06NDMP/fcc896rzvmmGNip512ysyvuOKK+NWvfrXea//mtddei5NPPjkaGxvz5j179oyzzjpro3YAAAAAAAAA0HXKHtP79esX5557bmb+2GOPxfHHHx9Tp07NvLZo0aK48sor4/zzz4/W1ta81/baa6846qijynbeysrK+M53vpP5Pva1a9fGlVdeGWeeeWbMnDmz3WsbGxvjpz/9aRx33HExd+7czOuXXnpp1NXVleXcAAAAAAAAAJTO+m/vLpF/+Zd/iWeeeSaeeuqpvPkrr7wSX/rSl2L77bePIUOGRG1tbSxYsCCmT58ea9euzezp169f/PCHP4xcLlfW8+6xxx4xfvz4GDduXOa1J554Ip544okYNGhQDB8+PLbccstYsWJFzJ8/P1566aVM/P+bM844Iz7/+c+X9dwAAAAAAAAAlEanxPRcLhcTJkyIM844I5577rnM63PmzIk5c+asd0e/fv3iF7/4RWy11VZlOmW+I444IiorK+Pb3/52NDU1ZV5fsGBBLFiwYIN7Kisr4+tf/3qcdtpp5TgmAAAAAAAAAGVQ9se8/03Pnj3j5ptvji9/+csdvrN8r732ittvvz2GDh1aptO177DDDou77ror9txzz4KuHzx4cNx0001COgAAAAAAAMBmplPuTP+bmpqauOSSS+K4446Lm2++OR599NFYtWpVu+/N5XKx2267xYknnhiHHXZYVFR0WvfPs+OOO8avf/3reO655+K2226LZ555JpYtW7bO93fr1i322GOPOP744+Ozn/1sl50bAAAAAAAAgMLl2tra2rrqw9esWRMzZsyIN954IxobG6O1tTV69+4dAwYMiN122y369u3bVUdbp9bW1nj55Zdj7ty50djYGB988EH06NEj+vbtG1tvvXWMGjUqunXr1tXH3KDGxqZobm7p6mNs1urqekZlZUW0tLTG0qUruvo4AAAAAAAAbEa0ptKqqqqMvn1rS7qzS2M6XUdML57/wAEAAAAAAFAoram0yhHTPYMcAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJCo6qoPfuutt+KBBx6IadOmxezZs6OxsTHWrFkTvXr1ioaGhth1113jkEMOiX333TdyuVxXHTNj6dKl8fDDD8ezzz4br776arzzzjuxcuXK6NmzZ/Tp0yc+/vGPxyc+8Yk47LDDon///l19XAAAAAAAAAAKkGtra2vrzA9csmRJjB8/PiZPnhwtLS0bfP+QIUPi4osvjv32268TTrduixYtip/85Cdx7733xtq1azf4/urq6jjyyCPjwgsvjD59+pT/gB3U2NgUzc0b/v2zbnV1PaOysiJaWlpj6dIVXX0cAAAAAAAANiNaU2lVVVVG3761Jd3ZqTF92rRpcdZZZ0VjY2OHrz3llFPiggsuiIqKzn8y/eOPPx7f/va347333uvwtVtttVX86Ec/ij322KP0ByuCmF48/4EDAAAAAACgUFpTaZUjpndamZ46dWqceuqpBYX0iIhbbrklLr/88tIeaiP85je/iXPOOaegkB4R8c4778Spp54aM2bMKO3BAAAAAAAAACibTrkzfdGiRXH00UfH4sWL8+YVFRVx6KGHxuGHHx7bb7991NTUxPz58+PRRx+N+++/P5qamjK7LrvsshgzZky5jxwREY899lice+650dramjn3Zz7zmfjsZz8bQ4YMiR49esTixYvj+eefjzvuuCPmzJmT2dW/f/+YPHly9OrVq1POviHuTC+evxYCAAAAAACgUFpTaW22j3k/88wz44knnsib1dfXx4QJE2Lvvfdu95p58+bFeeedFzNnzsyb9+jRIyZPnhwDBgwo23kjIhYuXBhHHnlkLFu2LG8+aNCguP7662PkyJHtXrd27dr46U9/GhMnTsy8duKJJ8b/+3//ryzn7SgxvXj+AwcAAAAAAEChtKbS2iwf8/7ss89mQnptbW3ccMMN6wzpERENDQ1x6623xrBhw/LmK1eujOuvv74sZ/2oq666KhPSd9xxx7jrrrvWGdIjIqqrq+O8886Ls88+O/PaXXfdFR988EHJzwoAAAAAAABAaZU9pt9www2Z2dixY2OXXXbZ4LW9evWKiRMnRm1t/l8QPPDAA7Fw4cKSnTH10ksvxSOPPJI322KLLeLGG2+Murq6jdpx5plnxnbbbZc3W7VqVUyaNKlk5wQAAAAAAACgPMoa0+fPnx9TpkzJm/Xr169D33k+YMCAOOmkk/Jmzc3Ncffdd5fkjO257bbbMrMLL7wwBg0atNE7qqqq4oQTTsjMn3/++aLOBgAAAAAAAED5lTWmP/LII9Ha2po3O+KII6KmpqZDe0aPHp2ZlesO76ampnjooYfyZtttt10ce+yxHd71T//0Tx/+/6qqqqivr48VK3zfAQAAAAAAAMCmrqqcy59++unM7KCDDurwnoEDB8bQoUPjlVde+XD2+uuvx7x586KhoaGoM6amTJkSq1atypuNGTMmKisrO7xrm222iccffzy23HLL6N27d6mOCAAAAAAAAECZle3O9NbW1pg2bVrerKqqKkaNGlXQvj322CMzmzp1akG71ucPf/hD3s+5XC7++Z//ueB9DQ0NQjoAAAAAAADAZqZsMf3NN9/M3OE9ePDg6N69e0H7hg8fnpnNmjWroF3rM3369Lyft91229h6661L/jkAAAAAAAAAbLrKFtNnz56dme2www4F79tuu+0yszfeeKPgfe1Zs2ZN5ty77LLLeq9paWmJ999/P/OHAwAAAAAAAABsvsr2nekLFizIzAYNGlTwvvbuDm/vM4oxd+7caG5uzpu1F/GnTp0aDz30UDz77LMxZ86cD6/ZYostYvDgwXHQQQfFYYcdFttuu21JzwcAAAAAAABA5yhbTF+8eHFm1r9//4L31dfXZ2aLFi0qeF975s6dm5l99MwvvPBCjB8/PmbOnNnu9R988EFMnz49pk+fHj/5yU/ii1/8YpxzzjnRp0+fkp4TAAAAAAAAgPIq22PelyxZkpn17t274H09e/aMqqr89t/U1BRr164teGfqnXfeycz69esXERETJ06ML33pS+sM6anm5ua47bbb4phjjmn3kfcAAAAAAAAAbLrKFtOXL1+emfXq1auonbW1tRv1OYVqbGzMzLp16xbf//73Y8KECdHa2trhnQsWLIgTTjghZsyYUYojAgAAAAAAANAJyvaY9zVr1mRm3bp1K2pnTU3NRn1OoZYtW5aZTZo0Ke6///682ciRI+O4446LffbZJ7baaqtobm6OBQsWxB//+Mf41a9+FQsXLszsPffcc+Oee+6Jurq6kp0XAAAAAAAAgPLo1JheWVlZ1M72rm9ubi5q50etWrUqM/toSK+uro5LL700jj/++MjlcnnvGzZsWAwbNiy+/OUvx9VXXx3/9V//lff6woUL4+KLL46JEyeW7LzF6N27e1cfYbNXUZH78H/r6np28WkAAAAAAADYnGhNm76yxfSWlpbMrBwxvZBHr6/L+r5/vbq6Om688cbYd99917uje/fucfnll0dtbW3cfPPNea89+eSTMX369Bg1alRJzluMysqyPeH/704ul4vKytyG3wgAAAAAAAAJrWnTVbaYXl1dnZkVexd5e7G7vUe/F2p9YX7cuHEbDOkfdf7558cLL7wQL774Yt783//93+NnP/tZwWcslZaW0v0Rwt+riopc5HK5aGtri9bWtq4+DgAAAAAAAJsRran0Sn1D8WYV09u72729zynUunYNGjQoTjzxxA7tqqysjHPOOSdOOeWUvPl///d/x+rVq4v+/vhiLVu2Kpqbs79PNl5dXc+orMxFa2tbLF26oquPAwAAAAAAwGZEayqtqqrK6Nu3tqQ7y/as79ra7EFXrlxZ1M6mpqbMrJRRel13uR9//PFRVdXxvzv4h3/4hxg0aFDebPXq1fHCCy8UdD4AAAAAAAAAOkfZYnqfPn0ysxUrCv+LipaWlli1alXerFu3btGzZ8+Cd6a22GKLducdebx7as8998zM/vznPxe8DwAAAAAAAIDyK1tMr6ury8yWLFlS8L72rq2vry94X3v69u3b7ny77bYreOfgwYMzs6VLlxa8DwAAAAAAAIDyK1tMTx9vHhGxePHigve1d+3HPvaxgve1Z+utt87McrlcbLnllgXvbO/axsbGgvcBAAAAAAAAUH5li+kNDQ2Z2dy5cwve19617d31XYxtt902M2tra4vm5uaSfk5FRdl+7QAAAAAAAACUQNmq7tChQyOXy+XNXnvttYL3tXftTjvtVPC+9uywww5RXV2dmb/zzjsF73z//fczs169ehW8DwAAAAAAAIDyK1tM32KLLTLfNb5gwYKCvy98xowZmdmIESMK2rUu3bp1i49//OOZ+csvv1zwzvbuqC/mO9gBAAAAAAAAKL+yPm/8k5/8ZGb2zDPPdHjPmjVr4vnnn8+b9ejRI3bfffeCz7Yu++yzT2b21FNPFbzvhRdeyMx23nnngvcBAAAAAAAAUH5ljekHHHBAZvbQQw91eM9TTz0VK1asyJvts88+UVNTU/DZ1uWggw7KzCZPnhzLly/v8K5Zs2bFnDlz8mZ9+vSJkSNHFno8AAAAAAAAADpBWWP6pz71qejTp0/e7Mknn+zQd6e3tbXFzTffnJkfd9xxxR6vXXvuuWdsv/32ebOmpqa48cYbO7zrhhtuyMwOPfTQqKgo668dAAAAAAAAgCKVterW1NTEMccckzdraWmJiy66KFavXr1RO2655ZZ48cUX82YDBw6MAw88sFTHzJPL5eKkk07KzG+66aaYNm3aRu+ZNGlSPPLII5ndX/nKV4o+IwAAAAAAAADlVfZbpE899dSora3Nm02fPj3OP//8DQb1Bx98MH7wgx9k5mPHjo2qqqr1Xjt//vwYOnRo5p977rlng2cePXp0DB48OG/W3NwcZ5xxRkydOnWD1//+97+Piy66KDM/6qijYqeddtrg9QAAAAAAAAB0rbLH9H79+sW5556bmT/22GNx/PHHtxunFy1aFFdeeWWcf/750dramvfaXnvtFUcddVTZzhsRUVVVFddee21UV1fnzZctWxZf+cpXYvz48fHOO+9krlu6dGmMHz8+/vVf/zXzhwL9+vWLcePGlfXcAAAAAAAAAJRGrq2tra3cH9LW1hann356PPXUU+2+vv3228eQIUOitrY2FixYENOnT4+1a9dm3tevX7+49957Y6utttrgZ86fPz8OPvjgzPyqq67KPHp+XSZNmhTjxo3LBP2IiMrKyhg+fPiHd7DPnz8/pk+fHs3NzZn3VldXx0033RT77LPPRn1uZ2hsbIrm5pauPsZmra6uZ1RWVkRLS2ssXbqiq48DAAAAAADAZkRrKq2qqsro27d2w2/syM6SbluHXC4XEyZMiDPOOCOee+65zOtz5syJOXPmrHdHv3794he/+MVGhfRSOfzww6OqqiouvPDCWLVqVd5rLS0tMXPmzJg5c+Z6d/To0SOuv/76TSqkAwAAAAAAALB+ZX/M+9/07Nkzbr755vjyl78cuVyuQ9futddecfvtt8fQoUPLdLp1O/TQQ+Oee+6J3XffvcPX7rLLLnH33XfHAQccUIaTAQAAAAAAAFAunRbTIyJqamrikksuifvuuy+OPPLI6N69+zrfm8vlYvfdd4/rrrsufvnLX0ZDQ0MnnjTfjjvuGL/5zW/i5z//eey///6Z71L/qIqKith7771jwoQJcffdd8eOO+7YiScFAAAAAAAAoBQ65TvT12XNmjUxY8aMeOONN6KxsTFaW1ujd+/eMWDAgNhtt92ib9++XXW09WpqaoqZM2fGnDlz4v3334/W1tbYYostoqGhIUaMGBF1dXVdfcQN8p3pxfM9FgAAAAAAABRKayqtcnxnepfGdLqOmF48/4EDAAAAAACgUFpTaZUjpnfqY94BAAAAAAAAYHMgpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAElVd9cFvvfVWPPDAAzFt2rSYPXt2NDY2xpo1a6JXr17R0NAQu+66axxyyCGx7777Ri6X66pjdsj//M//xJgxY6KlpeXD2e9+97vYZpttuvBUAAAAAAAAAHRUp8f0JUuWxPjx42Py5Ml50flv3nvvvXjvvfdi5syZ8atf/SqGDBkSF198cey3336dfdQOaWpqigsuuKDdfycAAAAAAAAANi+d+pj3adOmxeGHHx4PPvjgRkfnV199NU4++eS45pprorW1tcwnLNz48eNj7ty5XX0MAAAAAAAAAEqg02L61KlT49RTT43GxsaCrr/lllvi8ssvL+2hSuSJJ56IO++8s6uPAQAAAAAAAECJdMpj3hctWhRjx46NpqamvHlFRUUceuihcfjhh8f2228fNTU1MX/+/Hj00Ufj/vvvz7z/9ttvj2HDhsWYMWM649gbZcmSJXHJJZd09TEAAAAAAAAAKKFcW1tbW7k/5Mwzz4wnnngib1ZfXx8TJkyIvffeu91r5s2bF+edd17MnDkzb96jR4+YPHlyDBgwoGzn7YgzzjgjnnzyyXW+/rvf/S622WabTjzRxmlsbIrmZt/vXoy6up5RWVkRLS2tsXTpiq4+DgAAAAAAAJsRram0qqoqo2/f2pLuLPtj3p999tlMSK+trY0bbrhhnSE9IqKhoSFuvfXWGDZsWN585cqVcf3115flrB11xx13rDekAwAAAAAAALB5KntMv+GGGzKzsWPHxi677LLBa3v16hUTJ06M2tr8vyB44IEHYuHChSU7YyHmzp0bV111VZeeAQAAAAAAAIDyKGtMnz9/fkyZMiVv1q9fvw595/mAAQPipJNOyps1NzfH3XffXZIzFqKlpSUuvPDCvO90HzZsWOy+++5ddiYAAAAAAAAASqesMf2RRx6J1tbWvNkRRxwRNTU1HdozevTozGzSpElFna0YEydOjBdffPHDn6urq+Paa6+N6urqLjsTAAAAAAAAAKVT1pj+9NNPZ2YHHXRQh/cMHDgwhg4dmjd7/fXXY968eQWfrVAzZ86Mn/3sZ3mzsWPHZs4HAAAAAAAAwOarbDG9tbU1pk2bljerqqqKUaNGFbRvjz32yMymTp1a0K5CrVq1Ki644IJobm7+cLbnnnvGV7/61U49BwAAAAAAAADlVbaY/uabb8aqVavyZoMHD47u3bsXtG/48OGZ2axZswraVahrrrkm3njjjQ9/rq2tjWuuuSYqKsp6gz8AAAAAAAAAnaxsFXj27NmZ2Q477FDwvu222y4z+2jYLrc//OEP8etf/zpv9q1vfSsaGho67QwAAAAAAAAAdI6yxfQFCxZkZoMGDSp439Zbb71Rn1EOjY2NcfHFF+fNDjjggPjCF77QKZ8PAAAAAAAAQOcqW0xfvHhxZta/f/+C99XX12dmixYtKnhfR1x22WXx7rvvfvhznz594rvf/W6nfDYAAAAAAAAAna9sMX3JkiWZWe/evQve17Nnz6iqqsqbNTU1xdq1awveuTHuvffeeOSRR/Jml19+eVF/GAAAAAAAAADApq1sMX358uWZWa9evYraWVtbu1GfUyrz58/P3IH+uc99Lj772c+W7TMBAAAAAAAA6HpVG35LYdasWZOZdevWraidNTU1G/U5pdDa2hrf/OY382L9VlttFZdddllZPq+z9e7dvauPsNmrqMh9+L91dT27+DQAAAAAAABsTrSmTV+nxvTKysqidrZ3fXNzc1E71+Wmm26KqVOnfvhzLpeL8ePHF/Wo+k1JZWXZHkrwdyeXy0VlZa6rjwEAAAAAAMBmSGvadJUtpre0tGRm5Yjpra2tRe1sz1/+8pf48Y9/nDcbM2ZM/OM//mPJP6urtLSU/vf296aiIhe5XC7a2tqitbWtq48DAAAAAADAZkRrKr1S31BctpheXV2dmRV7F/natWszs/Ye/V6M1atXx7hx4/I+a/vtt48LLrigpJ/T1ZYtWxXNzdk/eGDj1dX1jMrKXLS2tsXSpSu6+jgAAAAAAABsRrSm0qqqqoy+fWtLurNsz/ouR0xv72739j6nGNddd128+uqrH/5cWVkZ11xzTfTo0aOknwMAAAAAAADApqtsMb22Nlv9V65cWdTOpqamzKxbt25F7fyoZ555Jv7zP/8zb/a1r30tdtttt5J9BgAAAAAAAACbvrLF9D59+mRmK1YU/niClpaWWLVqVd6sW7du0bNnz4J3ftSyZcviW9/6VrS1/e/3EQwfPjzOPvvskuwHAAAAAAAAYPNRtpheV1eXmS1ZsqTgfe1dW19fX/C+1OWXXx5vv/32hz/X1NTEtddeW/LHyAMAAAAAAACw6asq1+JBgwZlZosXLy54X3vXfuxjHyt4X2rSpEl5P69ZsyY+97nPFb334IMPzszOPvvsOOecc4reDQAAAAAAAEB5lO3O9IaGhsxs7ty5Be9r79rBgwcXvA8AAAAAAAAA1qVsMX3o0KGRy+XyZq+99lrB+9q7dqeddip4HwAAAAAAAACsS9li+hZbbBHbbbdd3mzBggWxdOnSgvbNmDEjMxsxYkRBuwAAAAAAAP5/e/ceZHV9Hn78OeyywC5yW5RbdkQigeCVlMHbEPHS2GrUSL00GkfGIYmOLQxFJzExRv2lMU1EYjNNCQmXiUk6xITQoJColSGNEhE0IEm1QwTloq7AirIL7vX3RybU8zkL7J49Zy/4es04ZZ9zvp/vA5PuP+/d7wGAIynaZ6ZHRJx11lmxbdu2rNnatWvjsssua9c59fX18dxzz2XN+vXrFxMnTuzoiof89re/7fAZ//iP/xgvvPBC1uyRRx6JESNGZM3Ky8s7fC8AAAAAAAAAiqeoMf3888+PpUuXZs1WrlzZ7pi+Zs2aqK2tzZqdffbZUVZW1uEd/+L444/v8Bm9e/fOmQ0ZMqQgZwMAAAAAAADQeYr2mPeIiClTpsSgQYOyZqtXr27XZ6e3tLTEwoULc+ZXX311R9cDAAAAAAAAgFYVNaaXlZXFtGnTsmZNTU1x5513xnvvvdemMxYtWpTz6PSRI0fG1KlTC7UmAAAAAAAAAGQpakyPiJgxY0bOZ4Rv3Lgx5syZc9Sg/uijj8YDDzyQM581a1aUlh75CfU7duyIcePG5fy3bNmy9v8lAAAAAAAAAPhAKXpMr6ysjJkzZ+bMn3jiibjmmmti/fr1Oa9VV1fHfffdF3PmzInm5uas1yZNmhRXXnll0fYFAAAAAAAAgCP/eneBTJ8+PdauXRtr1qzJmr/88stxww03xOjRo2Ps2LFRXl4eO3fujI0bN0ZDQ0POOZWVlfHggw9GJpPpjLUBAAAAAAAA+IDqlJieyWRi3rx5ccstt8S6detyXt+2bVts27btiGdUVlbG4sWLY9iwYUXaEgAAAAAAAAD+rOiPef+LioqKWLhwYdx4443t/s3ySZMmxdKlS2PcuHFF2g4AAAAAAAAA/k+nxfSIiLKysrjrrrti+fLlccUVV0Tfvn0P+95MJhMTJ06MuXPnxsMPPxxVVVWduCkAAAAAAAAAH2SZlpaWlq66eX19fWzatCm2bt0aNTU10dzcHAMGDIgRI0bEmWeeGYMHD+6q1Y55NTV10djY1NVr9GhDhlRESUmvaGpqjr17a7t6HQAAAAAAAHoQramwSktLYvDg8sKeWdDT2qmsrCwmTZoUkyZN6so1AAAAAAAAACBLpz7mHQAAAAAAAAB6AjEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASIjpAAAAAAAAAJAQ0wEAAAAAAAAgIaYDAAAAAAAAQEJMBwAAAAAAAICEmA4AAAAAAAAACTEdAAAAAAAAABJiOgAAAAAAAAAkxHQAAAAAAAAASJR21Y137doVK1asiA0bNsSWLVuipqYm6uvro3///lFVVRWnn356XHzxxXHOOedEJpPpqjWz/PGPf4ynn346XnjhhXjllVdi37598e6770afPn1i0KBBccIJJ8TEiRNj8uTJcd5550Xv3r27emUAAAAAAAAA8pBpaWlp6cwb7tmzJ77+9a/HqlWroqmp6ajvHzt2bHzpS1+Kc889txO2a93q1atjwYIF8fzzz7f5mhEjRsT06dPj+uuvj7KysiJul5+amrpobDz6vz+HN2RIRZSU9IqmpubYu7e2q9cBAAAAAACgB9GaCqu0tCQGDy4v6JmdGtM3bNgQt912W9TU1LT72ptvvjnuuOOO6NWr855Mv3///vjnf/7nWLZsWd5nnHbaafHQQw/FqFGjCrhZx4npHecbHAAAAAAAAPnSmgqrGDG908r0+vXrY8aMGXmF9IiIRYsWxT333FPYpY7gwIEDMWPGjA6F9IiIF198MaZNmxZbt24t0GYAAAAAAAAAFFunfGZ6dXV1zJo1K+rq6rLmvXr1iksuuSQuu+yyGD16dJSVlcWOHTvi8ccfj1/+8pc571+6dGmMHz8+rr/++qLvPHv27HjhhRdy5mVlZfHJT34ypkyZEmPGjImBAwdGbW1tvPbaa/HMM8/EsmXLorY2+ydH3n777fjsZz8bP/3pT2PIkCFF3x0AAAAAAACAjumUx7zfeuut8dRTT2XNhg4dGvPmzYvJkye3es327dtj9uzZ8eKLL2bN+/XrF6tWrYoRI0YUbd+VK1fG7Nmzc+aTJ0+Ob33rWzF8+PDDXvv222/HV77ylXj88cdzXps2bVrcf//9Bd01Xx7z3nEevQEAAAAAAEC+tKbC6pGPeX/22WdzQnp5eXksWLDgsCE9IqKqqiqWLFkS48ePz5ofOHAgHnrooaLsGhHR2NgY3/rWt3LmU6dOjcWLFx8xpEdEDBo0KL7zne/EtGnTcl5bvnx5vPTSSwXbFQAAAAAAAIDiKHpMX7BgQc5s1qxZccoppxz12v79+8f8+fOjvDz7JwhWrFgRr7/+esF2fL+1a9fGrl27smZDhgyJBx54IEpL2/5U/Pvuuy9OOumkrFlzc3OsWLGiIHsCAAAAAAAAUDxFjek7duyIZ555JmtWWVnZrs88HzFiRNx0001Zs8bGxvj5z39ekB1TK1euzJnddNNNcdxxx7XrnN69e8ctt9ySM1+9enXeuwEAAAAAAADQOYoa03/9619Hc3Nz1uzyyy+PsrKydp1z7bXX5swee+yxDu12OM8//3zO7OKLL87rrAsuuCBn9tprr0UnfEw9AAAAAAAAAB1Q1Jj+9NNP58wuvPDCdp8zcuTIGDduXNbslVdeie3bt+e9W2vq6+tzziwvL4+TTz45r/MGDhyY8xvtDQ0NUVNTk/eOAAAAAAAAABRf2z8EvJ2am5tjw4YN2TcrLY0zzjgjr/M+9rGPxcsvv5w1W79+fVRVVeW9Y+rgwYNx4403RnV1dbz55ptRXV0dvXv37tCZ6W/mR0SUlJR06EwAAAAAAAAAiqtoMf3VV1+NgwcPZs3GjBkTffv2zeu8CRMm5Mw2b94cV111VV7ntWbAgAFx5513Fuy8vXv3Rm1tbdasb9++MXDgwILdAwAAAAAAAIDCK9pj3rds2ZIzO+mkk/I+78QTT8yZbd26Ne/zOsN///d/58w68m8AAAAAAAAAQOcoWkzfuXNnzmzUqFF5nzd8+PA23aM7+Y//+I+c2UUXXdQFmwAAAAAAAADQHkWL6bt3786ZnXDCCXmfN3To0JxZdXV13ucV25o1a+KFF17ImV9yySVdsA0AAAAAAAAA7VG0mL5nz56c2YABA/I+r6KiIkpLsz/iva6uLhoaGvI+s1hqa2vjnnvuyZlPmTIlPvKRj3T+QgAAAAAAAAC0S9Fi+v79+3Nm/fv379CZ5eXlbbpPV/vyl78cu3btypr17t07vvjFL3bRRgAAAAAAAAC0R+nR35Kf+vr6nFmfPn06dGZZWVmb7tOVHnzwwVi1alXOfObMmXHyySd3wUatGzCgb1ev0OP16pU59H+HDKno4m0AAAAAAADoSbSm7q9TY3pJSUmHzmzt+sbGxg6dWUjf//7343vf+17O/IILLojPfvazXbDR4ZWUFO2hBB84mUwmSkoyXb0GAAAAAAAAPZDW1H0VLaY3NTXlzIoR05ubmzt0ZqEsWLAg5s6dmzM/5ZRTYu7cuZHJdK//B2hq6h7/bj1Zr16ZyGQy0dLSEs3NLV29DgAAAAAAAD2I1lR4hf6F4qLF9N69e+fMOvpb5A0NDTmz1h793tkefPDBVn8jfezYsbFw4cKoqOh+j2V4552D0diY+wMPtN2QIRVRUpKJ5uaW2Lu3tqvXAQAAAAAAoAfRmgqrtLQkBg8uL+yZBT3tfYoR01v7bffW7tNZGhsb4ytf+UosW7Ys57WPfvSjsWjRohg8eHAXbAYAAAAAAABARxQtppeX51b/AwcOdOjMurq6nFmfPn06dGa+9u/fHzNnzoynn34657WJEyfG9773vRg4cGAXbAYAAAAAAABARxX2ofHvM2jQoJxZbW3+jydoamqKgwcPZs369OnTJY9Q3759e1x33XWthvQLLrgglixZIqQDAAAAAAAA9GBFi+lDhgzJme3Zsyfv81q7dujQoXmfl6/169fHNddcE1u2bMl57brrrot/+7d/i759+3b6XgAAAAAAAAAUTtEe8z5q1Kic2e7du/M+r7Vrjz/++LzPy8fy5cvjrrvuioaGhqx5JpOJ22+/PWbMmNGp+wAAAAAAAABQHEWL6VVVVTmz1157Le/zWrt2zJgxeZ/XXvPnz4958+blzPv16xff+ta34q//+q87bRcAAAAAAAAAiqtoMX3cuHGRyWSipaXl0OxPf/pT3ue1du3JJ5+c93nt8c///M/xwx/+MGc+bNiwmD9/fkyYMKFT9gAAAAAAAACgcxTtM9OPO+64OPHEE7NmO3fujL179+Z13qZNm3Jmp556al5ntVVLS0vce++9rYb0U045JR555BEhHQAAAAAAAOAYVLSYHhFx1lln5czWrl3b7nPq6+vjueeey5r169cvJk6cmPdubfHNb34zfvKTn+TMzz///PjRj34Uw4YNK+r9AQAAAAAAAOgaRY3p559/fs5s5cqV7T5nzZo1UVtbmzU7++yzo6ysLO/djubhhx+ORYsW5cyvuuqq+O53vxvl5eVFuzcAAAAAAAAAXauoMX3KlCkxaNCgrNnq1avb9dnpLS0tsXDhwpz51Vdf3dH1DmvDhg3xjW98I2f+qU99Ku6///4oLS3aR80DAAAAAAAA0A0UNaaXlZXFtGnTsmZNTU1x5513xnvvvdemMxYtWhQvvPBC1mzkyJExderUQq2Z5cCBA/HFL34xGhsbs+aTJ0+Or33ta5HJZIpyXwAAAAAAAAC6j6LG9IiIGTNm5DwSfePGjTFnzpyjBvVHH300HnjggZz5rFmzjvrb4Tt27Ihx48bl/Lds2bIjXvf9738/XnvttazZwIED44EHHojevXsf8VoAAAAAAAAAjg1Ff155ZWVlzJw5M+ex6U888URcc801cffdd8ekSZOyXquuro758+fHj3/845zzJk2aFFdeeWVRdn3nnXdi8eLFOfN9+/bFxz/+8YLd54c//GGcddZZBTsPAAAAAAAAgMLqlA//nj59eqxduzbWrFmTNX/55ZfjhhtuiNGjR8fYsWOjvLw8du7cGRs3boyGhoaccyorK+PBBx8s2qPWly1bFnV1dUU5GwAAAAAAAICeo1NieiaTiXnz5sUtt9wS69aty3l927ZtsW3btiOeUVlZGYsXL45hw4YVacuIJ598smhnAwAAAAAAANBzFP0z0/+ioqIiFi5cGDfeeGO7f7N80qRJsXTp0hg3blyRtotoaWmJ3//+90U7HwAAAAAAAICeo9NiekREWVlZ3HXXXbF8+fK44oorom/fvod9byaTiYkTJ8bcuXPj4YcfjqqqqqLuVlNT0+qj5QEAAAAAAAD44Mm0tLS0dNXN6+vrY9OmTbF169aoqamJ5ubmGDBgQIwYMSLOPPPMGDx4cFetdsyrqamLxsamrl6jRxsypCJKSnpFU1Nz7N1b29XrAAAAAAAA0INoTYVVWloSgweXF/bMgp7WTmVlZTFp0qSYNGlSV64BAAAAAAAAAFk69THvAAAAAAAAANATiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAorSrbrxr165YsWJFbNiwIbZs2RI1NTVRX18f/fv3j6qqqjj99NPj4osvjnPOOScymUxXrZll//798dhjj8W6deti8+bNUVNTE7W1tdG3b98YPnx4jB8/PqZOnRqf+MQnok+fPl29LgAAAAAAAAB5yrS0tLR05g337NkTX//612PVqlXR1NR01PePHTs2vvSlL8W5557bCdu1rqGhIebPnx+LFy+O2trao75/yJAhcdttt8X1118fvXp1z1/+r6mpi8bGo//7c3hDhlRESUmvaGpqjr17j/6/CwAAAAAAAPgLramwSktLYvDg8oKe2akxfcOGDXHbbbdFTU1Nu6+9+eab44477uj0OP3WW2/F5z73ufjjH//Y7mvPPffc+Pa3vx0DBw4swmYdI6Z3nG9wAAAAAAAA5EtrKqxixPROK9Pr16+PGTNm5BXSIyIWLVoU99xzT2GXOordu3fHZz7zmbxCekTEM888EzfffHPs37+/wJsBAAAAAAAAUEyd8pnp1dXVMWvWrKirq8ua9+rVKy655JK47LLLYvTo0VFWVhY7duyIxx9/PH75y1/mvH/p0qUxfvz4uP7664u+c1NTU/zTP/1TbNu2Lee1iRMnxt/93d/FhAkTYuDAgfHGG2/Es88+G4888ki8/vrrWe/dvHlz3HXXXfHtb3+76DsDAAAAAAAAUBid8pj3W2+9NZ566qms2dChQ2PevHkxefLkVq/Zvn17zJ49O1588cWseb9+/WLVqlUxYsSIou0bEbFkyZK4//77s2YlJSXx5S9/OW644YZWr6mrq4t77703li9fnvPad77znfjEJz5RjFXz4jHvHefRGwAAAAAAAORLayqsHvmY92effTYnpJeXl8eCBQsOG9IjIqqqqmLJkiUxfvz4rPmBAwfioYceKsquf7Fv37747ne/mzP/6le/etiQHvHnv9e//Mu/xNVXX53z2je/+c1oahKvAQAAAAAAAHqCosf0BQsW5MxmzZoVp5xyylGv7d+/f8yfPz/Ky7N/gmDFihU5j1MvpKVLl8a+ffuyZhdddFFcd911bbr+3nvvjVNPPTVrtn379li1alXBdgQAAAAAAACgeIoa03fs2BHPPPNM1qyysrJdn3k+YsSIuOmmm7JmjY2N8fOf/7wgO6ZaWlripz/9ac78H/7hH9p8Rmlpadx+++0589bOBQAAAAAAAKD7KWpM//Wvfx3Nzc1Zs8svvzzKysradc61116bM3vsscc6tNvhbN68ObZv3541mzBhQkyYMKFd55xzzjlRVVWVNVu3bl1UV1d3eEcAAAAAAAAAiquoMf3pp5/OmV144YXtPmfkyJExbty4rNkrr7ySE70LoVA7R0RMnTo16+uWlpb4zW9+k9dZAAAAAAAAAHSeosX05ubm2LBhQ9astLQ0zjjjjLzO+9jHPpYzW79+fV5nHclzzz2XM/urv/qrvM5qbef03wQAAAAAAACA7qdoMf3VV1+NgwcPZs3GjBkTffv2zeu81h6zvnnz5rzOOpKXX345Z/bRj340r7M6a2cAAAAAAAAACqtoMX3Lli05s5NOOinv80488cSc2datW/M+rzX79u2Lt956K2s2ePDgGDx4cF7nfehDH4rS0tKs2bZt26KlpSXvHQEAAAAAAAAovqLF9J07d+bMRo0alfd5w4cPb9M9OqK180aOHJn3eaWlpVFZWZk1q6+vj+rq6rzPBAAAAAAAAKD4ihbTd+/enTM74YQT8j5v6NChObNCR+lC7xzR+t7pb78DAAAAAAAA0L0ULabv2bMnZzZgwIC8z6uoqMh5ZHpdXV00NDTkfWaqtZ0HDhzYoTNb+zu/8847HToTAAAAAAAAgOIqWkzfv39/zqx///4dOrO8vLxN98lXMXauqKjImb377rsdOhMAAAAAAACA4io9+lvyU19fnzPr06dPh84sKytr033y1dpZrd2zPYq9c75KSor2cxQfSKWlJV29AgAAAAAAAD2U1tRxxeifnRrTS0o69j+C1q5vbGzs0Jnv19rO6aPl26vYO+drwIC+Xb3CMaOkpFcMHpz71AQAAAAAAAA4Gq2p+yraryc3NTXlzIoR05ubmzt05vu1tnOvXh37Jyr2zgAAAAAAAAAUXtFieu/evXNmHf2N7IaGhpxZRx/D/n6t7dxaYG+P1v7OhdwZAAAAAAAAgMLrUTG9tbDd2n3yVYydW7u+kDsDAAAAAAAAUHhFi+nl5bnP9T9w4ECHzqyrq8uZ9enTp0Nnvl9rO7d2z/Yo9s4AAAAAAAAAFF7RYvqgQYNyZrW1tXmf19TUFAcPHsya9enTJyoqKvI+M1XonQ93/ZAhQzp0JgAAAAAAAADFVbSY3low3rNnT97ntXbt0KFD8z6vNa3tvHfv3g6d2drelZWVHToTAAAAAAAAgOIqWkwfNWpUzmz37t15n9fatccff3ze57Wm0Du3dn0mkyn4DwEAAAAAAAAAUFhFi+lVVVU5s9deey3v81q7dsyYMXmf15oRI0ZE7969s2bbt2+PlpaWvM7bu3dv7N+/P2s2cuTI6Nu3b947AgAAAAAAAFB8RYvp48aNi0wmkzX705/+lPd5rV178skn531ea3r16hVjx47Nmh04cCB27dqV13mvvPJKziw9HwAAAAAAAIDup2gx/bjjjosTTzwxa7Zz5868P4N806ZNObNTTz01r7OO5LTTTsuZvfjii3mdtXHjxpxZMXYGAAAAAAAAoLCKFtMjIs4666yc2dq1a9t9Tn19fTz33HNZs379+sXEiRPz3u1wWtv5mWeeyeus1q4799xz8zoLAAAAAAAAgM5T1Jh+/vnn58xWrlzZ7nPWrFkTtbW1WbOzzz47ysrK8t7tcM4777woKSnJmj355JNRX1/frnN2794dzz77bNZs0KBBccYZZ3R4RwAAAAAAAACKq6gxfcqUKTFo0KCs2erVq9v12ektLS2xcOHCnPnVV1/d0fVaNWjQoPj4xz+eNduzZ08sX768XecsWbIkGhoasmZXXHFFlJaWdnRFAAAAAAAAAIqsqDG9rKwspk2bljVramqKO++8M9577702nbFo0aJ44YUXsmYjR46MqVOnFmrNHH//93+fM5s7d268+uqrbbp+w4YNsWTJkqxZr169Wj0XAAAAAAAAgO6nqDE9ImLGjBlRXl6eNdu4cWPMmTPnqEH90UcfjQceeCBnPmvWrKP+hveOHTti3LhxOf8tW7bsqDtPnTo1TjvttKzZ22+/HZ/73OfijTfeOOK1//u//xu33XZbzm+lf+pTn4oPf/jDR703AAAAAAAAAF2v6DG9srIyZs6cmTN/4okn4pprron169fnvFZdXR333XdfzJkzJ5qbm7NemzRpUlx55ZVF2/cv7r777pxgv23btrjyyivjP//zP3Ni+YEDB+JHP/pRXHvttVFTU5P12uDBg2P27NlF3xkAAAAAAACAwsi0tLS0FPsmLS0t8fnPfz7WrFnT6uujR4+OsWPHRnl5eezcuTM2btyYE6sj/hzmf/GLX8SwYcOOes8dO3bERRddlDO///77cx49fzgLFiyIuXPntvpaZWVlnHrqqVFZWRnV1dWxadOmeOedd3Le16tXr1iwYEFMmTKlTfcEAAAAAAAAoOsd+VnpBZLJZGLevHlxyy23xLp163Je37ZtW2zbtu2IZ1RWVsbixYvbFNIL5XOf+1zU1NTEokWLcl7bs2fPYX844C9KS0vjG9/4hpAOAAAAAAAA0MMU/THvf1FRURELFy6MG2+8MTKZTLuunTRpUixdujTGjRtXpO0O7wtf+EJ87Wtfy/nc96MZOXJk/OAHP4jLL7+8SJsBAAAAAAAAUCydFtMjIsrKyuKuu+6K5cuXxxVXXBF9+/Y97HszmUxMnDgx5s6dGw8//HBUVVV14qbZrrnmmnjyySdjxowZMXTo0CO+t6qqKu64445YsWJFnHPOOZ20IQAAAAAAAACF1CmfmX449fX1sWnTpti6dWvU1NREc3NzDBgwIEaMGBFnnnlmDB48uKtWO6yWlpZ4+eWX4+WXX4633nor6uvro3///jF06NA47bTTujT6c2yrra2N5cuXx3/913/FSy+9FO+8804MGDAghg8fHlOmTImrrroqRo8e3dVrAgAAAAAA0MPs3LkzLr300jh48GDcf//9MW3atK5eqVvo0pgOtM3vfve7+MIXvhBvvPHGYd9TWloat956a9x6661RUlLSidsBAAAAAADQUzU1NcX06dNj3bp1ERFi+vt06mPegfb7zW9+EzNmzMgK6aWlpTFs2LDo16/foVljY2N85zvfia9+9atdsSYAAAAAAAA90L333nsopJNNTIdu7M0334zbb789GhoaIiKioqIi7r777njuuefiN7/5TTz//PPxgx/8IE466aRD1zzyyCOxdOnSrloZAAAAAACAHqCpqSnuvvtuXekIxHToxubOnRv79u2LiIg+ffrEwoUL44Ybbojy8vKIiOjVq1dMmTIlfvazn8WECRMOXffQQw9FbW1tl+wMAAAAAABA97Z79+6YPn26kH4UYjp0U2+++WY89thjh76++eabY+LEia2+t3///vGv//qv0bt374iI2LNnT/z0pz/tlD0BAAAAAADoOVavXh2f+tSnPNq9DcR06KZWrlwZjY2NEfHn30D/zGc+c8T3V1VVxSc+8YlDXz/66KNF3Q8AAAAAAICe46WXXorp06fHLbfcEm+99dah+XXXXdeFW3VvYjp0U7/97W8P/fn000+PoUOHHvWaCy644NCfN2/eHLt27SrKbgAAAAAAAPQsX/jCF2Lt2rWHvq6oqIj/9//+X9x3331duFX3JqZDN7V58+ZDfz7jjDPadM3pp5+e9fXvf//7Qq4EAAAAAADAMeCiiy6KRx99NK699tquXqVbK+3qBYBcb731Vrz99tuHvv7whz/cpus+9KEPRWlp6aHHw7/yyivFWA8AAAAAAIAeJpPJxOTJk2PWrFkxadKkrl6nRxDToRt64403sr4ePnx4m64rKSmJysrKePPNNyMiPOYdAAAAAACAiIiYP39+m5sTf+Yx79AN7d27N+vrQYMGtfnagQMHHvrzvn37CrUSAAAAAAAAPZiQ3n5iOnRDtbW1WV+Xl5e3+dr3v7eurq5gOwEAAAAAAMAHiZgO3VB9fX3W16Wlbf9Ehve/t6GhoWA7AQAAAAAAwAeJmA49QCaTafN7W1pa8roOAAAAAAAA+D9iOnRDZWVlWV83Nja2+dqmpqbDngMAAAAAAAC0jZgO3VBFRUXW1+357PP3v7c9n7UOAAAAAAAA/B8xHbqhIUOGZH29b9++Nl/7/vdWVlYWbCcAAAAAAAD4IBHToRsaNWpU1tfV1dVtuq6xsTH27Nlz6Othw4YVdC8AAAAAAAD4oBDToRsaMmRIDBo06NDX27Zta9N127dvz/p89bFjxxZ4MwAAAAAAAPhgENOhmzr99NMP/XnTpk1tuiZ936mnnlrQnQAAAAAAAOCDQkyHbuq888479OcNGzbEO++8c9RrVq9efejPJ598cgwfPrwouwEAAAAAAMCxTkyHbupv//Zvo6SkJCIiGhoa4uGHHz7i+1977bV48sknD3195ZVXFnU/AAAAAAAAOJaJ6dBNDRs2LP7mb/7m0Nf//u//HmvXrm31vfv374+ZM2dGQ0NDREQcd9xxcfXVV3fKngAAAAAAAHAsEtOhG5s9e3aUl5dHxJ9/O/2zn/1sLFiwIN59992IiGhpaYmnn346rrnmmvif//mfQ9fNnDkzhgwZ0iU7AwAAAAAAwLEg09LS0tLVSwCH99RTT2X91nlERElJSQwdOjTefffdqKury3r/Jz/5yZg7d25nrwkAAAAAAEAPNW7cuEN/vv/++2PatGlduE33UdrVC0CxNDc3x9VXXx1/+MMfIiLiqquuim984xsFO3/Xrl2xYsWK2LBhQ2zZsiVqamqivr4++vfvH1VVVXH66afHxRdfHOecc05kMpm873PhhRfG9773vfjyl78cr7/+ekRENDU1xZtvvpn1vl69esX06dPj9ttv79DfCwAAAAAAgP9zrDQn2k9M55j1k5/85NA3tULas2dPfP3rX49Vq1ZFU1NTzutvv/12vP322/Hiiy/Gj3/84xg7dmx86UtfinPPPTfve5533nmxatWq+MUvfhFPPvlkbNmyJfbu3RtlZWUxatSoOOuss+Laa6+Nj3zkIx35qwEAAAAAAJA4lpoT7eMx7xyT/vCHP8SnP/3peO+99w7NCvFTQhs2bIjbbrstampq2n3tzTffHHfccUf06tWrQzsAAAAAAADQOTSnDzb/whxzdu7cGZ///OezvqkVwvr162PGjBl5fVOLiFi0aFHcc889Bd0JAAAAAACA4tCc8Jh3jik7duyIm266Kd56662CnltdXR2zZs2Kurq6rHmvXr3ikksuicsuuyxGjx4dZWVlsWPHjnj88cfjl7/8Zc77ly5dGuPHj4/rr7++oPsBAAAAAABQOJoTER7zzjHkpZdeis9//vPxxhtvtPp6Rx65ceutt8ZTTz2VNRs6dGjMmzcvJk+e3Oo127dvj9mzZ8eLL76YNe/Xr1+sWrUqRowYkdcuAAAAAAAAFI/mxF94zDvHhF/96lfx6U9/+rDf1Dri2WefzfmmVl5eHgsWLDjsN7WIiKqqqliyZEmMHz8+a37gwIF46KGHCr4nAAAAAAAAHaM58X5iOj1abW1t3HXXXa0+DqNQFixYkDObNWtWnHLKKUe9tn///jF//vwoLy/Pmq9YsSJef/31gu0IAAAAAABA/jQnWiOm02P96le/iksvvTQeeeSRnNdKS0sLco8dO3bEM888kzWrrKxs1+dPjBgxIm666aasWWNjY/z85z8vyI4AAAAAAADkT3PicMR0epzf/e538elPfzpmzZrV6iM2TjrppLj33nsLcq9f//rX0dzcnDW7/PLLo6ysrF3nXHvttTmzxx57rEO7AQAAAAAAkD/NiaMR0+lxbrrppnj++edbfe3SSy+Nn/3sZ1FVVVWQez399NM5swsvvLDd54wcOTLGjRuXNXvllVdi+/btee8GAAAAAABA/jQnjkZM55gwdOjQmDdvXsybNy/69+9fkDObm5tjw4YNWbPS0tI444wz8jrvYx/7WM5s/fr1eZ0FAAAAAABA4WlOvJ+YTo9WVlYWN998c6xatSouvfTSgp796quvxsGDB7NmY8aMib59++Z13oQJE3JmmzdvzussAAAAAAAACkdzojWlXb0A5KN3795x2WWXxcyZM2PUqFFFuceWLVtyZieddFLe55144ok5s61bt+Z9HgAAAAAAAB2jOXEkYjo9zi233BLXX399DBs2rKj32blzZ86sI99Ehw8f3qZ7AAAAAAAAUHyaE0cjptPjzJ49u1Pus3v37pzZCSeckPd5Q4cOzZlVV1fnfR4AAAAAAAD505w4Gp+ZDoexZ8+enNmAAQPyPq+ioiJKS7N/fqWuri4aGhryPhMAAAAAAIDuTXPqucR0OIz9+/fnzPr379+hM8vLy9t0HwAAAAAAAI4NmlPPJabDYdTX1+fM+vTp06Ezy8rK2nQfAAAAAAAAjg2aU88lpsNhtPYNp6SkpENntnZ9Y2Njh84EAAAAAACg+9Kcei4xHQ6jqakpZ1aMb2zNzc0dOhMAAAAAAIDuS3PqucR0OIzevXvnzDr6Ez0NDQ05s9YewwEAAAAAAMCxQXPqucR0OIxifGNr7SePWrsPAAAAAAAAxwbNqecS0+EwysvLc2YHDhzo0Jl1dXU5sz59+nToTAAAAAAAALovzannEtPhMAYNGpQzq62tzfu8pqamOHjwYNasT58+UVFRkfeZAAAAAAAAdG+aU88lpsNhDBkyJGe2Z8+evM9r7dqhQ4fmfR4AAAAAAADdn+bUc4npcBijRo3Kme3evTvv81q79vjjj8/7PAAAAAAAALo/zannEtPhMKqqqnJmr732Wt7ntXbtmDFj8j4PAAAAAACA7k9z6rnEdDiMcePGRSaTyZr96U9/yvu81q49+eST8z4PAAAAAACA7k9z6rnEdDiM4447Lk488cSs2c6dO2Pv3r15nbdp06ac2amnnprXWQAAAAAAAPQMmlPPJabDEZx11lk5s7Vr17b7nPr6+njuueeyZv369YuJEyfmvRsAAAAAAAA9g+bUM4npcATnn39+zmzlypXtPmfNmjVRW1ubNTv77LOjrKws790AAAAAAADoGTSnnklMhyOYMmVKDBo0KGu2evXqdn2ORUtLSyxcuDBnfvXVV3d0PQAAAAAAAHoAzalnEtPhCMrKymLatGlZs6amprjzzjvjvffea9MZixYtihdeeCFrNnLkyJg6dWqh1gQAAAAAAKAb05x6JjEdjmLGjBlRXl6eNdu4cWPMmTPnqN/cHn300XjggQdy5rNmzYrS0tKC7gkAAAAAAED3pTn1PGI6HEVlZWXMnDkzZ/7EE0/ENddcE+vXr895rbq6Ou67776YM2dONDc3Z702adKkuPLKK4u2LwAAAAAAAN2P5tTz+DEFaIPp06fH2rVrY82aNVnzl19+OW644YYYPXp0jB07NsrLy2Pnzp2xcePGaGhoyDmnsrIyHnzwwchkMp21OgAAAAAAAN2E5tSziOnQBplMJubNmxe33HJLrFu3Luf1bdu2xbZt2454RmVlZSxevDiGDRtWpC0BAAAAAADozjSnnsVj3qGNKioqYuHChXHjjTe2+6d8Jk2aFEuXLo1x48YVaTsAAAAAAAB6As2p5xDToR3KysrirrvuiuXLl8cVV1wRffv2Pex7M5lMTJw4MebOnRsPP/xwVFVVdeKmAAAAAAAAdFeaU8+QaWlpaenqJaCnqq+vj02bNsXWrVujpqYmmpubY8CAATFixIg488wzY/DgwV29IgAAAAAAAN2c5tQ9iekAAAAAAAAAkPCYdwAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgISYDgAAAAAAAAAJMR0AAAAAAAAAEmI6AAAAAAAAACTEdAAAAAAAAABIiOkAAAAAAAAAkBDTAQAAAAAAACAhpgMAAAAAAABAQkwHAAAAAAAAgMT/B0o3MB/98gXNAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "image/png": { - "height": 694, - "width": 1001 - } - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACsQAAAWMCAYAAACTOnFJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzde5jVZbk//nutWXNgZkBmABERQTyRB1Izz6l5wqK2ZVZb3KV2uTNTo2yXmduyMsnaed6V9vVQ39xmJ88imLnFlFTwiJWJgiKgKAyHYU5r1lq/P/rJ13ENMLNmhjXL9XpdV1d5f57n/tzjB3nqut49JHK5XC4AAAAAAAAAAAAAoEQliz0AAAAAAAAAAAAAAPSFQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpAnEAgAAAAAAAAAAAFDSBGIBAAAAAAAAAAAAKGkCsQAAAAAAAAAAAACUNIFYAAAAAAAAAAAAAEqaQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpAnEAgAAAAAAAAAAAFDSBGIBAAAAAAAAAAAAKGkCsQAAAAAAAAAAAACUNIFYAAAAAAAAAAAAAEqaQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpKWKPQBQfGvXtkUmky32GPTSsGE1UVGRjEwmG2vXthV7HADY4pyFAJQ7ZyEA5c5ZCEC5cxYCUO6chaWroiIZw4bV9HtfgVggMplsdHZmij0GfeD7AVDunIUAlDtnIQDlzlkIQLlzFgJQ7pyFREQkiz0AAAAAAAAAAAAAAPSFQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpAnEAgAAAAAAAAAAAFDSBGIBAAAAAAAAAAAAKGkCsQAAAAAAAAAAAACUNIFYAAAAAAAAAAAAAEqaQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpAnEAgAAAAAAAAAAAFDSBGIBAAAAAAAAAAAAKGkCsQAAAAAAAAAAAACUNIFYAAAAAAAAAAAAAEqaQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpAnEAgAAAAAAAAAAAFDSBGIBAAAAAAAAAAAAKGkCsQAAAAAAAAAAAACUNIFYAAAAAAAAAAAAAEqaQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpAnEAgAAAAAAAAAAAFDSBGIBAAAAAAAAAAAAKGkCsQAAAAAAAAAAAACUNIFYAAAAAAAAAAAAAEqaQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpAnEAgAAAAAAAAAAAFDSBGIBAAAAAAAAAAAAKGkCsQAAAAAAAAAAAACUNIFYAAAAAAAAAAAAAEqaQCwAAAAAAAAAAAAAJS1V7AEA6JtEIqK2tipyuVyk05no7MwWeyR416usrIhUKhmJRCJyuVxkMtno6MgUeywAAAAAAAAAgLIlEAtQYpLJRAwZUhW5iMhmc7F2fTo60pmorUlFQ0NNtLd3RkdHZ7S1pYs9KryrJBIRNTWVUVmViuqqVKxd3x6t7ZmoqaqIrbaqjY50JtIdndHamo5cLlfscQEAAAAAAAAAyopALEAJqa5ORX19Taxpbo8/PPh8zH705Wha177h+c7jhsfUg3eIQ/feLqqqU9G8ri2yWcE86KtUKhn19TXRmc3F7EdfiXseWRSvrmje8HybEbXxoQMnxJQDJsTw4bXR3NwW6bQbYwEAAAAAAAAAtpREzhVmUPaamlqis1Nwa7Crrk7FsGFD4o45L8Z1dz63yaDriK1q4sJ/PzDGjqyLtWtbhWKhD1KpZAwbNiQWvLQyZtz4WKxv69zo2urKijhn2j5xwB5jYu3aVqFYGGCNjXVRUZGMTCYbq1atL/Y4ALDFOQsBKHfOQgDKnbMQgHLnLCxdqVRFNDTU9nvfZL93BKDfvXU75a3/uzB+fvuCzQZcV65pi3OvfiheW9US9UNrttCU8O6TSETU19fEcy+tjAt/PneTYdiIiPZ0Ji755ePxlwXLo76+JpLJxBaaFAAAAAAAAACgvAnEApSAmprKWPL6urjhrud6vKelrTMuvvGxqK5KRVVVxQBOB+9eNTWVkY2IGb94PDozPbtpOZuLuPR/nojWjs6oqakc2AEBAAAAAAAAAIgIgViAQS+RSERVdWXc8dCLketZHm+DV1c0x9MvvBFV1UJ5UIjKqlT86fFXork13at97elMzHxkcVRWpQZoMgAAAAAAAAAA3k4gFmCQq6lJRUc6Ew8+ubSg/Xf9+aUYUlPpj26HXqqsrIjqqlTc88jigvbf+5fFUZlKRpVQLAAAAAAAAADAgBOIBRjkKiqSsfDV1dHekSlo/4IXV27oA/RcRUUy2to7Y/HytQXtf6OpNVauafPPHgAAAAAAAADAFiChATDIJRKJWN/Suz+u/e1a2zs39AF6LpGIaO3o7FOP1vbOSPpvWwAAAAAAAAAAA05EA2CQy+VyUVdbWfD+IdWpDX2AnsvlIoZUpfrUY0h1KrLZfhoIAAAAAAAAAICNEogFGOQymWzstN3wqK6qKGj/HjuO2NAH6LlMJhs11amYMGZYQfu3bhgSI7aq8c8eAAAAAAAAAMAWIBALMMi1tXVGVWVFHLb32IL2f+SQidHalo5s1g2x0BvpdCbaOzrjwwdNKGj/lAMmRLozGx0dnf07GAAAAAAAAAAAeQRiAQa5XC4XHe3p+JcP7BiJRO/2brd1fbx351HR0Z4emOHgXS7d0RlHvH/7qB9S2at91ZUV8aGDJkRaGBYAAAAAAAAAYIsQiAUoAW1t6Rg3emic+pHde7yntiYV3zxlv2jv6IyOjswATgfvXm1t6UhGxHknvz9SFT1LpCcTEedM2yeGVKWirU0YHQAAAAAAAABgSxCIBSgBnZ3ZaG5ui48fvlP8+3F7RDK56WDeiK1q4pKzPhDbNNZG87q2LTQlvPvkchHNzW2x+8QRceG/Hxh1NalNrq+urIhzP/v+OGCPMdHc3BbZbG4LTQoAAAAAAAAAUN4SuVxOUgPKXFNTS3R2ukG0FFRXp6KuvjrWNnfEPY8sill/eTma1rVveL7L9g0x9eAd4gN7jY1sNhvN6wTyoD+kUsmor6+JTC4Xf3zslbjnkcWx5PV1G56PGVEXHzpoQkw5YHxUpSqiubkt0mm/r8JAa2ysi4qKZGQy2Vi1an2xxwGALc5ZCEC5cxYCUO6chQCUO2dh6UqlKqKhobbf+wrEAgKxJSaZTMSQIZVRVV0ZyUQi1rV0RHtHJuqGVEbdkMpob++Mjo5Of1Q79LNEIqKmpjIqq1JRXZWKtes7oq29M2qqK2JYXXV0pDOR7uiM1tZ0+K9XsGX4H7gAlDtnIQDlzlkIQLlzFgJQ7pyFpWugArGb/nN/ARh0stlcrF/fEdXVlZFMJmJobWWkEhHZzkw0NXVEZ2e22CPCu1IuF9Hamo7W1nRUVlZEKpWMuuqKyOVysWZNS3R0+D8WAAAAAAAAAAAUi0AsQInL5SJaWjqKPQaUlXQ6E+m0ACwAAAAAAAAAwGCRLPYAAAAAAAAAAAAAANAXArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKmkAsAAAAAAAAAAAAACVNIBYAAAAAAAAAAACAkiYQCwAAAAAAAAAAAEBJE4gFAAAAAAAAAAAAoKQJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKmkAsAAAAAAAAAAAAACVNIBYAAAAAAAAAAACAkiYQCwAAAAAAAAAAAEBJE4gFAAAAAAAAAAAAoKQJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKWqrYA5Bv2bJlceedd8b8+fNj4cKF0dTUFB0dHVFfXx/jxo2LyZMnx1FHHRUHHnhgJBKJYo8bERFz586NOXPmxJNPPhnLly+P1atXRyaTia222iq23377mDx5chx++OFxwAEH9PvMixcvjgceeCAeffTRWLRoUaxevTrWr18f9fX1MXz48Nh1111jv/32iyOPPDK22Wabfn13KX4rAAAAAAAAAAAAeLdJ5HK5XLGH4J9WrlwZF198ccycOTMymcxm1++8887xzW9+Mw466KAtMF337r333rjqqqti4cKFPVo/fvz4+OIXvxjHHXdcnwOiixYtissvvzxmz54d2Wx2s+srKyvjIx/5SEyfPj3GjBnTp3eX4rfalKamlujs3PzPweDS2FgXFRXJyGSysWrV+mKPAwBbnLMQgHLnLASg3DkLASh3zkIAyp2zsHSlUhXR0FDb730FYgeJ+fPnx5lnnhlNTU293vu5z30uvva1r0UymRyAybrX2toa559/ftx9990F7d9///3jxz/+cYwaNaqg/ffcc0+cf/750dLS0uu9w4cPjx/84AfxwQ9+sKB3l9q36gmB2NLkUAeg3DkLASh3zkIAyp2zEIBy5ywEoNw5C0vXQAViB1cqr0zNmzcvTjvttIIClhER119/fVx44YX9O9QmtLS0xOc///mCw7AREY8++mhMmzYtXn/99V7vvfXWW+MrX/lKQWHYiIjVq1fHF7/4xZg1a1av95batwIAAAAAAAAAAIBykCr2AOVuxYoVMX369LxwZzKZjClTpsTUqVNjwoQJUVVVFa+++mrMnj077rjjjrz1t9xyS0yaNCmmTZs24DNfcMEF8dhjj+XVhw8fHieccEIcfPDBMXbs2EilUvHGG2/E/Pnz4ze/+U0sXry4y/pXXnklzjrrrPif//mfqKys7NG758+fHxdccEG3zw466KD46Ec/GrvvvnsMGzYs1qxZE88++2zcfvvt8fjjj3dZm81m4z/+4z9i2223jT333LNH7y7FbwUAAAAAAAAAAADlIJHL5XLFHqKcnXHGGfGnP/2pS23kyJFx2WWXxX777dftniVLlsRXvvKVePbZZ7vUhwwZEjNnzowxY8YM2LyzZ8+Os88+O69+7LHHxkUXXRRDhw7tdl8mk4mrr746fvKTn+Q9+8Y3vhGnnnrqZt+dzWbjE5/4RPz1r3/tUh86dGhccsklceSRR25075133hkXXHBBtLa2dqnvueee8dvf/jYSicRm319q36o3mppaorMzU+wx6CXXvgNQ7pyFAJQ7ZyEA5c5ZCEC5cxYCUO6chaUrlaqIhobafu+b7PeO9Nijjz6aF7Csra2Na6+9dqMBy4iIcePGxY033hiTJk3qUm9tbY0rrrhiQGZ9y5VXXplXmzJlSlx22WUbDcNGRFRUVMT06dPjjDPOyHv285//PNLp9Gbf/cADD+SFYSsrK+NnP/vZJsOwEREf/ehH4/LLL88Lvj777LPx4IMPbvbdpfitAAAAAAAAAAAAoFwIxBbRtddem1ebPn167L777pvdW19fHz/72c+itrZrSvrOO++M5cuX99uMb/fwww/HCy+80KU2fPjw+M53vhPJZM9+KZ155pkxduzYLrWVK1fG3LlzN7v3j3/8Y17txBNPjH333bdH7z788MPjX/7lX/Lqs2bN2uzeUvtWAAAAAAAAAAAAUE4EYovk1VdfjUceeaRLbcSIETFt2rQe9xgzZkycfPLJXWqdnZ3x+9//vl9mfKf7778/r3bCCSdEQ0NDj3tUVlbGMccck1d/+umnN7v3iSeeyKsdf/zxPX53RMQnPvGJvNpTTz21yT2l+K0AAAAAAAAAAACgnAjEFsmsWbMim812qX30ox+NqqqqXvX51Kc+lVe7++67+zTbxjz++ON5tQ996EO97rP99tvn1V5//fXN7luxYkVebYcddujVu3fZZZce9X27UvxWAAAAAAAAAAAAUE5SxR6gXD388MN5tSOOOKLXfbbddtvYdddd4/nnn99Qe+mll2LJkiUxbty4Ps34Trfeemu8/PLLsXDhwli4cGEsXrw4Jk2a1Os+7e3tebVkcvPZ7La2trxaZ2dnr95dWVmZV0un05vcU4rfCgAAAAAAAAAAAMqJG2KLIJvNxvz587vUUqlUvPe97y2o3z777JNXmzdvXkG9NiWVSsWOO+4YU6ZMiTPPPDN+9KMfRSrV+0z1P/7xj7zadtttt9l9w4YN61GvTXnppZfyaltvvfVG15fqtwIAAAAAAAAAAIByIhBbBC+//HLebacTJ06MmpqagvrttttuebUFCxYU1GugrVmzJmbPnp1XP/DAAze79z3veU9e7fbbb+/V+7tbv/fee290fTl/KwAAAAAAAAAAACgVArFFsHDhwrzaDjvsUHC/8ePH59UWLVpUcL+B0tHREeeee240Nzd3qU+ePDn23HPPze4/8sgj82q/+93v8m5w3Zgnnngibrnllrz68ccfv9E95fqtAAAAAAAAAAAAoJQIxBbB0qVL82pjx44tuN8222zTo3cU03PPPRcnnXRSPPDAA13qlZWVccEFF/Sox8c//vEYNWpUl1pnZ2ecccYZMWfOnE3u/fOf/xxf+MIXIp1Od6kfccQRm7ydthy/FQAAAAAAAAAAAJSaVLEHKEdvvvlmXm3rrbcuuN/IkSPzaitWrCi4X19ks9nI5XLR0tISS5cujaeffjpmzpwZf/nLXyKXy3VZm0wm43vf+15Mnjy5R73r6+tjxowZcfrpp0cmk9lQX7NmTfz7v/97HHrooTF16tTYbbfdYtiwYbFu3br4+9//HnfffXdeEDciYtKkSfHDH/5wk+98N38rAAAAAAAAAAAAeLcQiC2ClStX5tWGDRtWcL+6urpIpVLR2dm5odbS0hLpdDoqKysL7luIWbNmxZe//OXNrhsxYkRcfPHFcfjhh/eq/wc+8IG44oor4utf/3q0tLR0eTZnzpzN3hT7luOOOy6+/e1vR11d3SbXvZu/FQAAAAAAAAAAALxbJIs9QDlqbm7Oq9XX1/epZ21tbY/eM9CWL1++2TWHHnpozJw5s9dh2LccffTRcccdd8QxxxwTyWTvfgkffPDBccstt8QPf/jDzYZhI97d3woAAAAAAAAAAADeLdwQWwQdHR15terq6j71rKqq6tF7BtqyZcs2u2bOnDlx3HHHxSmnnBInnnhiQT/7uHHj4swzz4xUKhX33HNPj/c98cQT8dvf/jZGjRoVY8eO3ez6d/O3erthw2qK+n4Kk0wmNvx7Y+PmA94A8G7jLASg3DkLASh3zkIAyp2zEIBy5yzknQRii6C78GNFRUWfena3v7Ozs089C/Haa6/1aN3y5ctjxowZ8dvf/jauvPLK2HHHHXv8jhdeeCF++MMfxpw5c3o9X2tra/zud7+Lu+66K77yla/EKaecssn17+Zv9XYVFS6LLmWJRCIqKhLFHgMAisZZCEC5cxYCUO6chQCUO2chAOXOWchbBGKLIJPJ5NUGImSZzWb71LMQ+++/fxx99NGx0047RUNDQ6xfvz6WLFkSDz30UNx2223R0tLSZf3ChQvjpJNOiptvvjl22GGHzfa/44474oILLoi2trYu9YaGhjjxxBPjsMMOi+233z7q6+ujqakpFi5cGA888ED87ne/i9bW1g3r29raYsaMGbFo0aL4zne+s9H3vZu/1dtlMsV9P4VJJhORSCQil8tFNpsr9jgAsMU5CwEod85CAMqdsxCAcucsBKDcOQtL20Bc4igQWwSVlZV5tb7eEJpOp/NqVVVVfepZiM985jN5tZ133jmOOOKIOPvss+Pb3/52zJ49u8vzpqamOPPMM+O2227b5MyzZ8+Oc889Ny88evzxx8f5558f9fX1XeqjR4+O0aNHx8EHHxynn356nHfeefHQQw91WfPrX/86xo4dG5///Oe7fee7+Vu93dq1bdHZmR/+ZXBrbKyLiopEZLO5WLVqfbHHAYAtzlkIQLlzFgJQ7pyFAJQ7ZyEA5c5ZWLpSqYpoaKjt977+nPQiGIiQZXc3mXb3nmJqbGyMK6+8Mj796U/nPXvxxRfjl7/85Ub3vv7663HeeeflhWFPO+20mDFjRl4Y9p1GjRoV11xzTRx33HF5z6688sp48cUXu91Xrt8KAAAAAAAAAAAASolAbBHU1uYnm1tbW/vUs6WlJa9WXV3dp54DIZFIxLe+9a3Ya6+98p7ddNNNeYHXt1x11VXR3NzcpXbQQQfFV7/61R6/u6KiIi666KLYY489utTT6XRcddVV3e4p528FAAAAAAAAAAAApUIgtgiGDx+eV1u/vvArmzOZTLS1tXWpVVdXR11dXcE9B1IqlYqvfe1refVly5bFggUL8urNzc1x9913d6klEok499xzI5ns3S/hqqqq+MY3vpFX/+Mf/xirV6/Oq5f7twIAAAAAAAAAAIBSIBBbBI2NjXm1lStXFtyvu70jR44suN+WsO+++8bYsWPz6s8880xebf78+Xm3qu6+++4xadKkgt79/ve/PyZOnNillk6nY/78+XlrfSsAAAAAAAAAAAAY/ARii6C7IOibb75ZcL/u9o4aNargflvK+973vrzasmXL8mrPPfdcXm2//fbr07sPOuigvNrf/va3vJpvBQAAAAAAAAAAAIOfQGwRjBs3Lq/2yiuvFNyvu73vvAF1MOouCLpu3bq82qpVq/Jqo0eP7tO7t9lmm7xaU1NTXs23AgAAAAAAAAAAgMEvVewBytGuu+4aiUQicrnchtqLL75YcL/u9u60004F99uYjo6OWLp0aSxZsiSWLFkSEydOjAMPPLDgfm//+d9SV1eXV2tvb8+rJRKJgt8bEVFbW5tXS6fTebVS/VYAAAAAAAAAAABQTgRii2Do0KExfvz4WLx48Yba0qVLY9WqVdHY2Njrfs8880xebY899ujLiHlmzpwZ55xzTmSz2Q21D37wg30KxK5YsSKvNnLkyLxaQ0NDXm358uUFvzei+9tgu3t3KX4rAAAAAAAAAAAAKDfJYg9Qrvbff/+82ty5c3vdp6OjIx5//PEutSFDhsTee+9d8GzdGT9+fJcwbETE448/3u3trT01f/78vNqECRPyat0FVZ977rmC3xsR8be//S2vNmrUqG7Xltq3AgAAAAAAAAAAgHIjEFskhx12WF7tnnvu6XWfBx98MNavX9+ldsABB0RVVVXBs3Vnp512ipqami615ubmuO+++wrqN2/evLxbXisrK7u9cXavvfbKqz3++OMF3xLb0tISf/nLX/Lq73//+7tdX2rfCgAAAAAAAAAAAMqNQGyRfOADH4jhw4d3qT3wwAPx4osv9rhHLpeL6667Lq9+wgkn9HW8PFVVVXHUUUfl1a+77rq8m2M3J5fLxWWXXZZXP/jgg6Ouri6vvueee+bd3rqxn70nfvnLX0Zzc3OX2nbbbRc77bRTt+tL7VsBAAAAAAAAAABAuRGILZKqqqo4/vjju9QymUycd9550d7e3qMe119/fTz55JNdattuu20cfvjh/TVmF5/4xCfyan/961/jV7/6Va/6XHHFFTFv3ry8+plnntnt+kQi0W1w9Fe/+lU88sgjvXr3M888Ez/5yU/y6ieddNJG95TitwIAAAAAAAAAAIByIhBbRKeddlrU1tZ2qT399NPx1a9+dbNBy7vuuiv+67/+K68+ffr0SKVSm9z76quvxq677pr3rz/84Q+b3HfQQQfFIYcckle/5JJL4t57793k3oh/3pJ6+eWXx09/+tO8Z1OnTo3JkydvdO9pp50WjY2Nef3OPvvsmDVr1mbfHRExf/78OP300/P+3o4dOzb+7d/+bZN7i/WtAAAAAAAAAAAAgM0TiC2iESNGxJe+9KW8+n333Ref/OQnu71FdcWKFfHd7343vvrVr0Y2m+3ybN99943jjjtuwOaNiLjgggvygqGdnZ0xffr0+Na3vhXLly/P25PL5eKxxx6LE088sdsw7MSJE+PCCy/c5Hvr6+vjwgsvjEQi0aXe3NwcX/rSl+K8886LF198sdu9r732Wnz/+9+Pk08+OVatWtXlWSqViu9///tRVVW1yfeX4rcCAAAAAAAAAACAcpHI5XK5Yg9RznK5XJx++unx4IMPdvt8woQJsfPOO0dtbW0sXbo0nn766Uin03nrRowYEbfeemuMHj16s+989dVX48gjj8yrz5gxI44//vjN7v/zn/8cX/jCF7qdI5FIxHve857YYYcdorq6OlatWhULFiyIN998s9teI0eOjF//+tcxbty4zb43IuKaa66JSy+9dKPPJ0yYELvuumsMHTo01q1bF4sXL47nn39+o+u/973vxac+9akevbsY32pLaWpqic7OTLHHoJcaG+uioiIZmUw2Vq1aX+xxAGCLcxYCUO6chQCUO2chAOXOWQhAuXMWlq5UqiIaGmo3v7CXBGIHgfXr18cXvvCFeOyxxwraP2LEiLjhhhti11137dH6vgZiIyLuv//++PrXvx7Nzc29mvXtdt9997j66qtj22237dW+X/ziF/GjH/2o27BpT9XU1MR3vvOd+NjHPtarfVv6W20pArGlyaEOQLlzFgJQ7pyFAJQ7ZyEA5c5ZCEC5cxaWroEKxCb7vSO9VldXF9ddd1185jOfiUQi0au9++67b9xyyy1bPGB55JFHxq233hp77713r/dWV1fH5z73ubj55pt7HYaNiDj55JPjF7/4RcE/8+TJk+Pmm2/udRg2ojS/FQAAAAAAAAAAALzbuSF2kPn73/8e1113XcyePTva2tq6XZNIJGKvvfaKf/u3f4sPf/jDkUz2LtfcHzfEvt2f//zn+MUvfhGPPfbYRmeOiJgwYUIcccQRccopp8To0aN7/Z53yuVycf/998ctt9wS8+bNi5aWlo2urauri/322y+mTZsWhx56aJ/fHbFlvtWW4obY0uT/5QJAuXMWAlDunIUAlDtnIQDlzlkIQLlzFpaugbohViB2kOro6IhnnnkmFi1aFE1NTZHNZmPYsGExZsyY2GuvvaKhoaHYI+bp6OiIp556KpYuXRqrV6+Ojo6OaGhoiMbGxpg0aVJst912A/budDodCxYsiKVLl0ZTU1M0NzdHfX19NDQ0xHbbbRd77LFHpFKpAXl3KX6rdxKILU0OdQDKnbMQgHLnLASg3DkLASh3zkIAyp2zsHQJxAIDRiC2NDnUASh3zkIAyp2zEIBy5ywEoNw5CwEod87C0jVQgdjB+ee3AwAAAAAAAAAAAEAPCcQCAAAAAAAAAAAAUNJSxR4AAAAAAAAAAAAAYHMSiYiamspIpSreVktERUUyMplsESdjMBCIBQAAAAAAAAAAAAatiopkDBlSGVVVqejMZGPBiytjXWtH1FSlYqfthsfIxrpoa0tHe3s6OjoyxR6XIhGIBQAAAAAAAAAAAAalysqKqB9aE6+vXB+3z/lb/O8Tr0Zre+eG58lExN67bh0f/cDEeN+k0dHS0h7r13cUcWKKRSAWAAAAAAAAAAAAGHQqKyti6LAhMefJV+PKW56Mzkwub002FzH/7yti/t9XxJHv3z6+9Km9IpeLaGkRii03ArEAAAAAAAAAAADAoJJIRNTX18SjC5bHZTc/Ebn8LGye+x9/JZKJiC99eu9IpzORTmcGflAGjWSxBwAAAAAAAAAAAAB4u+rqyshFLq76zVM9CsO+5b7HXolnX3wzqmsqB244BiWBWAAAAAAAAAAAAGBQqapKxYNPLI3m1nSv99710EtRU52KZDIxAJMxWAnEAgAAAAAAAAAAAINGKpWM6upUzJy7uKD9jz73Wqxd3xE1boktKwKxAAAAAAAAAAAAwKDx1s2ui5etKWh/JpuLJa+vc0NsmRGIBQAAAAAAAAAAAAaNROKfQdZ0Jltwj/Z0ZkMfyoNALAAAAAAAAAAAADBoZLO5iIioq6ksuMewuqoNfSgPArEAAAAAAAAAAADAoNHZmY1sNhf777FNQfsbh9XEjmOHR2dnpp8nYzATiAUAAAAAAAAAAAAGjVwuF+3t6fjoIRML2n/MAeMjk81Ge3tnP0/GYCYQCwAAAAAAAAAAAAwq7e2dseN2w2OPiSN6ta+2JhVTD94h0h3CsOVGIBYAAAAAAAAAAAAYVNLpTLS2peO8U/aLMSPrerSnMpWM80/ZL+qqU9Hamh7gCRlsBGIBAAAAAAAAAACAQWd9c1tUpZLx4y8dGnvvMmqTa0c31sbFZxwcu00cEc3NbZHN5rbQlAwWqWIPAAAAAAAAAAAAAPBOuVzEurWtUV9fE989/aBYumJd3PHnRTH/b69Hc2s6qisrYsfttoqPHDwx9t51VKTTmVi7pjUymWyxR6cIBGIBAAAAAAAAAACAQau5uS3a2jqicWh1fP64PaLi+Mldnre1pWPt2rbo6Ogs0oQMBgKxAAAAAAAAAAAAwKDW2ZmN5ub2SCTao6IiGcOGDYmKimRkMtlYt66t2OMxCCSLPQAAAAAAAAAAAABAT+Ry/wzHwjsJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKmkAsAAAAAAAAAAAAACVNIBYAAAAAAAAAAACAkiYQCwAAAAAAAAAAAEBJE4gFAAAAAAAAAAAAoKQJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKmkAsAAAAAAAAAAAAACVNIBYAAAAAAAAAAACAkiYQCwAAAAAAAAAAAEBJE4gFAAAAAAAAAAAAoKQJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKmkAsAAAAAAAAAAAAACVNIBYAAAAAAAAAAACAkiYQCwAAAAAAAAAAAEBJE4gFAAAAAAAAAAAAoKQJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKmkAsAAAAAAAAAAAAACVNIBYAAAAAAAAAAACAkiYQCwAAAAAAAAAAAEBJE4gFAAAAAAAAAAAAoKQJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpArEAAAAAAAAAAAAAlLRUsQcAYPCorKyIVCoZiUQicrmITCYbHR2dxR4LAAAAAAAAAABgkwRiAcpcIhFRU1MZlVWpqK5KxZrm9mhp7YzqqooYPrQmMtlspDsy0draEdlsrtjjAgAAAAAAAAAA5BGIBShjFRXJqB9aE7mI+NPjr8Q9jyyOxcvXbnjeOKwmjtl/+5h68A4xvKE2mte1uzEWAAAAAAAAAAAYdARiAcpURUUihg6riUXL1sZ3r/tLrGnuyFuzam1b/Pq+f8Rv738hTv/4nnHsgRNi7do2oVgAAAAAAAAAAGBQEYgFKFN19TXx8mvr4ps/fTjaOzKbXJvJ5uInv38mMtlcfOigCbFmdTYymewWmhQAAAAAAAAAAGDTksUeAIAtr7o6FZWpirj4hsc2G4Z9u5/f9mysWNUSNUMqB3A6AAAAAAAAAACA3hGIBShDVVWpePS51+KN1a292pfNRdz50KKorkpFIjFAwwEAAAAAAAAAAPSSQCxAmamoSEZNTWXc/fCigvb/ad4rkcnmorraLbEAAAAAAAAAAMDgIBALUGYqKv75W/9zL60saP/6ts545bV1G/oAAAAAAAAAAAAUmzQTQJlJJCI6M9nozGQL7tHSlo5Eoh+HAgAAAAAAAAAA6AOBWIAyk8tFpCqSkerDDa+1Qyojl+vHoQAAAAAAAAAAAPpAIBagzGT+/5th99xxREH764ZUxvhthm7oAwAAAAAAAAAAUGwCsQBlJpPJRmtbOj5yyMSC9h/1/nGRSCSivT3dz5MBAAAAAAAAAAAURiAWoAylOzpj3/eMjtGNtb3al0wm4iOHTIyO9s7I5QZoOAAAAAAAAAAAgF4SiAUoQ+3tnZHuzMT5p+4XQ6pTPd53xvGTY9TwIdHW5nZYAAAAAAAAAABg8BCIBShTzevaYrtR9fGDMw+JxmE1m1ybqkjGl/9175hywPhobm6PTCa7haYEAAAAAAAAAADYvJ5fCwjAu0o2m4t161pj7Ki6+D/nHx1znnw17n54UbywZPWGNaMahsSxB0yIDx00IWqrU7F2bWt0dGSKNzQAAAAAAAAAAEA3BGIBylgmk4u1a1qjpqYyDpm8bRz5/u2jpS0dLW2dUV1ZEfW1lZHuzEa6ozNWr26JbDZX7JEBAAAAAAAAAADyCMQCEG1t6WhrS0cqlYxUqiJqUsmIXNaNsAAAAAAAAAAAQEkQiAVgg87ObHR2Zos9BgAAAAAAAAAAQK8kiz0AAAAAAAAAAAAAAPSFQCwAAAAAAAAAAAAAJU0gFgAAAAAAAAAAAICSJhALAAAAAAAAAAAAQEkTiAUAAAAAAAAAAACgpAnEAgAAAAAAAAAAAFDSBGIBAAAAAAAAAAAAKGkCsQAAAAAAAAAAAACUtFSxBwCg5xKJRNTUVEYqlYxsLhfZzmzkcrmoq6uOtraOyGRyxR4RAAAAAAAAAABgixOIBSgBiUQi6uqqoqq6MjrSmXhg/pJYvrIlstlcNA6rjsP3GReNjfXR2paO1paOyGSyxR4ZAAAAAAAAAABgixGIBRjkkslEDB1aE2tb0vF/7nwuHnxyabR3ZLqs+cU9f4v3v2d0fPqoXWKHsVtF87q2SKczG+kIAAAAAAAAAADw7iIQCzCIJRL/DMMufWN9XHDtI7GmuaPbddlsLh597rWY//cVcc60feLAPcfEurWt0dnpplgAAAAAAAAAAODdL1nsAQDYuLq6qljbkt5kGPbtOjPZ+PFN8+Nvi1ZFbV31FpgQAAAAAAAAAACg+ARiAQapRCIRVdWp+PV9z/coDPuWTDYX1925IKqrUlFZWTGAEwIAAAAAAAAAAAwOArEAg1RNTSo60tl48IlXe733xVfXxMJXV0d1dWoAJgMAAAAAAAAAABhcBGIBBqlUqiLmPPFqtHVkCto/a+7iqK6u7OepAAAAAAAAAAAABh+BWIDBKpGI15taCt7+elNLJJOJSCT6cSYAAAAAAAAAAIBBSCAWYJBKJCKy2VzB+7PZDZ36ZR4AAAAAAAAAAIDBSiAWYJDKZnPRMKym4P2Nw6ojl8tFLld4qBYAAAAAAAAAAKAUCMQCDFK5bDYO32e7qEgWdsPrB/cdF23tnf08FQAAAAAAAAAAwOAjEAswSLW2pmNYXVXsv8c2vd67zYja2HuXraNDIBYAAAAAAAAAACgDArEAg1Q2m4u29s7416N3japU7367nnbMpOhIZ6KjQyAWAAAAAAAAAAB49xOIBRjEWls6YtzWQ+Prn3l/VPYwFHvSlElx2Pu2i9aW9gGeDgAAAAAAAAAAYHAQiAUYxDKZbDQ3t8X7Jm0dF59xcEya0LDRtduOrIuvTntffOroXWJ9c3t0dGS24KQAAAAAAAAAAADFkyr2AABsWjqdibVrW2PCmGHxo7MPjZdfWxv3zl0cr61siWw2Fw3DquOI942LyTuPio50JtatbRWGBQAAAAAAAAAAyopALEAJyGSysW5ta7SmkrH1VjVx2r/sERUV/7zkO5fLRVt7Z6xZ0yIICwAAAAAAAAAAlCWBWIAS0tmZjebm9ohoj8bGuqioSEY2m4vmdW3FHg0AAAAAAAAAAKBoksUeAAAAAAAAAAAAAAD6QiAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNJSxR6AfMuWLYs777wz5s+fHwsXLoympqbo6OiI+vr6GDduXEyePDmOOuqoOPDAAyORSBR73IiImDt3bsyZMyeefPLJWL58eaxevToymUxstdVWsf3228fkyZPj8MMPjwMOOKDXMz/66KPx2c9+doAm/3/OOuusOPvss3u1529/+1s8+OCD8fjjj8crr7wSTU1N0dbWFltttVU0NDTEbrvtFu9///vjqKOOioaGhgGaHAAAAAAAAAAAAMpbIpfL5Yo9BP+0cuXKuPjii2PmzJmRyWQ2u37nnXeOb37zm3HQQQdtgem6d++998ZVV10VCxcu7NH68ePHxxe/+MU47rjjehyMHYyB2GeeeSYuv/zyePjhh3u0fsiQIXHCCSfE2WefHVtttVVfxhwQTU0t0dm5+V9zDC6NjXVRUZGMTCYbq1atL/Y4ALDFOQsBKHfOQgDKnbMQgHLnLASg3DkLS1cqVRENDbX93jfZ7x0pyPz582Pq1Klx11139SgMGxHxwgsvxKmnnhqXXHJJZLPZAZ6wq9bW1jjnnHNi+vTpPQ7DRkS8/PLLce6558bJJ58cb7zxxgBOOHBuvPHGmDZtWo/DsBH//Pv1f//v/42Pfexj8dRTTw3ccAAAAAAAAAAAAFCGBGIHgXnz5sVpp50WTU1NBe2//vrr48ILL+zfoTahpaUlPv/5z8fdd99dcI9HH300pk2bFq+//no/Tjbwrr766pgxY0ak0+mC9i9btixOPvnkeOKJJ/p5MgAAAAAAAAAAAChfqWIPUO5WrFgR06dPj5aWli71ZDIZU6ZMialTp8aECROiqqoqXn311Zg9e3bccccdeetvueWWmDRpUkybNm3AZ77gggvisccey6sPHz48TjjhhDj44INj7NixkUql4o033oj58+fHb37zm1i8eHGX9a+88kqcddZZ8T//8z9RWVk54HNvSn19fRx77LGbXHPPPffEVVddlVdPJpNx9NFHx5QpU2LXXXeNurq6WLVqVTz11FPxm9/8Jv7+9793Wd/W1hZnnHFG/OEPf4ixY8f2688BAAAAAAAAAAAA5SiRy+VyxR6inJ1xxhnxpz/9qUtt5MiRcdlll8V+++3X7Z4lS5bEV77ylXj22We71IcMGRIzZ86MMWPGDNi8s2fPjrPPPjuvfuyxx8ZFF10UQ4cO7XZfJpOJq6++On7yk5/kPfvGN74Rp556ar/P2p1nn302TjrppGhvb99QS6VScc0118Qhhxyy0X0tLS0xZcqUWLFiRZf66NGj4/LLL4999tmn2325XC5uvPHG+NGPfhSZTKbLsylTpsSVV17Zh5+m/zQ1tURnZ2bzCxlUGhvroqIiGZlMNlatWl/scQBgi3MWAlDunIUAlDtnIQDlzlkIQLlzFpauVKoiGhpq+71vst870mOPPvpoXhi2trY2rr322o2GYSMixo0bFzfeeGNMmjSpS721tTWuuOKKAZn1Ld0FOKdMmRKXXXbZRsOwEREVFRUxffr0OOOMM/Ke/fznP490Ot2vc3bnzTffjLPOOqtLGDYi4utf//omw7AREb/73e/ywrDDhg2LG2+8caNh2IiIRCIRp556avznf/5n3rNZs2bFP/7xj178BAAAAAAAAAAAAEB3BGKL6Nprr82rTZ8+PXbffffN7q2vr4+f/exnUVvbNSV95513xvLly/ttxrd7+OGH44UXXuhSGz58eHznO9+JZLJnv5TOPPPMGDt2bJfaypUrY+7cuf02Z3ey2Wx8+ctfjtdee61L/cgjj4yTTz55s/vvu+++vNqZZ54ZEydO7NH7p02bFvvuu29effbs2T3aDwAAAAAAAAAAAGycQGyRvPrqq/HII490qY0YMSKmTZvW4x5jxozJC3N2dnbG73//+36Z8Z3uv//+vNoJJ5wQDQ0NPe5RWVkZxxxzTF796aef7tNsm/Ozn/0sHn/88S61MWPGxIwZM3q0/8knn+zy18lkMj72sY/1aoZPfOITebWnnnqqVz0AAAAAAAAAAACAfAKxRTJr1qzIZrNdah/96EejqqqqV30+9alP5dXuvvvuPs22Me8MlEZEfOhDH+p1n+233z6v9vrrrxc0U08888wz8d///d959Ysuuii22mqrze5vamqKdDrdpdbQ0BDDhw/v1Ry77LJLXm3FihW96gEAAAAAAAAAAADkSxV7gHL18MMP59WOOOKIXvfZdtttY9ddd43nn39+Q+2ll16KJUuWxLhx4/o04zvdeuut8fLLL8fChQtj4cKFsXjx4pg0aVKv+7S3t+fVksmByWan0+k4//zzo7Ozs0v94x//eBxyyCE96tHa2ppXe2e/nkil8v9xe2fQFgAAAAAAAAAAAOg9gdgiyGazMX/+/C61VCoV733vewvqt88++3QJxEZEzJs3r98DsalUKnbcccfYcccdY8qUKQX3+cc//pFX22677foy2kZdf/31ee8bOXJknHfeeT3u0d0tsmvWrInXX389Ro8e3eM+L730Ul5t66237vF+AAAAAAAAAAAAoHsDcy0nm/Tyyy9HW1tbl9rEiROjpqamoH677bZbXm3BggUF9Rpoa9asidmzZ+fVDzzwwH5/15IlS+InP/lJXv2cc87pNuS6MXV1dbH99tvn1W+//fZezXPHHXfk1fbee+9e9QAAAAAAAAAAAADyCcQWwcKFC/NqO+ywQ8H9xo8fn1dbtGhRwf0GSkdHR5x77rnR3NzcpT558uTYc889+/19P/rRj/KCx3vssUccf/zxve515JFH5tWuvfbaHv99vvfee+OBBx7oUquoqIiPfexjvZ4FAAAAAAAAAAAA6EogtgiWLl2aVxs7dmzB/bbZZpsevaOYnnvuuTjppJPyQqGVlZVxwQUX9Pv7nnjiiZg1a1Ze/fzzz49EItHrfp/97GdjyJAhXWrr1q2Lz33uc/Hss89ucu/tt98eX//61/PqJ510UkyYMKHXswAAAAAAAAAAAABdpYo9QDl6880382pbb711wf1GjhyZV1uxYkXB/foim81GLpeLlpaWWLp0aTz99NMxc+bM+Mtf/hK5XK7L2mQyGd/73vdi8uTJ/T7HJZdcklc75phjYp999imo37bbbhvnn39+/Od//meX+rJly+LTn/50TJkyJY455pjYZZddoq6uLlavXh3PPvts3HbbbTFv3ry8focccki3IVkAAAAAAAAAAACg9wRii2DlypV5tWHDhhXcr66uLlKpVHR2dm6otbS0RDqdjsrKyoL7FmLWrFnx5S9/ebPrRowYERdffHEcfvjh/T7Dgw8+GE899VSXWjKZjLPPPrtPfT/5yU9GR0dHXHzxxV3+Xmcymbjnnnvinnvu2WyPioqKOPnkk+Occ87Z4t8GAAAAAAAAAAAA3q2SxR6gHDU3N+fV6uvr+9Sztra2R+8ZaMuXL9/smkMPPTRmzpw5IGHYiIif/vSnebUPf/jDscsuu/S590knnRS///3v44ADDuj13g9/+MNxxx13xLnnnisMCwAAAAAAAAAAAP3IDbFF0NHRkVerrq7uU8+qqqoevWegLVu2bLNr5syZE8cdd1yccsopceKJJ/b5Z3+7Rx55JJ588skutUQiEV/84hf77R2TJk2K6dOnR0TEX/7ylx7v+/Of/xxbb711nH766dHY2Nhv8/SHYcNqij0CBUgmExv+vbGxrsjTAMCW5ywEoNw5CwEod85CAMqdsxCAcucs5J0EYougu6BqRUVFn3p2t7+zs7NPPQvx2muv9Wjd8uXLY8aMGfHb3/42rrzyythxxx375f033HBDXu3www/vt/7z58+PH/7wh/HUU0/1eu/atWvjxhtvjFtvvTW+9a1vxUc+8pF+mak/VFS4LLqUJRKJqKhIFHsMACgaZyEA5c5ZCEC5cxYCUO6chQCUO2chbxGILYJMJpNXG4hAbDab7VPPQuy///5x9NFHx0477RQNDQ2xfv36WLJkSTz00ENx2223RUtLS5f1CxcujJNOOiluvvnm2GGHHfr07pdffjkeeuihvPqpp57ap75vue666+LHP/5x3vcbO3Zs/Ou//msccsghMXbs2BgyZEisWrUqFixYEPfff3/ccccdXcLJa9asia9+9auxdOnSOP300/tltr7KZLb8rxX6LplMRCKRiFwuF9lsrtjjAMAW5ywEoNw5CwEod85CAMqdsxCAcucsLG0DcYmjQGwRVFZW5tX6eptrOp3Oq1VVVfWpZyE+85nP5NV23nnnOOKII+Lss8+Ob3/72zF79uwuz5uamuLMM8+M2267rU8z33TTTZHLdf2Nbbfddov999+/4J5vufHGG+OHP/xhXv3000+Ps846K2/ubbbZJrbZZps46qij4gtf+EKcc845sWDBgi5rLr300hg7duyguCl27dq26OzMD2ozuDU21kVFRSKy2VysWrW+2OMAwBbnLASg3DkLASh3zkIAyp2zEIBy5ywsXalURTQ01PZ7X39OehEMRCC2u1tnu3tPMTU2NsaVV14Zn/70p/Oevfjii/HLX/6y4N7pdDpuv/32vHp37+qtv//97/GjH/0or/7tb387zjnnnM2GeMePHx833XRTHHjggXnPvvvd78aqVav6PCMAAAAAAAAAAACUM4HYIqitzU82t7a29qlnS0tLXq26urpPPQdCIpGIb33rW7HXXnvlPbvpppsim80W1HfOnDmxevXqLrXq6uqYOnVqQf3e7pJLLskLLH/iE5+IadOm9bhHTU1NXHHFFbHtttt2qa9Zsyauu+66Ps8IAAAAAAAAAAAA5UwgtgiGDx+eV1u/vvArmzOZTLS1tXWpVVdXR11dXcE9B1IqlYqvfe1refVly5bFggULCup5xx135NWOPvroGDp0aEH93vLKK6/E3Llzu9SGDBkS55xzTq97bbXVVjF9+vS8+m233dbtDb8AAAAAAAAAAABAzwjEFkFjY2NebeXKlQX3627vyJEjC+63Jey7774xduzYvPozzzzT615tbW3xv//7v3n14447rpDRuvjzn/8cuVyuS+3QQw8t+O/v1KlTo76+vkvtzTffjBdeeKHgGQEAAAAAAAAAAKDcCcQWQXdB0DfffLPgft3tHTVqVMH9tpT3ve99ebVly5b1us/cuXPzbsgdOnRoHHDAAQXP9pbnnnsur7b//vsX3K+ysjLe//7359X/9re/FdwTAAAAAAAAAAAAyp1AbBGMGzcur/bKK68U3K+7vRMnTiy435bSXWh33bp1ve7zwAMP5NUOO+ywqKqqKmiut+vu9t2tt966Tz232WabvFpTU1OfegIAAAAAAAAAAEA5SxV7gHK06667RiKRiFwut6H24osvFtyvu7077bRTwf02pqOjI5YuXRpLliyJJUuWxMSJE+PAAw8suN/bf/631NXV9brPQw89lFc76qijCprpnTo6OvJqiUSiTz1ra2vzap2dnX3qCQAAAAAAAAAAAOVMILYIhg4dGuPHj4/FixdvqC1dujRWrVoVjY2Nve73zDPP5NX22GOPvoyYZ+bMmXHOOedENpvdUPvgBz/Yp0DsihUr8mojR47sVY9XX301li1b1qWWTCbj4IMPLniut2toaMirLV++vE89u7sNdsSIEX3qCQAAAAAAAAAAAOUsWewBytX++++fV5s7d26v+3R0dMTjjz/epTZkyJDYe++9C56tO+PHj+8Sho2IePzxx6O9vb3gnvPnz8+rTZgwoVc95s2bl1fbbbfdYtiwYYWO1UV3Ad2//vWvfer5t7/9La82atSoPvUEAAAAAAAAAACAciYQWySHHXZYXu2ee+7pdZ8HH3ww1q9f36V2wAEHRFVVVcGzdWennXaKmpqaLrXm5ua47777Cuo3b968vJtWKysre33j7BNPPJFX22+//QqaqTt77bVXXm3WrFnR1tZWUL9ly5bF3//+9y61ysrKfg8wAwAAAAAAAAAAQDkRiC2SD3zgAzF8+PAutQceeCBefPHFHvfI5XJx3XXX5dVPOOGEvo6Xp6qqKo466qi8+nXXXZd3c+zm5HK5uOyyy/LqBx98cNTV1fWq14IFC/Jqe+65Z696bMoHPvCBqKys7FJbv359/PrXvy6o309/+tPI5XJdavvss08MHTq04BkBAAAAAAAAAACg3AnEFklVVVUcf/zxXWqZTCbOO++8aG9v71GP66+/Pp588skutW233TYOP/zw/hqzi0984hN5tb/+9a/xq1/9qld9rrjiipg3b15e/cwzz+xVn87OznjhhRfy6rvvvnuv+mxKfX19fOhDH8qrX3rppd2+e1Puv//++O1vf5tXP+mkkwqeDwAAAAAAAAAAABCILarTTjstamtru9Sefvrp+OpXv7rZUOxdd90V//Vf/5VXnz59eqRSqU3uffXVV2PXXXfN+9cf/vCHTe476KCD4pBDDsmrX3LJJXHvvfducm/EP2+Gvfzyy+OnP/1p3rOpU6fG5MmTN9vj7RYvXhwdHR1darW1tbH99tv3qs/mTJ8+PaqqqrrU2tvb49RTT+022NudP/7xj/Ef//EfebfD7rXXXjFlypR+mxUAAAAAAAAAAADKkUBsEY0YMSK+9KUv5dXvu++++OQnP9lt2HLFihXx3e9+N7761a9GNpvt8mzfffeN4447bsDmjYi44IIL8kK8nZ2dMX369PjWt74Vy5cvz9uTy+XiscceixNPPLHbMOzEiRPjwgsv7PUsL7/8cl5t3LhxkUgket1rU7bbbrs455xz8upvvPFGnHzyyXHJJZd0+3NHRCxatCjOPffcOOuss6KlpaXLs/r6+rjooov6dVYAAAAAAAAAAAAoR5u+SpQBd8opp8TcuXPjwQcf7FJ//vnn46STTooJEybEzjvvHLW1tbF06dJ4+umnI51O5/UZMWJEXHrppf0eBn2nCRMmxFVXXRVf+MIX8ua45ZZb4je/+U285z3viR122CGqq6tj1apVsWDBgnjzzTe77Tdy5Mi49tprY9iwYb2eZdmyZd3ONxBOPfXUWLRoUdxyyy1d6p2dnXH99dfHDTfcELvsskvstNNOMWTIkFizZk288MILsXjx4m77VVRUxGWXXRY777zzgMwLAAAAAAAAAAAA5UQgtsgSiURcdtll8YUvfCEee+yxvOeLFy/eaKjyLSNGjIgbbrghRo8ePUBTdnXIIYfEFVdcEV//+tejubm5y7NcLhd//etf469//etm++y+++5x9dVXx7bbblvQHK+99lpebcyYMQX16olvf/vbMWzYsPg//+f/RC6X6/Isl8vF888/H88///xm+wwfPjx+/OMfxyGHHDJQowIAAAAAAAAAAEBZSRZ7ACLq6uriuuuui8985jO9vuF13333jVtuuSV23XXXAZque0ceeWTceuutsffee/d6b3V1dXzuc5+Lm2++ueAwbETkhXEj/nnj7ECpqKiI//iP/4j//u//ju22266gHgcffHD87ne/E4YFAAAAAAAAAACAfuSG2EGiqqoq/vM//zNOOOGEuO6662L27NnR1tbW7dpEIhF77bVX/Nu//Vt8+MMfjmSyOLnm7bffPn7961/Hn//85/jFL34Rjz322EZnjoiYMGFCHHHEEXHKKaf0y222ra2tebWBDMS+5cgjj4zDDjss7rrrrvj9738fTz31VHR0dGx0/fDhw+Oggw6Kk08+Ofbaa68Bnw8AAAAAAAAAAADKTSL3zj/7nUGho6MjnnnmmVi0aFE0NTVFNpuNYcOGxZgxY2KvvfaKhoaGYo+Yp6OjI5566qlYunRprF69Ojo6OqKhoSEaGxtj0qRJBd+qOti1tbXF008/Ha+99lqsXr06WltbY+jQodHQ0BATJkyISZMmFS203FNNTS3R2Zkp9hj0UmNjXVRUJCOTycaqVeuLPQ4AbHHOQgDKnbMQgHLnLASg3DkLASh3zsLSlUpVRENDbf/37feO9IuqqqrYd999Y9999y32KD1WVVUV++23X7HH2OJqampi//33L/YYAAAAAAAAAAAAULYG97WVAAAAAAAAAAAAALAZArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKmkAsAAAAAAAAAAAAACVNIBYAAAAAAAAAAACAkiYQCwAAAAAAAAAAAEBJE4gFAAAAAAAAAAAAoKQJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpArEAAAAAAAAAAAAAlDSBWAAAAAAAAAAAAABKmkAsAAAAAAAAAAAAACVNIBYAAAAAAAAAAACAkiYQCwAAAAAAAAAAAEBJE4gFAAAAAAAAAAAAoKQJxAIAAAAAAAAAAABQ0gRiAQAAAAAAAAAAAChpqWIPAEDPVVQkY8iQyqiqSkVFRXJDbdhWQyLd0RltbenI5Yo8JAAAAAAAAAAAwBYmEAtQApLJRNTWVceQmsp4beX6uGv2P2LR8jWRTmejfkhl7Lf7NnHEvuNiyJCqaGtLR0tLR7FHBgAAAAAAAAAA2GIEYgEGuWQyEUOHDYmVa1rj+zc+Hk+/8Ebemsf/9nrccNdz8aEDJ8RnP7xbJBKJWL++vQjTAgAAAAAAAAAAbHkCsQCDWCIRUT+0Jpa+0Rzn//ThWNeS3ujalrbO+P0DC2Px8rVxwef2j1wu56ZYAAAAAAAAAACgLCSLPQAAGzdkSFWkO7Px7WvnbjIM+3bz/74ifvaHZ6K2tiqSycQATwgAAAAAAAAAAFB8ArEAg1hlVSrufnhRNK1r79W++x57JdY0t8eQIZUDNBkAAAAAAAAAAMDgIRALMEhVV6ciVZGMWX95udd7M9lc3P3I4qisSg3AZAAAAAAAAAAAAIOLQCzAIFVZWRHPv7wq3ljdWtD+OU+8GpWpikil/FYPAAAAAAAAAAC8u0lJAQxSiUQiVq1tK3j/6ub2DX0AAAAAAAAAAADezQRiAQaxZLLw36YrkoKwAAAAAAAAAABAeRCIBRikstlcjB1VV/D+bUbUbegDAAAAAAAAAADwbiYQCzBIdXR0xvbbDIudxw0vaP+UA8ZHe0dnZDLZ/h0MAAAAAAAAAABgkBGIBRik0ulMtLd3xtSDd+j13rqaVHzwfeMi3dE5AJMBAAAAAAAAAAAMLgKxAINYR0dnHLbPdjFpQkOv9p08dbeoSCairS09QJMBAAAAAAAAAAAMHgKxAINYW1s60ulMXHjagbHzuOE92vOZD70njj1wQjQ3t0cuN7DzAQAAAAAAAAAADAapYg8AwKY1r2uLoUNr4gdnHhK3Pfhi3Dt3cbyxurXLmkQiYvJOo+L4D+4Ue+08Kpqb26Kjo7NIEwMAAAAAAAAAAGxZArEAJWDduraora2Kjx22Y5xwxM7xxN9fjxeXromOzmzUD6mMA/ccE9uMqIu2tnSsXdsa6XSm2CMDAAAAAAAAAABsMQKxACWipaUjoqUjqqtTsfvEETF551GRSETkchGd6UysWrU+MplssccEAAAAAAAAAADY4pLFHgCA3mlv74zmdW1RkUxEZaoiKpKJWL++XRgWAAAAAAAAAAAoWwKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaQKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaQKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaQKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaQKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaQKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaQKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaQKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaQKxAAAAAAAAAAAAAJQ0gVgAAAAAAAAAAAAASppALAAAAAAAAAAAAAAlTSAWAAAAAAAAAAAAgJImEAsAAAAAAAAAAABASROIBQAAAAAAAAAAAKCkCcQCAAAAAAAAAAAAUNIEYgEAAAAAAAAAAAAoaaliD0C+ZcuWxZ133hnz58+PhQsXRlNTU3R0dER9fX2MGzcuJk+eHEcddVQceOCBkUgkij1uRETMnTs35syZE08++WQsX748Vq9eHZlMJrbaaqvYfvvtY/LkyXH44YfHAQcc0OuZH3300fjsZz87QJP/P2eddVacffbZvd734osvxuzZs2PevHmxaNGiDd9r2LBhMWLEiNhzzz1j//33jylTpsSQIUMGYHIAAAAAAAAAAAAobwKxg8jKlSvj4osvjpkzZ0Ymk8l7vnr16li9enU8++yzcdNNN8XOO+8c3/zmN+Oggw4qwrT/dO+998ZVV10VCxcu7Pb5m2++GW+++WY88cQTceONN8b48ePji1/8Yhx33HGDJsxbqAULFsSPf/zjeOSRR7p9vmrVqli1alW88MIL8Yc//CFmzJgRn/vc5+K0006LioqKLTwtAAAAAAAAAAAAvHsliz0A/zR//vyYOnVq3HXXXd2GYbvzwgsvxKmnnhqXXHJJZLPZAZ6wq9bW1jjnnHNi+vTpGw3Ddufll1+Oc889N04++eR44403BnDCgZPL5eLqq6+OT33qUxsNw3Zn9erVcemll8ZJJ51Usj87AAAAAAAAAAAADEYCsYPAvHnz4rTTToumpqaC9l9//fVx4YUX9u9Qm9DS0hKf//zn4+677y64x6OPPhrTpk2L119/vR8nG3jZbDbOPffcuOqqq3ocXH6nJ598Mk499dSCvzcAAAAAAAAAAADQVarYA5S7FStWxPTp06OlpaVLPZlMxpQpU2Lq1KkxYcKEqKqqildffTVmz54dd9xxR976W265JSZNmhTTpk0b8JkvuOCCeOyxx/Lqw4cPjxNOOCEOPvjgGDt2bKRSqXjjjTdi/vz58Zvf/CYWL17cZf0rr7wSZ511VvzP//xPVFZWDvjcm1JfXx/HHnvsZtfNmDEjbr/99m73H3/88XHYYYfF9ttvH4lEIpYtWxYPPfRQ3HLLLbF27dou61944YX4xje+Eddcc02//QwAAAAAAAAAAABQrhK5XC5X7CHK2RlnnBF/+tOfutRGjhwZl112Wey3337d7lmyZEl85StfiWeffbZLfciQITFz5swYM2bMgM07e/bsOPvss/Pqxx57bFx00UUxdOjQbvdlMpm4+uqr4yc/+Unes2984xtx6qmn9vus3Xn22WfjpJNOivb29g21VCoV11xzTRxyyCGb3PunP/0pzjjjjLz6wQcfHJdcckmMGjWq231NTU3xta99LR566KG8Z1deeWVMmTKllz9F/2tqaonOzsJuvKV4GhvroqIiGZlMNlatWl/scQBgi3MWAlDunIUAlDtnIQDlzlkIQLlzFpauVKoiGhpq+71vst870mOPPvpoXhi2trY2rr322o2GYSMixo0bFzfeeGNMmjSpS721tTWuuOKKAZn1LVdeeWVebcqUKXHZZZdtNAwbEVFRURHTp0/vNlD685//PNLpdL/O2Z0333wzzjrrrC5h2IiIr3/965sNw7a3t8d3v/vdvPrUqVPj5z//+UbDsBERDQ0Ncc0118SBBx6Y9+yGG27o4fQAAAAAAAAAAADAxgjEFtG1116bV5s+fXrsvvvum91bX18fP/vZz6K2tmtK+s4774zly5f324xv9/DDD8cLL7zQpTZ8+PD4zne+E8lkz34pnXnmmTF27NgutZUrV8bcuXP7bc7uZLPZ+PKXvxyvvfZal/qRRx4ZJ5988mb333zzzXl/X/fcc8/4wQ9+EBUVFZvdX1FREd/5zncilUp1qT/55JPx0ksv9eAnAAAAAAAAAAAAADZGILZIXn311XjkkUe61EaMGBHTpk3rcY8xY8bkhTk7Ozvj97//fb/M+E73339/Xu2EE06IhoaGHveorKyMY445Jq/+9NNP92m2zfnZz34Wjz/+eJfamDFjYsaMGZvdm8vl4le/+lWXWiqVih/84AdRVVXV4xnGjx8fH/jAB/Lq75wLAAAAAAAAAAAA6B2B2CKZNWtWZLPZLrWPfvSjvQpYRkR86lOfyqvdfffdfZptY7oLbn7oQx/qdZ/tt98+r/b6668XNFNPPPPMM/Hf//3fefWLLroottpqq83uf/TRR2PJkiVdav/yL/8SO+20U69nOfroozf85+rq6hg9enSsXLmy130AAAAAAAAAAACA/ye1+SUMhIcffjivdsQRR/S6z7bbbhu77rprPP/88xtqL730UixZsiTGjRvXpxnf6dZbb42XX345Fi5cGAsXLozFixfHpEmTet2nvb09r5ZMDkw2O51Ox/nnnx+dnZ1d6h//+MfjkEMO6VGP7m7G/exnP1vQPFOnTo0DDjggGhoaora2tqAeAAAAAAAAAAAAQFcCsUWQzWZj/vz5XWqpVCre+973FtRvn3326RKIjYiYN29evwdiU6lU7LjjjrHjjjvGlClTCu7zj3/8I6+23Xbb9WW0jbr++uvz3jdy5Mg477zzetzjoYce6vLX48ePj/e85z0FzVNTUxNjx44taC8AAAAAAAAAAADQvYG5lpNNevnll6Otra1LbeLEiVFTU1NQv9122y2vtmDBgoJ6DbQ1a9bE7Nmz8+oHHnhgv79ryZIl8ZOf/CSvfs4558RWW23Vox5r166NxYsXd6ntt99+/TEeAAAAAAAAAAAA0E8EYotg4cKFebUddtih4H7jx4/Pqy1atKjgfgOlo6Mjzj333Ghubu5Snzx5cuy55579/r4f/ehHecHjPfbYI44//vge93juuecil8t1qe2+++6b3NPR0RFNTU3R2dnZ82EBAAAAAAAAAACAgqWKPUA5Wrp0aV5t7NixBffbZpttevSOYnruuefiwgsvjGeeeaZLvbKyMi644IJ+f98TTzwRs2bNyquff/75kUgketznpZdeyqtNmDChy1+n0+m477774o9//GM8+eSTsWzZsoiISCQS0djYGLvvvnscddRRceyxx/b4ZloAAAAAAAAAAACg5wRii+DNN9/Mq2299dYF9xs5cmRebcWKFQX364tsNhu5XC5aWlpi6dKl8fTTT8fMmTPjL3/5S95Nq8lkMr73ve/F5MmT+32OSy65JK92zDHHxD777NOrPkuWLMmrvf1b3XbbbXHppZfG66+/nrcul8vFypUrY86cOTFnzpy49NJL48wzz4xp06ZFKuUfPQAAAAAAAAAAAOgvUnlFsHLlyrzasGHDCu5XV1cXqVQqOjs7N9RaWloinU5HZWVlwX0LMWvWrPjyl7+82XUjRoyIiy++OA4//PB+n+HBBx+Mp556qkstmUzG2Wef3ete3QVdGxsbo6WlJb7xjW90ewvtxqxevTq+//3vxwMPPBBXXXVV1NfX93oeAAAAAAAAAAAAIF+y2AOUo+bm5rxaX8ORtbW1PXrPQFu+fPlm1xx66KExc+bMAQnDRkT89Kc/zat9+MMfjl122aXXvZqamvJquVwuTj/99F6FYd/ukUceiRNPPDHWrFlT0H4AAAAAAAAAAACgKzfEFkFHR0derbq6uk89q6qqevSegbZs2bLNrpkzZ04cd9xxccopp8SJJ57Y55/97R555JF48sknu9QSiUR88YtfLKjf2rVr82ozZsyIxx57rEvtmGOOiY985CPx3ve+NxobG6O5uTleeuml+OMf/xi33HJLtLS0dFn/j3/8I772ta/FNddcE4lEoqDZ+tOwYTXFHoECJJOJDf/e2FhX5GkAYMtzFgJQ7pyFAJQ7ZyEA5c5ZCEC5cxbyTgKxRdBdULWioqJPPbvb39nZ2aeehXjttdd6tG758uUxY8aM+O1vfxtXXnll7Ljjjv3y/htuuCGvdvjhhxfcv62tLa92xx13bPjPo0ePjssvvzz22WefLmsaGxujsbEx9t133zj11FPjy1/+cjzxxBNd1jz44INx4403xqmnnlrQbP2posJl0aUskUhERUXxg9UAUCzOQgDKnbMQgHLnLASg3DkLASh3zkLeIhBbBJlMJq82EIHYbDbbp56F2H///ePoo4+OnXbaKRoaGmL9+vWxZMmSeOihh+K2227Luyl14cKFcdJJJ8XNN98cO+ywQ5/e/fLLL8dDDz2UV+9L4DSdTm/02bbbbhu//vWvY/To0ZvsMXr06LjhhhvitNNOi8cff7zLs2uuuSY+/elPR21tbcEz9odMZsv/WqHvkslEJBKJyOVykc3mij0OAGxxzkIAyp2zEIBy5ywEoNw5CwEod87C0jYQlzgKxBZBZWVlXq2vt7l2F9ysqqrqU89CfOYzn8mr7bzzznHEEUfE2WefHd/+9rdj9uzZXZ43NTXFmWeeGbfddlufZr7pppsil+v6G9tuu+0W+++/f8E9NxYqrqioiCuuuGKzYdi31NTUxI9//OP4yEc+EmvXrt1Qb2pqit/85jdxyimnFDxjf1i7ti06O/OD2gxujY11UVGRiGw2F6tWrS/2OACwxTkLASh3zkIAyp2zEIBy5ywEoNw5C0tXKlURDQ39f4mkPye9CAYiENvdrbPdvaeYGhsb48orr4xPf/rTec9efPHF+OUvf1lw73Q6Hbfffntevbt39UYq1X1mfOrUqTF58uRe9Ro9enRMmzYtr37//fcXNBsAAAAAAAAAAADwTwKxRVBbm59sbm1t7VPPlpaWvFp1dXWfeg6ERCIR3/rWt2KvvfbKe3bTTTdt9EbWzZkzZ06sXr26S626ujqmTp1aUL+3bOzG2n/9138tqN8nP/nJvNpTTz0VbW1tBfUDAAAAAAAAAAAABGKLYvjw4Xm19esLv7I5k8nkBSqrq6ujrq6u4J4DKZVKxde+9rW8+rJly2LBggUF9bzjjjvyakcffXQMHTq0oH5vGTZsWF6ttrY23vve9xbUb7vttottttmmS62joyMWLlxYUD8AAAAAAAAAAABAILYoGhsb82orV64suF93e0eOHFlwvy1h3333jbFjx+bVn3nmmV73amtri//93//Nqx933HGFjNZFQ0NDXm277baLVCpVcM+JEyfm1VatWlVwPwAAAAAAAAAAACh3ArFF0F0Q9M033yy4X3d7R40aVXC/LeV973tfXm3ZsmW97jN37ty8G3KHDh0aBxxwQMGzveWdt7lGRGy11VZ96tnd/qampj71hP+PvfsOb6pu/zj+SVra0l1a9l6ydwEBQTYiKm4U5HE8bhHcA2W4FRVEcKGIOAFxgiAgClqG7C2bAm1ZLYXupmnO7w9+7UM4KW260tr367q4SO5zzv2906QNj8+n3wAAAAAAAAAAAAAAAABARUYg1gPq1q1rqh05cqTQ/Vxd62oX0rLGVWg3OTnZ7T5//PGHqXb55ZfLx8enUHOdr169eqaa3W4vct8LWa18KwIAAAAAAAAAAAAAAAAAUFiF/9x3FFqzZs1ksVhkGEZu7cCBA4Xu5+raJk2aFLpfXmw2m2JjY3X06FEdPXpUjRo1Urdu3Qrd7/zHnyMgIMDtPn/99Zep1r9//0LNdKGmTZuaaidOnChSz7Nnz5pqQUFBReoJAAAAAAAAAAAAAAAAAEBFRiDWA4KCglS/fn1FR0fn1mJjY3X69GlVqVLF7X7btm0z1Vq3bl2UEU0WL16sxx57TA6HI7fWp0+fIgViT548aapFRES41SMmJkZxcXFONavVqh49ehR6rvO1adNGVqvV6XEfO3as0M+V5HpHX1c70QIAAAAAAAAAAAAAAAAAgILhc9o9pGvXrqbamjVr3O5js9m0fv16p1rlypXVoUOHQs/mSv369Z1CoZK0fv16ZWZmFrrnxo0bTbUGDRq41WPDhg2mWsuWLRUcHFzYsZwEBgaqVatWTjXDMPTnn38Wqt/JkycVExPjVPP391f9+vULPSMAAAAAAAAAAAAAAAAAABUdgVgPufzyy021RYsWud1n5cqVSk1Ndapdeuml8vHxKfRsrjRp0kR+fn5OtZSUFC1btqxQ/TZs2KBjx4451SpVquT2jrObNm0y1bp06VKomfLSt29fU23+/PmF6rVgwQJTrXv37vLy8ipUPwAAAAAAAAAAAAAAAAAAQCDWY3r27KnQ0FCn2h9//KEDBw4UuIdhGJo5c6apfuONNxZ1PBMfHx/179/fVJ85c6Zp59j8GIahKVOmmOo9evRQQECAW7127NhhqrVp08atHvm59tprTYHV9evXKyoqyq0+6enp+vLLL031K6+8skjzAQAAAAAAAAAAAAAAAABQ0RGI9RAfHx9df/31TrXs7Gw9++yzyszMLFCPTz/9VJs3b3aq1apVS7179y6uMZ3ccMMNptquXbtchjwvZurUqdqwYYOp/tBDD7nVx263a9++faZ6q1at3OqTn1q1amngwIGm+vPPP6/Tp08XuM9rr72muLg4p1r16tVd9gYAAAAAAAAAAAAAAAAAAAVHINaD7r77bvn7+zvVtm7dqscffzzfUOzChQv11ltvmepjxoyRt7f3Ra+NiYlRs2bNTH++//77i17XvXt3XXbZZab6G2+8oV9//fWi10rndoZ955139MEHH5iODRkyRG3bts23x/mio6Nls9mcav7+/qpXr55bfQrisccek4+Pj1Pt2LFjuvPOO3X8+PF8r3/nnXc0d+5cU33MmDGqVKlSsc0JAAAAAAAAAAAAAAAAAEBFRCDWg8LDwzV69GhTfdmyZbrppptc7qJ68uRJvfjii3r88cflcDicjkVGRmro0KElNq8kjRs3zhTitdvtGjNmjMaPH69jx46ZrjEMQ+vWrdOtt97qMgzbqFEjTZw40e1ZDh8+bKrVrVtXFovF7V75qVevnp566ilTfffu3Ro6dKi++OILpaammo7v379fd999t8vH3aVLF9MuwQAAAAAAAAAAAAAAAAAAwH0X30oUJe6OO+7QmjVrtHLlSqf6nj17NGLECDVo0EBNmzaVv7+/YmNjtXXrVmVlZZn6hIeHa/LkySUSBj1fgwYNNG3aNN1///2mOebOnat58+apRYsWatiwoXx9fXX69Gnt2LFD8fHxLvtFRERoxowZCg4OdnuWuLg4l/OVlJEjR+rgwYP6+uuvnepnzpzRyy+/rMmTJ6tdu3aqWbOm0tPTdeDAAe3du9dlrxo1apTK8wUAAAAAAAAAAAAAAAAAQEVAINbDLBaLpkyZovvvv1/r1q0zHY+OjlZ0dPRFe4SHh2vWrFmqXr16CU3p7LLLLtPUqVP11FNPKSUlxemYYRjatWuXdu3alW+fVq1aafr06apVq1ah5jh+/LipVrNmzUL1Kqjx48crICBAH3/8selYWlqa1qxZk2+POnXq6LPPPlPVqlVLYkQAAAAAAAAAAAAAAAAAACocq6cHgBQQEKCZM2dq5MiRbu8YGhkZqblz56pZs2YlNJ1r/fr10w8//KAOHTq4fa2vr6/uuusuffPNN4UOw0oyhXGlczvOliSLxaInnnhCH3zwgWrUqOH29VdddZV++OEH1a1btwSmAwAAAAAAAAAAAAAAAACgYmKH2DLCx8dHzz//vG688UbNnDlTS5cuVUZGhstzLRaL2rdvr9tuu01XXnmlrFbP5Jrr1aunOXPmKCoqSrNnz9a6devynFmSGjRooL59++qOO+4olt1s09PTTbWSDsTm6Nu3r3r06KH58+fru+++086dO/M818/PT3369NFdd92ltm3blsp8AAAAAAAAAAAAAAAAAABUJBbDMAxPDwEzm82mbdu26dChQ0pMTJTD4VBwcLBq1qyp9u3bKywszNMjmthsNm3ZskWxsbE6c+aMbDabwsLCVKVKFTVv3lx16tTx9IglJj4+Xjt27NDRo0eVkpIiLy8vhYSEqHHjxmrVqpUqV67s6REvKjExTXZ7tqfHgJuqVAmQl5dV2dkOnT6d6ulxAAAodbwXAgAqOt4LAQAVHe+FAICKjvdCAEBFx3th+eXt7aWwMP/i71vsHVEsfHx8FBkZqcjISE+PUmA+Pj7q0qWLp8fwiIiICPXu3dvTYwAAAAAAAAAAAAAAAAAAUCFZPT0AAAAAAAAAAAAAAAAAAAAAUBQEYgEAAAAAAAAAAAAAAAAAAFCuEYgFAAAAAAAAAAAAAAAAAABAuUYgFgAAAAAAAAAAAAAAAAAAAOUagVgAAAAAAAAAAAAAAAAAAACUawRiAQAAAAAAAAAAAAAAAAAAUK4RiAUAAAAAAAAAAAAAAAAAAEC5RiAWAAAAAAAAAAAAAAAAAAAA5RqBWAAAAAAAAAAAAAAAAAAAAJRrBGIBAAAAAAAAAAAAAAAAAABQrhGIBQAAAAAAAAAAAAAAAAAAQLlGIBYAAAAAAAAAAAAAAAAAAADlGoFYAAAAAAAAAAAAAAAAAAAAlGsEYgEAAAAAAAAAAAAAAAAAAFCuEYgFAAAAAAAAAAAAAAAAAABAuUYgFgAAAAAAAAAAAAAAAAAAAOUagVgAAAAAAAAAAAAAAAAAAACUawRiAQAAAAAAAAAAAAAAAAAAUK4RiAUAAAAAAAAAAAAAAAAAAEC5RiAWAAAAAAAAAAAAAAAAAAAA5RqBWAAAAAAAAAAAAAAAAAAAAJRrBGIBAAAAAAAAAAAAAAAAAABQrhGIBQAAAAAAAAAAAAAAAAAAQLlGIBYAAAAAAAAAAAAAAAAAAADlGoFYAAAAAAAAAAAAAAAAAAAAlGsEYgEAAAAAAAAAAAAAAAAAAFCuEYgFAAAAAAAAAAAAAAAAAABAuUYgFgAAAAAAAAAAAAAAAAAAAOUagVgAAAAAAAAAAAAAAAAAAACUawRiAQAAAAAAAAAAAAAAAAAAUK4RiAUAAAAAAAAAAAAAAAAAAEC5RiAWAAAAAAAAAAAAAAAAAAAA5RqBWAAAAAAAAAAAAAAAAAAAAJRrBGIBAAAAAAAAAAAAAAAAAABQrhGIBQAAAAAAAAAAAAAAAAAAQLlGIBYAAAAAAAAAAAAAAAAAAADlGoFYAAAAAAAAAAAAAAAAAAAAlGsEYgEAAAAAAAAAAAAAAAAAAFCuEYgFAAAAAAAAAAAAAAAAAABAuUYgFgAAAAAAAAAAAAAAAAAAAOUagVgAAAAAAAAAAAAAAAAAAACUawRiAQAAAAAAAAAAAAAAAAAAUK4RiAUAAAAAAAAAAAAAAAAAAEC5RiAWAAAAAAAAAAAAAAAAAAAA5RqBWAAAAAAAAAAAAAAAAAAAAJRrBGIBAAAAAAAAAAAAAAAAAABQrhGIBQAAAAAAAAAAAAAAAAAAQLlGIBYAAAAAAAAAAAAAAAAAAADlGoFYAAAAAAAAAAAAAAAAAAAAlGsEYgEAAAAAAAAAAAAAAAAAAFCuEYgFAAAAAAAAAAAAAAAAAABAuUYgFgAAAAAAAAAAAAAAAAAAAOUagVgAAAAAAAAAAAAAAAAAAACUawRiAQAAAAAAAAAAAAAAAAAAUK4RiAUAAAAAAAAAAAAAAAAAAEC5RiAWAAAAAAAAAAAAAAAAAAAA5RqBWAAAAAAAAAAAAAAAAAAAAJRrBGIBAAAAAAAAAAAAAAAAAABQrhGIBQAAAAAAAAAAAAAAAAAAQLlGIBYAAAAAAAAAAAAAAAAAAADlGoFYAAAAAAAAAAAAAAAAAAAAlGsEYgEAAAAAAAAAAAAAAAAAAFCuEYgFAAAAAAAAAAAAAAAAAABAuUYgFgAAAAAAAAAAAAAAAAAAAOUagVgAAAAAAAAAAAAAAAAAAACUawRiAQAAAAAAAAAAAAAAAAAAUK4RiAUAAAAAAAAAAAAAAAAAAEC5RiAWAAAAAAAAAAAAAAAAAAAA5RqBWAAAAAAAAAAAAAAAAAAAAJRrBGIBAAAAAAAAAAAAAAAAAABQrnl7egAAAAAAAAAAAAAAAFB2GYZDmZkZyshIU3a2XYbhkMPh8PRYFV5iorcsFskwpKwsu6fHAQCg1PFeWHBWq1UWi1VWq5d8fPzk51dZXl7/vvjov+8RAQAAAAAAAAAAAACAIjEMQ5mZ6crISFNmZroMgwBsWZOV5ZBkkWTI4TA8PQ4AAKWO98KCcziyc29nZqYpOVny9vaRr29lVa4cIG/vSh6crvgQiAUAAAAAAAAAAAAAALkMw1BS0mmlp6fkcYZFVqu1VGeCmcViyb1ttRICAgBUPLwXFpxhGKZfcLLbbbLbbUpNTVJwcBX5+wd6aLriQyAWAAAAAAAAAAAAAABIch2GtVis8vPzl5+fv3x8fGWxEIYtC7y8rLkfE52dzQ6+AICKh/dC9xiGIbs9K/dTAOx2W84RJSUlyG63KSgozCloXN4QiAUAAAAAAAAAAAAAAC7DsMHB4apcOaBcByMAAABwbkfdSpV8VKmSjwIDQ5SdbVdKSpLS05MlSWlpyZIsCg4O8+ygRcCvbQEAAAAAAAAAAAAAAGVmpjuFYUNDq8rfP5AwLAAAwL+Ql5e3QkKqKDg4XNK5f++lpSXJZsv07GBFQCAWAAAAAAAAAAAAAAAoIyMt93ZwcLj8/Pw9OA0AAABKg79/oAIDQ3Lvp6Sc9eA0RUMgFgAAAAAAAAAAAACACs4wHMrMTJckWSxWVa4c4OGJAAAAUFoCAoJltXpLkmy2DDkcDg9PVDgEYgEAAAAAAAAAAAAAqOAyMzNkGOeCD35+/rJYLB6eCAAAAKXFYrHIz6/y/98zZLNleHSewiIQCwAAAAAAAAAAAABABZeRkZZ728/P34OTAAAAwBN8fSvn3j7/34blCYFYAAAAAAAAAAAAAAAquOxse+5tHx8/D04CAAAAT6hUyTf3tsOR7cFJCo9ALAAAAAAAAAAAAAAAFZxhOP7/lkUWi8WjswAAAKD0nfs34Ll/BzocjoufXEYRiAUAAAAAAAAAAAAAoILLCT1YrcQIAAAAKiKLxZL7b0ECsQAAAAAAAAAAAAAAAAAAACjnDE8PUCgEYgEAAAAAAAAAAAAAAAAAAFCuEYgFAAAAAAAAAAAAAAAAAABAuUYgFgAAAAAAAAAAAAAAAAAAAOUagVgAAAAAAAAAAAAAAAAAAACUawRiAQAAAAAAAAAAAAAAAAAAUK4RiAUAAAAAAAAAAAAAAAAAAEC5RiAWAAAAAAAAAAAAAAAAAAAA5RqBWAAAAAAAAAAAAAAAAAAAAJRrBGIBAAAAAAAAAAAAAAAAAABQrhGIBQAAAAAAAAAAAAAAAFBm2e12T48AACgHCMQCAAAAAAAAAAAAAAAAKHOys7M1d+5XmjZtsqdHAQCUAwRiAQAAAAAAAAAAAAAAAJQpp06d1N13j9S0aVOUlpbm6XEAAOUAgVgAAAAAAAAAAAAAAAAAZcrRo0e0b99eT48BAChHCMQCAAAAAAAAAAAAAAAAAACgXCMQCwAAAAAAAAAAAAAAAAAAgHKNQCwAAAAAAAAAAAAAAAAAAADKNW9PDwAAAAAAAAAAAAAAAAAAkrRo0QK9+uoLTrXFixdq8eKFkqTLLuuldevWymazSZLmzftJtWrVvmjPWbM+1syZH0mSRo9+TDffPFySdOONV+v48WNq376jpk+fofj4eM2d+5Wiolbq5MkT8vLyVv369dWrV19df/2NCggIzHd+wzC0YsVy/f77b9q1a4cSExPl41NJ1apVV2RkFw0deoPq12/g7pcFAFAABGIBAAAAAAAAAAAAAAAAlAtBQcHq3r2nVqxYLklavnypRo6886LXLFv2qyTJy8tL/fsPcnnOP//s1NNPP6bTpxPOq2bqn3926Z9/dmn+/Dl6662patq0WZ7rHD9+TOPGPa1//tnlVLfZMpWSkqKDBw/ou+/mafjw/+jeex+UxWIpwCMGABQUgVgAAAAAAAAAAAAAAAAAZULz5i314INjFBcXox9//C631rfvAElSo0aNZbfbcwOxv/225KKB2N27/9GRI4clSZ07d1WVKuGmcxITT+uZZ86FYf39A9S7d1/Vrl1Hx48f14oVy5WcnKSEhHg9/PB9mjZthpo2vcTUIy4uVg88cJcSEs4FaoODQ3TZZb1Uu3YdZWZmateuHdq4cb2ys7P1xRezlJAQr7FjJxTtiwUAcEIgFgAAAAAAAAAAAAAAAECZ0KhRYzVq1FibNm3IDcQ2bNhIw4ePzD3HbrcrNDRMZ84k6sCB/Tp48IAaNWrsst+yZYtzbw8adKXLcw4fjpZ0Lnj72mtvqWrVarnH7r33QT3//FPaunWzUlJSNHnyG/rgg5lO12dnZ2vChGdzw7ADBw7WE088K39/f6fzdu7coeeee1Lx8ae0aNECdejQSYMHX1XArwwAID9WTw8AAAAAAAAAAAAAAAAAAAXl7e2t/v0H5d5ftuxXl+c5HA799ttSSZK/f4B69uydZ8/w8HBNnjzNKQwrSWFhYXrjjSmqVq26JGn79q1avTrK6ZwVK37XP//skiR16XKpnn/+BVMYVpJatWqtl19+QxaLRZL06acfKzs7O59HCwAoKAKxAAAAAAAAAAAAAAAAAMqVK64Yknt7+fKlLs/ZuHG9EhLiJUm9e/eVn59fnv1uv/1uBQeHuDwWGBioW24ZkXt/5crfnY4vXPhj7u3//OcuWa15R7Jat26rTp06S5KOHYvV9u1b8zwXAOAeArEAAAAAAAAAAAAAAAAAypXmzVuoYcNGkqS4uFjt3LnDdM75O8cOGnTlRfv16zfgosd79OiVe3vdurW5t+12u3bs2JZ7v1mzFhcfXFKbNu1yb2/btiXf8wEABePt6QEAAAAAAAAAAAAAAAAAwF1XXDFEH3wwTZL0229L1KpV69xjmZmZuTu5VqtWXR06dMqzT82atRQSEnrRtWrXriNfX19lZmYqPv6U7Ha7vL29deLEcaWnp+eeN2BAT7cew/Hjx9w6HwCQN3aIBQAAAAAAAAAAAAAAAFDuDBp0pazWc/Gn339fKofDkXts1aq/lJqaKkkaMOCK3PNcCQ0NK9B6gYFBkiTDMHTmTKIkKSnpbKFmz5GcnFyk6wEA/8MOsWVQXFycFixYoI0bN2r//v1KTEyUzWZTYGCg6tatq7Zt26p///7q1q2bLBaLp8eVJK1Zs0Z//vmnNm/erGPHjunMmTPKzs5WSEiI6tWrp7Zt26p379669NJL3Z7577//1n/+858Smvx/Ro0apYcffrhYe3788cd66623cu/Xrl1bv//+e7GuAQAAAAAAAAAAAAAAUBFFRFRVp06dtX7930pISNCmTRsUGdlFkrRs2eLc8wYNuvKifby9CxahOj9w6+1dSZKUnZ3tNM/NNw8v8PySVLduXbfOBwDkjUBsGZKQkKBXX31VixcvdnqzzHHmzBmdOXNG27dv11dffaWmTZtq7Nix6t69uwemPefXX3/VtGnTtH//fpfH4+PjFR8fr02bNumzzz5T/fr19eCDD2ro0KFlJsxbUnbv3q2pU6d6egwAAAAAAAAAAAAAAIB/rSuuGKL16/+WJP3++zJFRnZRamqK1q5dLUm65JJmatSo8UV7pKam5LuOw+HIPc/b21shISGSpKCg4NxzDMPQ8OEjC/U4AABFl/de4ChVGzdu1JAhQ7Rw4UKXYVhX9u3bpzvvvFNvvPGG02+glIb09HQ99thjGjNmTJ5hWFcOHz6sp59+WrfffrtOnTpVghN6ls1m05NPPqmsrCxPjwIAAAAAAAAAAAAAAPCvdfnlfVW5sr8kadWqv2QYhtauXZOb2chvd1hJiok5KrvdftFzjh49IpvNJkmqVat27kZw1avXkJeXlyQpISFeJ0+eyHe9tLTU3F4AgOJTbgOxmZmZ2r17t1auXKkff/xRc+bM0RdffKElS5a4PP/EifzfbDxlw4YNuvvuu5WYmFio6z/99FNNnDixeIe6iLS0NN1777365ZdfCt3j77//1vDhw8v081IUkydP1t69ez09BgAAAAAAAAAAAAAAQLlU0E8e9vPzU+/efSWdC6Tu3r1Lq1f/JUny8vJS//6D8u1hs9m0efOGi57z118rcm9fdtnlTus3a9Yi9/6yZb/mu95LL41Xv349dN11V2rhwp/yPR8AUDDenh6goAzDUFRUlFasWKG1a9cqOjra5a6oHTt21KBBzm9kaWlp6tOnjzp16qTrr79eQ4cOldVaNrLAJ0+e1JgxY5SWluZUt1qtGjRokIYMGaIGDRrIx8dHMTExWrp0qX7++WfT+XPnzlXz5s01fPjwEp953LhxWrdunakeGhqqG2+8UT169FDt2rXl7e2tU6dOaePGjZo3b56io6Odzj9y5IhGjRqlr7/+WpUqVSrxuS8mMDBQV1xxRbH0Wrt2rT777LNi6QUAAAAAAAAAAAAAAFARWa1eubcdjot/2vLgwVdp8eKFkqQ//1yhv/9eI0mKjOyq8PCIAq03e/aniozs6jKIm5R0VvPmfZN7v1+/gab1d+3aIUn6+uvPNXDgYFWtWs3lOtu3b1VU1J8yDEPx8afUsmWrAs0HAMhfmQ/E2mw2ff311/rss89ydxM1DMOtHseOHZPD4dCGDRu0YcMGffzxx3ryySfVp0+fkhjZLRMmTFB8fLxTLSIiQlOmTFGXLl2c6vXr11ePHj10991369FHH9X27dudjk+aNEl9+vRRzZo1S2zepUuXauHChab6FVdcoZdffllBQUFO9dq1a6t9+/a64447NH36dL3//vtOx7dt26Yvv/xSd955Z55rdu3aVXv27CmW+bdv364RI0YoMzMzt+bt7a2pU6eqadOmRe6flJSkZ555xu3XKAAAAAAAAAAAAAAAAP4nICAg9/axY8cuem6HDp1UvXoNnThxXN9/P0+pqamSpEGDrizwelu2bNLrr7+kxx57Wr6+vrn1+Ph4jR37hE6fTpAkXXHFEDVr1tzp2iuvvEpz5nyp2NgYnT17Vo888qBeeeVNNWjQ0Om83bt3ady4/+VKevfup0aNmhR4RgDAxZXpQOyqVas0btw4HTt2zBQwLOi26JIUExOTe9swDB08eFAPPvigbrvtNj3zzDPy8vK6yNUl5++//9bvv//uVPP399eMGTPUqlXev/1Rt25dffbZZxoxYoR2796dW09PT9fUqVP1+uuvl9jM7777rqk2aNAgTZky5aK77np5eWnMmDEyDEMffPCB07GPP/5Yt912W4nvEhsfH69Ro0Y5hWEl6amnntJll11WLGu88MIL+f4jDAAAAAAAAAAAAAAAABdXo0ZNWSwWGYahbdu26KWXxqlBg8aqWrWqrrhiiNO5FotFAwcO1hdfzMoNw/r7B6hXr94FXs/b21u//PKz1q//W5df3ldhYWGKiTmqFSt+V1rauZ516tTVqFGPmq719fXTSy+9rlGj7lNaWqoOH47W7bffom7deuiSS5orKytLe/fu0bp1a3IzUDVr1tLjjz9TyK8OAMCVvBOMHvbee+/pnnvuUVxcnAzDkMVicfqTI+dN4mI7csbFxeXezrneMAx9+eWXuvfee2W320vugVzEjBkzTLUxY8ZcNAybIzAwUB9++KH8/f2d6gsWLCixQOaqVau0b98+p1poaKheeOGFi4Zhz/fQQw+pdu3aTrWEhAStWbOm2OZ0xeFw6JFHHtHx48ed6v369dPtt99eLGssWrTI5e65AAAAAAAAAAAAAAAAcE9gYKD69RuYe3/JksX66KPp+uabL12eP3iwc0i2d+++8vPzK/B6L7zwmvz8/HTy5Al9++03mjHjfS1atCA3DNu+fUd99NEshYaGurz+kkua68MPZ+buCpudna2oqD/16acz9MUXs/T336tz802tW7fVe+99nGcvAEDhlMlA7Msvv6zp06fL4XCYArDnK+jH0p8fiM25JicUu3r1aj377LNFH9pNMTExWr16tVMtPDxcw4cPL3CPmjVrmsKcdrtd3333XbHMeKHly5ebajfeeKPCwsIK3KNSpUoaOHCgqb5169YizZafDz/8UOvXr3eq1axZU6+99lqx9D9x4oQmTpzoVLvllluKpTcAAAAAAAAAAAAAAEBFNHbsBN1++39Vp05d+fj4KigoWF5eXi4zQ/XqNVCLFi1z7w8adKVba11+eR/Nnj1HQ4derxo1aqpSpUoKDQ1Vt2499OKLr2vatI8UEhJ60R6NGjXR7NlzNGHCy+rdu59q1KgpX19f+fj4qHr1Gurdu69eeWWS3n//E1WrVt2t+QAA+fP29AAXmjFjhr788txvclwYhD3/zSw8PFx169bVli1b8u2ZkpKSezunZ86us4ZhaOHChYqMjNSwYcOK4REUzJIlS+RwOJxqV199tXx8fNzqc/PNN+uDDz5wqv3yyy8aNWpUkWe80IWBUkkaPHiw233q1atnqp04caJQMxXEtm3b9N5775nqL7/8skJCQorc3zAMPfPMMzp79mxurX79+nr66ac1Z86cIvcHAAAAAAAAAAAAAACoiHx8fHTPPQ/onnseyPdcwzB05swZSVK1atXVoUMnt9erXbuOnnxyrNvXnc/Ly0sDBlyhAQOuKFIfAID7ylQgduPGjXrnnXfyDMJ2795dQ4cOVbdu3VStWjVJUvPmzfPtO2HCBPXp00fTp0/Xtm3bnHadzQnFTp48WQMHDnRrt9OiWLVqlanWt29ft/vUqlVLzZo10549e3JrBw8e1NGjR1W3bt0izXihH374QYcPH9b+/fu1f/9+RUdHF+jrf6HMzExTzWotmc2Ks7Ky9Nxzz8lutzvVr7vuOl122WXFssbs2bOddvv18vLS66+/Ln9//2LpDwAAAAAAAAAAAAAAgIvbtm2Ljh079ynSV1wxpMSyKACAsqvMBGIdDocmTJggh8PhFIg1DENNmjTRq6++qrZt2xa6f69evdSrVy998803evXVV00ByaSkJM2aNUuPPfZYodcoKIfDoY0bNzrVvL291a5du0L169ixo1MgVpI2bNhQ7IFYb29vNW7cWI0bN9agQYMK3Wfv3r2mWp06dYoyWp4+/fRT03oRERF69tlni6X//v37NXnyZKfa3XffrY4dOxZLfwAAAAAAAAAAAAAAAOTv++/nSTq3Od6QIdd4eBoAgCeUmV+FWLhwofbv358bhjUMQ4ZhqH379pozZ06RwrDnu/XWWzVr1iz5+vrm1nJ2if3hhx/kcDiKZZ2LOXz4sDIyMpxqjRo1kp+fX6H6tWzZ0lTbsWNHoXqVtLNnz2rp0qWmerdu3Yp9raNHj+r999831R977DGFhIQUuX9WVpaefPJJpx1vmzdvrlGjRhW5NwAAAAAAAAAAAAAAAPKWlpYq6Vx+4+uvv9Dy5cskSd27X6batUtmYzYAQNlWZnaI/frrr3NvG4Yh6VxIdObMmQoICCjWtSIjI/XCCy/o6aefdtqNNj4+XmvWrFGPHj2Kdb0L7d+/31Rr2LBhofvVr1/fVDt06FCh+5UUm82mp59+WikpKU71tm3bqk2bNsW+3ptvvmkKHrdu3VrXX399sfSfOnWqdu3alXvfx8dHkyZNko+PT7H0BwAAAAAAAAAAAAAAgGs33zxUFotVqakpstlsks59+vE99zzo4ckAAJ5SJnaIPX78uLZs2eIUTrVYLHrhhReKPQybY+jQoercuXNu+DbH5s2bS2S988XGxppqtWvXLnS/GjVqFGgNT9q5c6dGjBihP/74w6leqVIljRs3rtjX27Rpk5YsWWKqP/fcc06vs8LasGGDZs6c6VQbPXq0mjVrVuTeAAAAAAAAAAAAAAAAuLjw8KpKTDydG4aVpAceeFhNmjT14FQAAE8qEzvErlu3Lve2YRiyWCzq3r27OnfuXKLrjhgxQuvXr3eq7dixo0TXlM7tRHuhatWqFbpfRESEqXby5MlC9ysKh8MhwzCUlpam2NhYbd26VYsXL9batWtN4WOr1aqXXnpJbdu2LfY53njjDVNt4MCB6tixY5F7p6Sk6KmnnpLD4citderUSf/973+L3BsAAAAAAAAAAAAAAAD569athxISTikjI0MNGzbS8OH/UZ8+/T09FgDAg8pEIHb37t2m2hVXXFHi6/bs2VNWqzU3hGsYhg4fPlzi6yYkJJhqwcHBhe4XEBAgb29v2e323FpaWpqysrJUqVKlQvctjCVLluiRRx7J97zw8HC9+uqr6t27d7HPsHLlSm3ZssWpZrVa9fDDDxdL/1deecVpB15/f3+98cYbslrLxIbLAAAAAAAAAAAAAAAA/3r33z9K998/qkg95s9fUEzTAADKgjKR4IuJiTHVimMnz/wEBASoTp06TrWkpKQSXzclJcVUCwwMLFJPf3//Aq1T0o4dO5bvOb169dLixYtLJAwrSR988IGpduWVV+qSSy4pcu+lS5fq+++/d6o9++yzqlu3bpF7AwAAAAAAAAAAAAAAAACAwikTO8S6Cm5WrVq1VNYOCQnRkSNHZLFYJEnJycklvqbNZjPVfH19i9TTx8enQOuUtLi4uHzP+fPPPzV06FDdcccduvXWW4v82M+3evVqbd682almsVj04IMPFrn3qVOnNH78eKda7969dfPNNxe5t6cFB/t5egQUgtVqyf27SpUAD08DAEDp470QAFDR8V4IAKjoeC8EgOKVmOitrCyHLBaLvLzKxN5ayMf/xxxksYjnDABQIfFeWPwsFousVosqVfIul/9bu0wEYrOyskw1P7/SCehdGBp1OBylvqYkeXl5Famnq+vtdnuRehbG8ePHC3TesWPH9Nprr+nbb7/Vu+++q8aNGxfL+rNmzTLVevfuXSz9x44dq8TExNz7oaGhevnll4vctyzgDaF8O/cfJSyeHgMAAI/hvRAAUNHxXggAqOh4LwSA4nEuUGI57zbKE54zAEBFx3thcbKU25BxmQjE+vv7m2qnT59WjRo1SnzthISE3N1h85qluGVnZ5tqJRGILY1w74W6du2qAQMGqEmTJgoLC1NqaqqOHj2qv/76Sz/++KPS0tKczt+/f79GjBihb775Rg0bNizS2ocPH9Zff/1lqt95551F6itJX331lf7880+n2sSJE0ttJ+OSlp1d+q8VFJ3VapHFYpFhGHI4DE+PAwBAqeO9EABQ0fFeCACo6HgvBIDiZRiSZJx3G2Xd+cEfnjMAQEXEe2FJMWQYJZ8pK4nAbZkIxIaHh5tq+/btK/FA7IkTJxQfH5/7H0sklUrAsVKlSqZaUXdzdbXLro+PT5F6FsbIkSNNtaZNm6pv3756+OGHNWHCBC1dutTpeGJioh566CH9+OOPRZr5q6++yn0ec7Rs2VJdu3YtdE9JOnTokN58802n2tVXX63BgwcXqW9ZkpSUIbvdHNRG2ValSoC8vCxyOAydPp3q6XEAACh1vBcCACo63gsBABUd74UAULyysuxyOAxZrQYb6pQTXl5WWSwqlcAKAABlEe+FxS/nl06zsuwl+r+1vb29FBZW/JuXlok9bevXr2+qXbgbZ0lYsWKF032LxaK6deuW+LolEYh1teusq3U8qUqVKnr33Xc1bNgw07EDBw7o888/L3TvrKws/fTTT6a6q7XcYbfb9eSTTyo9PT23VqNGDY0fP75IfQEAAAAAAAAAAAAAAAAAQPEpE4HYtm3b5t7O2a31559/VnJycomt6XA49Pnnn8ty/r7Jklq3bl1ia+bw9zcnm88PXBZGWlqaqebr61ukniXBYrFo/Pjxat++venYV199JYejcEn9P//8U2fOnHGq+fr6asiQIYXql+O9997T9u3bc+9bLBa9+uqrCg4OLlJfAAAAAAAAAAAAAAAAAABQfMpEILZDhw6qXLmyUy0pKUnTp08vsTXnzJmjAwcOmOqXXnppia2ZIzQ01FRLTS389sLZ2dnKyMhwqvn6+iogIKDQPUuSt7e3nnzySVM9Li5OO3bsKFTPn3/+2VQbMGCAgoKCCtVPkrZs2aKPPvrIqTZ8+HD16NGj0D0BAAAAAAAAAAAAAAAAAEDxKxOBWD8/P/Xt21eGYUj63y6xn3/+uRYtWlTs623atEmvvfaaaXfYiIgIRUZGFvt6F6pSpYqplpCQUOh+rq6NiIgodL/SEBkZqdq1a5vq27Ztc7tXRkaGVqxYYaoPHTq0MKNJOrfj7lNPPaXs7OzcWoMGDVwGeQEAAAAAAAAAAAAAAAAAgGd5e3qAHHfeead++eWX3Ps5odinn35aqampuummm4plnaioKD3++OPKysrKDcQahiGLxaJhw4YVyxr5cRUEjY+PL3Q/V9dWrVq10P1KS6dOnRQbG+tUi4uLc7vPmjVrTDvkBgUFFWm33+3bt+vw4cNOtejoaLVv377QPSUpNjZWzZo1M9U///xzde3atUi9AQAAAAAAAAAAAAAAAACoqMrEDrGS1Lp1aw0YMCB3l9ickGpWVpbGjx+vxx57TEePHi10/8TERL3xxhu67777dPbsWdPusMHBwRo5cmSRHkNB1a1b11Q7cuRIofu5urZRo0aF7ldaXIV2k5OT3e7zxx9/mGqXX365fHx8CjUXAAAAAAAAAAAAAAAAAAAoX8rMDrGS9Pzzz2vdunVKSkrK3SE25+/Fixdr6dKl6tatm/r3769WrVqpfv36F+2Xnp6uNWvWaOXKlfr555+VkZGR2zNHzv3HHntMISEhJf0QJUnNmjXLfVw5Dhw4UOh+rq5t0qRJofvlxWazKTY2VkePHtXRo0fVqFEjdevWrdD9zn/8OQICAtzu89dff5lq/fv3L9RMAAAAAAAAAAAAAAAAAACg/ClTgdjq1atr0qRJevDBB+VwOHKDqznhUbvdrqioKEVFReXZ48CBA7rtttsUFxenEydOyOFwSPpf+PLCnWEtFosGDBigYcOGldCjMgsKClL9+vUVHR2dW4uNjdXp06dVpUoVt/tt27bNVGvdunVRRjRZvHixHnvssdyvpyT16dOnSIHYkydPmmoRERFu9YiJiVFcXJxTzWq1qkePHoWeCwAAAAAAAAAAAAAAAAAAlC9lKhArnfuo+1deeUVjx47NDbGev6urq11Fzz/v7Nmz2rhxo+m8C4OwOedHRkbqrbfeKu6Hka+uXbs6BWIlac2aNRoyZIhbfWw2m9avX+9Uq1y5sjp06FDUEZ3Ur1/fKQwrSevXr1dmZqZ8fX0L1XPjxo2mWoMGDdzqsWHDBlOtZcuWCg4OLtRMOTp06HDR4HVBXXbZZU73a9Soofnz55vOK63diQEAAAAAAAAAAAAAAAAA+Dcqc4FYSbr22msVFBSkJ598UmlpaU5h1guDrRcGX/PaCfZChmGoT58+mjx5snx8fIpp8oK7/PLLNXfuXKfaokWL3A7Erly5UqmpqU61Sy+9tNgfU5MmTeTn56eMjIzcWkpKipYtW6arrrrK7X4bNmzQsWPHnGqVKlVye8fZTZs2mWpdunRxe54L+fj4qGrVqkXucyEvL68S6QsAAAAAAAAAAAAAAAAAQEVm9fQAeenXr59+/PFHde7cWYZhXHRn2PNZLJaLhmENw5Cfn5+eeeYZvf/++6pcuXKxzl1QPXv2VGhoqFPtjz/+0IEDBwrcwzAMzZw501S/8cYbizqeiY+Pj/r372+qz5w507RzbH4Mw9CUKVNM9R49eiggIMCtXjt27DDV2rRp41YPAAAAAAAAAAAAAAAAAABQvpXZQKwk1atXT1988YXef/99dejQITcYe/4usBf+cSXnmsqVK2vEiBFasmSJ7rjjjnx3kS1JPj4+uv76651q2dnZevbZZ5WZmVmgHp9++qk2b97sVKtVq5Z69+5dXGM6ueGGG0y1Xbt26csvv3Srz9SpU7VhwwZT/aGHHnKrj91u1759+0z1Vq1audUHAAAAAAAAAAAAAAAAAACUb96eHqAg+vbtq759++rQoUNatmyZVq9erV27dikpKSnfa2vVqqUOHTro8ssvV//+/eXv718KExfM3XffrTlz5igtLS23tnXrVj3++ON6++235evrm+e1Cxcu1FtvvWWqjxkzRt7eF39aY2Ji1K9fP1P9tddeM4V0z9e9e3dddtllioqKcqq/8cYbqlatmq644oqLrmsYhqZOnaoPPvjAdGzIkCFq27btRa+/UHR0tGw2m1PN399f9erVc6sPAAAAAAAAAAAAAAAAAAAo38pFIDZHw4YNde+99+ree++VJJ04cULHjh1TQkKCMjIylJWVJR8fHwUEBKhq1aqqU6eOgoODPTx13sLDwzV69Gi9/vrrTvVly5bppptu0vjx4xUZGel07OTJk/rwww/11VdfmfpFRkZq6NChJTrzuHHjdN111zmFeO12u8aMGaNhw4bpgQceUM2aNZ2uMQxD69ev1+TJk0072kpSo0aNNHHiRLdnOXz4sKlWt25dj+78CwAAAAAAAAAAAAAAAAAASl+5CsReqHr16qpevbqnxyiSO+64Q2vWrNHKlSud6nv27NGIESPUoEEDNW3aVP7+/oqNjdXWrVuVlZVl6hMeHq7JkyeXeBi0QYMGmjZtmu6//37THHPnztW8efPUokULNWzYUL6+vjp9+rR27Nih+Ph4l/0iIiI0Y8aMQgWX4+LiXM4HAAAAAAAAAAAAAAAAAAAqljITiF29erUmTpyoG2+8Uddee62qVavm6ZFKhcVi0ZQpU3T//fdr3bp1puPR0dGKjo6+aI/w8HDNmjWr1MLBl112maZOnaqnnnpKKSkpTscMw9CuXbu0a9eufPu0atVK06dPV61atQo1x/Hjx021C3enBQAAAAAAAAAAAAAAAAAA/35WTw+Q47XXXtORI0c0ZcoU9e3bV/fff7+WL18uh8Ph6dFKXEBAgGbOnKmRI0e6vcNrZGSk5s6dq2bNmpXQdK7169dPP/zwgzp06OD2tb6+vrrrrrv0zTffFDoMK8kUxpXO7TgLAAAAAAAAAAAAAAAAAAAqljKxQ2xUVJT27dsni8UiwzBkt9u1YsUKbdmyRb///rv8/f09PWKJ8/Hx0fPPP68bb7xRM2fO1NKlS5WRkeHyXIvFovbt2+u2227TlVdeKavVM7nmevXqac6cOYqKitLs2bO1bt26PGeWpAYNGqhv37664447imU32/T0dFONQCwAAAAAAAAAAAAAAAAAABWPxTAMw9NDjB07Vt9//33u7qiGYchisei///2vnnjiCQ9P5xk2m03btm3ToUOHlJiYKIfDoeDgYNWsWVPt27dXWFiYp0c0sdls2rJli2JjY3XmzBnZbDaFhYWpSpUqat68uerUqePpEZGHxMQ02e3Znh4DbqpSJUBeXlZlZzt0+nSqp8cBAKDU8V4IAKjoeC8EAFR0vBcCQPE6eTJGDke2rFYvVavG/7dbHnh5WWWxSIYhZWf/+z99FwCAC/FeWPxK69+E3t5eCgsr/o1Sy8QOsRs3bswNw56vX79+HpimbPDx8VFkZKQiIyM9PUqB+fj4qEuXLp4eAwAAAAAAAAAAAAAAAAAAVDBWTw8gSSdPnnRZb9q0aSlPAgAAAAAAAAAAAAAAAAAAgPKmTARi8+Ln5+fpEQAAAAAAAAAAAAAAAAAAAFDGlYlAbMOGDWUYhqkeGxvrgWkAAAAAAAAAAAAAAAAAwDMMw1B6erqnxyg1r7wyUZddFun0Z9OmDZ4eC0A5VCYCsQMGDHBZX758eSlPAgAAAAAAAAAAAAAAAACesXfvbt13353655+dnh4FAMqdMhGIHTlypCIiInLvWywWGYahjz/+WKdPn/bgZAAAAAAAAAAAAAAAAABQslJTUzR16tu6557btWvXDk+PAwDlUpkIxAYGBuq9995TQECAUz0xMVEjR47UqVOnPDQZAAAAAAAAAAAAAAAAAJSctWtXa8SIm/Ttt98oOzvb0+MAQLlVJgKxktSuXTt9+eWXqlOnjgzDkMVikcVi0YEDB3T11Vfr/fffV2JioqfHBAAAAAAAAAAAAAAAAIBis3z5UsXHs2EgABSVt6cHOF/z5s31008/6c0339TcuXNlGIYk6cyZM5o2bZqmT5+uRo0aqUOHDmrbtq2qVq2q4OBghYSEqHLlysUyQ61atYqlDwAAAAAAAAAAAAAAAAAAAEpHmQnETp48Ofd2UFCQunXrplWrVslisUiSDMOQYRjav3+/Dhw4oPnz5xf7DBaLRbt27Sr2vgAAAAAAAAAAAAAAAAAAs+eem6jnnpvo6TEA/AuUmUDsjBkzcsOv5zMMQxaLxRSMBQAAAAAAAAAAAAAAAAAAAKQyFIjN4SrsmlM7PxhbGusCAAAAAAAAAAAAAAAAAACg7CtzgdiSCrwCAAAAAAAAAAAAAAAAAADg36nMBWLZqRUAAAAAAAAAAAAAAAClKTU1RTt37tDRo4eVkpKiSpUqKSysipo0aaomTS4p0AZvmZmZ2rlzu6KjDyklJVm+vr4KDQ1Ts2Yt1KBBw2Kd9+jRIzp8OFqJiad15kyiKleurLCwKqpevaaaN28hb++SiQSlpqZo//79OnHimBITTysjI0OSch9rzZq11KRJUwUEBJbI+pJkt9u1e/cuRUcf1NmzZ2UYhsLDIxQRUVVt2rSTn59fia1dHp06dVKbN2/SiRPH5e/vr8aNm6hVqzaqVKmSW32OHz+mQ4cO6uTJE0pNTZHNZpOXl7f8/SsrPDxC9erVV/36DeXl5VVCj8R9FeW1Eh9/Srt371J8/CklJyfL27uSQkNDFRISqgYNGqpWrdolsu7x48e1b9/u/39NpMrHx0dBQcGqU6eemjdvLl/f4v36HjlyWAcO7NPZs2eUlJSkgIAAVakSrho1qqt581ayWKzFut75YmKOavv2rYqPP6WgoCA1bdpcLVq0lNXq3pqpqSnatWunTp9O0OnTp2UYDoWFVVFYWBW1bNlKwcEhJfQIKo4yE4jt3Lmzp0cAAAAAAAAAAAAAAAAoEB8fL3l5WWWxWGQYhrKzHbLZsj09Fi6waNECvfrqC7n3vby8tHLl37n39+3bq9mzZ2rVqj+VlZXlske1atU1bNhw3XDDMJdB0+PHj2n27E/122+/Kj093WWP6tVraPjwkRo69IZCh1VPnTqpOXO+0qpVfykm5kie5wUGBioysqtuvHGY2rfvWKi1znfy5AktXPiToqJWat++vfludme1WtWqVRsNHnyVBg26Ur6+vgVa58LnSpJWrFib+/WKiTmqr776XMuXL1VaWqrLHr6+voqM7KLrrrtJl17avUDresKmTRs0evT9Fz3H1fFvv/1ZNWvWyr1/7FicbrrpGqdzpkx5T507d5XNZtN7772jn3/+wfTaDgoK1uDBQzRixO0KD4+46Jy//vqL1q5drdOnE/J9XIGBgerevaeuu+5GtWnTLt/zc7zyykQtXrzQqfbuux+qY8dIl+dXpNdKXuLjT+mnn77XsmW/Kibm6EXPrVWrtjp37qqrrhqqFi1aFWndxMREff/9PP3++zIdPhyd53ne3t7q0uVSXXfdTerWrUeh1zty5LDmzv1KUVF/KiEhPs/zAgICFRnZWddcc726du3m1hquvh/nzPlBderUVXJyst5++3X9/vsyORwOp3PCwyN0zTXXadiwEQoMzPuXAOx2uxYtWqDffluibdu2yG63uzzParWqRYtW6t9/kIYOvV4+Pj5uPQ6cU2YCsV988YWnRwAAAAAAAAAAAAAAAMiTxWKRn18l+fh6y6eSl5JSM5Wema3Kvl4KCfGXzZYtm82ujIwsPiG3jHM4HPr668/1yScf5hlOynHy5AlNmzZFy5cv06RJ7yg0NDT32IIFP+rdd9/OMwib48SJ45oy5U0tX75Mr7zypsLCwgo8a2ZmhmbP/lRz536lzMzMfM9PSUnRihXLtWLFcl16aXc9+uhTql27ToHXO7/Pxx+/rx9//E7Z2QUPezscDm3fvlXbt2/V559/qmefHa9OnQq/UZ5hGPrqq9maOfOjPEPLOTIzM7Vq1V9ateovde/eU+PGvaigoKBCr11eZWdna+zYJ7R27WqXx5OTkzRv3jfq0KGTevbsbTr+zz87NXnyJP3zz0631k1JSdHSpYu1dOli9ezZW08//bzT90tJqyivlXnzvtHHH7+f78+dHHFxsfrpp+/100/fq2fPy/XEE89eNAjtit1u1+zZM/X1158X6OeQ3W7X6tVRWr06Sl27dtdTT41V9eo1CrxeUlKSpk59U8uWLTEFUV1JTU3RypV/aOXKP9ShQyeNHv24mja9pMDruZKWlqYxY+7X3r17XB5PSIjXrFkfq1evPnmutXp1lKZPn6IjRw7nu57D4dDOndu1c+d2zZnzpR544GH17z+oSI+hIiq5fYIBAAAAAAAAAAAAAAD+Jby9rQoJrSyrt1WLVh/Sfa/9phHjf9XdryzTiPG/6r7XftOiNYdk/f/zvL2JZJRVhmFowoSx+vDD6fmGYc+3a9cOPfnk6NxrPv74A73xxssFDqVJ0rZtW/Tcc08WeN0zZ85ozJgH9fnnnxYohHahtWtX6557btemTRvcui42NkZ33/0ffffdPLfCsBc6fvyYHntsVJ7BzIJ4/fWX9OGH0/MNOF5o9eq/NHr0fW49P/8Ws2Z9nO/XPDg4RJdeat65c+HCn/TAA/91Owx7ob/+WqFRo+7Jc4fWklARXivvvPNmgUL4efnrr5W6++7/KDY2psDXJCae1n333alZsz4u1M+hv/9erXvvvUPR0YcKdP62bVt0xx23asmSxQUKw15o8+aNeuCBu7RixXK3rz3f22+/nmcYNkejRo3zDMPOnj1TTz31SIHCsBc6ceK4Jk58Tu+9N7VQX4OKrMzsEAsAAAAAAAAAAAAAAFAWeXtbFRxSWZv3nNSkLzYqPdMcZoyLT9XMn3fq6yV79NTITurQrJqSzqbLbifIUtZ88MG7+uOP35xqoaGhatmyjcLCwpSWlqbdu//RsWOxpmv/+WeX5s+fo0qVKmn27JkX9AhTy5atFRoaqjNnErVnzz9KSDB/zPy2bVv0/fff6uabb73onAkJ8XrooXvy/Dj0atWqq2nTSxQSEqr09HSdPHlCu3fvMgVYk5LO6rHHRumNN6YU6KPEk5OT9cgjD7l8/JJUp05d1a/fQEFBwfL29lZKSopiY4/q0KGDLoO+2dnZmjTpFX355Tz5+wfku/75PvnkQ/3yy89ONW9vb7Vo0UrVq9eQl5dVx48f1z//7JLNZg7q7du3V7NmfawHHxzt1rrl2cGD+/XFF7PyPa9v3wGqVKmSU+3PP1fojTdedrnDtY+Prxo1aqxatWrL399fWVlZSk5O0v79+3Ty5AmXa0RHH9LHH3+oMWMeL9yDcUNFeK0sXPiT5s+f6/JY7dp11KBBw9zvy6SkJB04sM9l8PXUqZN67rmn9Mknn8vb++LxwaSkJD300D15hjoDAgLUokUrhYdHyDAMxcQc1Z49/5h+DiUkxGvMmPv12WffKCysSp7rbdiwTk8//Wiewdtq1aqrceMmCgurkvuz58CB/abzMjIyNG7cM3r88Wd07bU3XPQxurJ27SotWbIo3/MGDbrSZX3KlEn67rt5Lo/5+fmpRYtWioioKi8vL50+fVp79uzS2bNnTed+880XSkw8reeff8G9B1CBEYgFAAAAAAAAAAAAAADIg8ViUWCQnzbvPqmXZq2Tw2EOip0vPdOulz5dp3F3dVW7phE6eybdZbgMnpGdna2vv/4i937NmrV0//0P6/LL+5iCYStX/qFXXplo2uHyyy8/U0pKSu79unXr6aGHxqh7956yWv+3M7DdbtfChT/p3Xffls1mc+oxf/4c3XjjMKfzz+dwOPTii+NdhmH79Ruo2267w+WuhMnJyfrll580e/anSk5OcprlxRef18yZX6lGjYt/bPn77091GYa96qqhGjnyTtWuXcfldcnJyVq8eIE+/XSG09dHkk6ePKFFixboxhtvuejaF/rqq9m5t4OCgjVy5J269trrTcHaM2fOaN68r/Xll5+ZdlOcP3+Obr75VkVEVHVr7ZLUpk07/fTTr7n3p059W7//vszpnFdemaTWrds61UJDw/LtPWvWJ05hxFq1aqt9+44KD4/Q8ePHtH793zpzJlGDBg12ui45OVmTJpnDsCEhIbrnngc1cOBg+fv7u1zzwIH9+vrr2VqyZLHp2Pffz9Odd96t4OCQfGcvin/rayVHenq6pk+fYqpfdlkvPfjgaNWr18DldXv37ta7707Wli2bnOr79+/VsmW/avDgqy667iuvTHAZhq1Tp67uv3+UevToZQpWnzhxXJ988qEWL17oVE9ISNAbb7ys11+f7HKt2NgYPf/80y7DsJGRXXTPPQ+qVavWTnUvL6vi4mI0e/YsLVz4k9NzahiG3nnnTTVp0tT0vZSfTz75yOl+o0aN1apVW4WEhCgm5qjWr1+r9PR0DRhwhenaRYsWuAzD1q/fQHfccbf69Olver/Jzs7Wpk0bNGPG+6bdmX/99Re1bNla119/k1uPoaIiEAsAAAAAAAAAAAAAAJAHP79KyrI7NOnLjfmGYXM4HIYmfbFBsycMkp9fJaWn2/K/CKWudeu2evPNqQoKCnJ5/PLL+8hisWjs2Cec6mfOnMm93aFDJ73++tsKCAg0Xe/t7a1rr71BEREReuYZ5x0y4+JidejQQTVu3MTl2l9++Zk2blznVPP19dX48S/r8sv75PmYgoKCdMstt6lfv4F64onRTjsnnj17Vq+8MkHTpn2U5/WxsTFatGiBqf7gg6M1fPh/8rwuZ+2bbx6unj176/7771JCQrzT8ZUr/3A7EJsTzmzcuKneeGNKnmHe0NBQ3Xvvg2rcuKkmTHjW6ZjNZtPKlb/rhhuGubV2SapUqZLCwyNy7/v6+prOCQoKdjqnoFJSkiVJVqtVo0Y9ouuvv9kpfGe327VixXK1adPO6br58+c4vbZzZvjgg5l5hi1zNG7cROPGvaS2bTvozTdfdTqWnZ2tVav+yjd4WVT/1tdKjj/++M0UNO/Xb4AmTnxVFoslz+suuaS53nnnfY0d+6RWr/7L6djPP/9w0eflzz9XaNWqv0z1nj17a+LEV1y+biWpevUaeu65iWrUqInee+8dp2NRUX9q584dpmCrJE2a9Eru6zeHxWLRww8/qptvHp7nnLVr19Gzz45Tnz79NHbsk0pPT889ZrfbNW7cM/rqq2/d2qE6Zw4fH18988w4DRgwyOnrnJmZoTVrVqlatepO1x09ekRTpkwy9bvyyqv1+OPP5Pk18/LyUufOXRUZ2UXvvTdVc+Z86XR82rTJ6ty5q+rWrVfgx1BRuf41EwAAAAAAAAAAAAAAAMjH11tL/z6s9EzzR8FfTHqmXUvXHpaPD3uVlUWhoaF67bW38gzD5ujVq7caN27q8lh4eIReeukNl2HY81122eVq376jqb5r1w6X56empujLL2c71axWq15++Y2LhmHPV7VqNU2bNkM1a9Zyqm/evFHbtm3J87pFixaYPuq8Q4dO+YZhz1ezZi3de++DpvqFux4WVGhoqCZNyjvgeL5+/Qaod+++pvqaNasKtXZ5NmrUI7r55uGmnSi9vb3Vv/8gp5phGFq48CdTj4cffjTfMOz5hg69Po/XeuGee3f9m18r27dvNdXuuefBi4Zhc3h7e+vZZ8ebwpg7d25XcnJyHldJM2d+aKp17Bipl19+I89g5/luvfU29enT31T/9ttvTLU1a1Zp48b1pvrDDz920TDs+Tp3vlRvvjlVXl5eTvVTp07qhx/mF6jHhSZOfEUDB15h+jr7+vqpd+9+pvNnz57pFMiVpP79B7n8+rtisVg0atQjpl8eyMrK0tdff16IR1DxlNtAbFpamvbs2aM///xTixYt0g8//KCFCxdq+fLlWrNmjQ4cOGDabh4AAAAAAAAAAAAAAKCgfHy85FPJS4tXRxfq+sVros/18PHK/2SUqltvHamwsCoFOrd798tc1m+55TaFhoYWqEeXLpeaaseOxbk89+eff1RaWqpT7aqrhqpbN9dz5CU4OFgPP/yYqX6xUFVU1J+m2n/+c6db60rnPsb9wgBZRkaG0tLS3O51883DVb16/gHHHEOHXm+qxcQcdXvd8qx27Tpu7XK6b98enThx3KlWvXoNDRp0pdtrX3ZZL1MtMTHB7T6F8W9+rZw8edJUq1IlvMDXh4WFqXv3npLO7VBcp049RUZ21ZkziS7P37lzh9MO05Lk5+enZ58dbwqcXsx99z0kq9U5orh27WpT8P7bb+eYru3cuatuvvnWAq8lSe3bd9TIkeafWfPmfa3MzEy3enXo0Em9evUu8Pnx8fFavnypUy0srIoef/yZAgWXz/fAAw+bnt8lSxaZdt6GWbn5NSTDMBQVFaXly5dr3bp1io6Ozt3qOi8Wi0U1atRQZGSkLr30UvXr108hISGlNDEAAAAAAAAAAAAAACjPvLysSkrNVFx8av4nuxB7KkVJqTZ5eVklZed7PkqPO0G/hg0buaxfcUXBe9SqVdtUu/CjwXMsWPCDqXbbbXcUeK3z9ex5uSIiqio+/lRubd26tcrMzHS5W+ENN9ysmJijiouLVVxcrNLS0tSxY2e31w0JCVVgYJCSk5Oc6hkZ6fL393er11VXDXXr/ObNW5lqZ86ccatHeTd48FVuhRYDA4P00EOPKC4uVrGxMYqLi1Xv3n3d6pGjTp26plp6eobbfQrj3/xa8fY2Pxdr1qxSv34DCtxj1KhH9NBDY1StWnVTSPVCv/++1FTr3bufadfp/NSpU1ft2nXQ5s0bJZ3bWbt+/QY6fTpBVatWkySdPXtGGzeuM1373//e59ZaOYYP/4++/fYbpab+7707ISFBGzasU48ePQvcx93X0+LFC5WVleVUu/baG/LdidwVX19fDRlyjb74YlZuzWazae3a1Roy5Bq3+1UkZT4Qa7fb9c0332jWrFk6duyYJOUbhM1hGIbi4uK0YMECLViwQC+99JKuuuoq3XfffapTp05Jjg0AAAAAAAAAAAAAAMo5i8Wi9MyiBVkzMu0K8GWH2LKkdu06ioioWuDzg4PNm6/VqlW7wDvMSucChxfKyDCHBE+fTtCRI4edak2bXuIyUFsQFotFnTt31eLFC3NrNptNu3btUIcOnUznX3PNdYVaxxV/f39TIPbCsFh+ateu49YumJIUFBSkypUrO31suc3m3s6Q5V2bNu3cOr9Wrdq69dbbimVtf/8AU81ud+95L4x/+2ulYcPGWrXqL6faW2+9ppCQEEVGdilQD3d2z80JsJ7viiuGFPj68z3yyJOy2TJVr159BQQEmo5v2rTBtGNsgwaN1Lp120Kt5+/vrwEDBuvHH+c71bds2eRWINbd9V19zXr16uNWj/N17tzVKRArSVu3biYQm4+LR709bOvWrRoyZIheffVVxcXFyTAMGYYhi8Xi1p+c69LT0zV//nxdffXVmjlzpqcfHgAAAAAAAAAAAAAAKMMMw1DlIoZZ/Xy9C7zxF0pHgwYN3Trfx8fHVKtTp16Re7h6XWzbtsVUa9SosVtrXahhQ/P1O3ZsK1LPi3E4HNqxY7syMtJNx9z9XmjatFmhZrgwlGm32wvVpzyyWq1q0cK882lpSE1N0c6dO0x1h8NR4mv/218rvXr1NtWSk5P0yCMPavTo+/Xjj9/pxInjxbJWZmam9u/f51SzWq1q2bJ1ofo1btxELVq0chmGlaR//tllqnXsaA7su6NTp0hTbcsWc2A1L2FhVVS7dsE33HQ4HNq1a7tTzcvLy+33m/M1atTEVNu+fWuh+1UUZXaH2G+++UavvPKKsrOzc0OwhXX+tTnB2Lfeektbt27Vm2++6XILeAAAAAAAAAAAAAAAULFlZzsUEuKvWhEBiotPzf+CC9SuGqjgAB+dPZtWAtOhsMLDI4rcIzDQdbCrqPbs2W2qLVmyWEuWLC7WdU6dOlksfex2u+LiYnTo0EEdOLBf//yzUzt37lBS0lmX57sbiA0NDS3UXJUqVXK6XxqBzLIiJCRU/v7+Jb5OSkqKDh+O1qFDB7R//17t3Lld+/btdRkoLY1fCvi3v1Zatmyt7t17avXqv0zHNm3aoE2bNkg6t7Nqly5d1bnzperQoZP8/PzcXisuLtb0dahdu06Jva6OHj1iqjVv3rJIPVu0MId3Y2JiCnx9jRo13VovNjZGKSkpTrXs7Gz16dPNrT75iY8/Vaz9/o3KZCB2xowZmjJlitNusHnJ6wdmXtfk1A3D0LJly/TAAw/o448/lpcXH08AAAAAAAAAAAAAAAD+x2bLli0rW4O7N9DMn3e6ff3gbg3O9bBl538ySk1gYFCRe5TU5mtnz54pkb7mdVwHVvOSmHhau3fv0qFDB3X06BHFxcUqNjZGp06dNH3UeXG6cPdO5C84OLjYehmGoUOHDmrfvj06fDhasbFHFRcXq7i4WLdfQyWtIrxWxo9/Sffff5eiow/meU509EFFRx/UvHnfyMfHR+3adVC3bpepZ8/LVbNmrQKt42qn2apVqxV67vzEx5sD+u4GUi9UrVq13E+Wz5GSkqzs7OwC5QSDg0PcWq+0fnanp6fLZrO53HUc55S5QOyCBQs0efJkSc7h1fNv56hWrZpq1aqloKAgBQcHy+FwKDk5WSkpKYqLi9PJk//7ZrkwIJvzgl+zZo0mTJigl19+uaQfGgAAAAAAAAAAAAAAKGdsmXYN7FpfXy/Zo/TMgn+UdmVfbw28tL5strL58dsVWVkOEiUlJZXKOsnJ+a+TmZmpX375WUuWLNLOndvzPb8k8KnP7gsKKnogNibmqH744Vv99tsSJSQkFMNUJa8ivFYCAwP17rsf6O23X9fKlX/ke77NZtP69X9r/fq/9e67b6t585YaPHiIrrzyGlWuXDnP69LTzbual+Suw2lp5vUCAoq2C7fVapW/v79SU/+3u7thGEpOTi7QbsJBQe794kRp/ezOWSsioug7nf9blalA7OHDhzV+/HhJzgHWnPCq1WpV7969de2116p9+/aqXr36RfvFx8drx44dWrRokZYuXaqMjAxTyNYwDH333Xfq37+/evfuXWKPDQAAAAAAAAAAAAAAlD8ZGVkKCa2sp0Z20kufrpPDkf9Hf1utFj01MlLeXhalJmeVwpRwx8U+qdjTUlKSS2Udm8120eNRUSs1ZcqbLneKzE+1atV1+eV9tWzZYp05c6aQE6KwvL0LHwfLysrShx9O13ffzZXd7l6Y32q1qlWr1mrQoJEWLPix0DPg4qpUCdcrr7ypNWtW6dtvv9GGDevkcDgKdO3u3bu0e/cuffnlbI0a9Yj69Rvo8rzMzExTzdfXr0hzX0xWlvl9snLloq/n6+vnFIg9t9bFf/blqFSpkltrldbPbqngj6GiKlOB2Jdeeknp6em5QdXzw6t9+vTRuHHjVKtWwbZulqSIiAj17t1bvXv31rhx4/TBBx/os88+c+qds9YLL7ygHj16uP1iBgAAAAAAAAAAAAAA/16GYSglOUMdmlXTuLu6aNIXGy+6U2xlX289NTJSHZpVVdLZdKdPwgXy4+Nj3uXyiSeeUc+evYt1nYvlY+bN+0bTpk0u0GvX3z9A9es3UNOml6hFi1Zq16696tVrIEn6668Vks4Uw7QoDampKXrmmce1efPGAp1ftWo1NWzYWM2aNVfLlq3Uvn0nBQUFadOmDQRiS0G3bj3UrVsPnT6doJUr/9Dq1X9p06YNLsOsFzp16qQmTBirhIR43XzzcNPxypXNu8HabPn3LayAgABTLT09o8h909JSTbWSCva62nm8Q4dOmjjxlWJfKzQ0rNh7/puUmUDsxo0bFRUVZQqqWq1WTZgwQbfcckuR+gcFBempp55Sv3799PDDDysxMdHp+PHjx/XDDz/o5ptvLtI6AAAAAAAAAAAAAADg38VudyjpbLraNa2qz8YP1LK/j2jR6kOKi/9f2KZ21UAN7tZAAy+tL28vi5LOpstuL9iufUCO4GDzx92npaUrPLx0Ph57zZpVevfdt10eq1IlXJ06dVaLFi3VsGEj1a/fUNWq5f3pzgXdtRJlw6RJr+QZhm3a9BK1b99Jl1zSTA0aNFT9+g3k728OMUo876WtSpVwXXfdjbruuhuVmZmpbdu2aOPG9dqwYZ327t190edj2rQpql27rnr06OlUDwoKMp174U6rxSkoyPxzLzU1pUg97Xa7MjLModrKlSsXqW9egoNDTLUzZxJL7Wc3/qfMBGK/+OILp/s5u7i+8MILuummm4ptnU6dOunjjz/W7bffnvuNmhO+nTVrFoFYAAAAAAAAAAAAAABgYrc7dPZMuvz8KmlwtwYaenljJaXalJFpl5+vt4IDfGSzZctmsys1OYudYVEorgKxcXGxpbK2zWbT66+/aKoHBgbp4Ycf1RVXDJGXl1eB+7kKo6FsiopaqeXLl5nqrVu31RNPPKsmTZoWuBfPu+f4+vqqc+eu6ty5qyQpOTlZ69at0cqVfygq6k/TLq+GYWjGjPcKFIhNSIgvsbld/dw7diyuSD3j4mJMtdDQsBL79HhXod7jx48rOzvbrZ+bKDqrpweQpPT0dK1YsSJ3d9icMOxNN91UrGHYHK1atdKECRNM//iMjo7W3r17i309AAAAAAAAAAAAAABQ/hmGofR0m86eTdPZs2myGg4F+HrJajhya+npNsKwKLQ6deqZalu2bCqVtVeu/F0JCQlONS8vL73xxhQNGXKNW6GuzMxMJSWdLe4RUUK+//5bU+2SS5rpnXfedysMK0nx8aeKaywUUVBQkPr1G6gXX3xN3377kzp16mw658CB/YqNdQ6P1q5dx/T9HhNzVJmZhQs7nzp1Ui++OE4zZ36kxYsXauvWzUpMPJ17vH79hqZrdu/+p1BrXez62rXrFKnnxdSuXdv0NUtPT9PevbtLbE24ViZ2iN28ebMyMjJyA7HSueT3448/XmJrXn311Zo7d642bNjgtO6KFSt0ySWXlNi6AAAAAAAAAAAAAACg/LPZsiVle3oM/Mu0a9fBVIuOPqjjx4+pRo2aher51VeztX37VtWoUUu1atVSzZq11LRpM1O/qKiVpmt79eqjdu3au73mwYP7XdYv9vHt8IyMjAxt2LDOVL/nngfk5+fndr8DB8zPPc978UhKOqvDh6N1+PAhtWzZWo0aNSnwteHhEXr11Td1001DTWH1Q4cOOIVF/f0D1LBhY+3f/7+NJbOzs7V79+5C/TzYuXO7li5d7FS77rqb9PjjT0uS2rY199y8eYPb65xv48b1plrTpiWXCfT3D1Djxk1NAdi1a1erRYtWhep58OABTZ36lmrUqKmaNc/97K5du45at25bHCP/a5WJQOy2bdtyb+fsDnvFFVcoJCSkRNcdNmyYNmxw/ubZsWNHia4JAAAAAAAAAAAAAAAAuNKoUWMFBQUrOTnJqf7dd/P00ENj3O6XmZmpb775QmfOnHGqP/PMOF111VCnWlyc+SPK27Rp5/aakhQV9afLenY2IXJXzt/Mr7QdP37MZWC1TZv2bvdyOBxasybKZR2Ft2zZr3r33clOu6r+5z936d57Cx6IlaSAgEC1a9dBf/21wqmelpZmOrdNm3ZOgdicOQoTiF27drWp1rbt/362tGnTVl5eXk4/H6KjD2nbti0uw7L5SUtL1e+/LzPVO3Y075BbnNq162AKxP700/caOfJOeXu7H9P88cf5pmBvu3Yd9N57Hxdpzn87q6cHkKQjR46YagMGDCjxdfv06ZP7YrNYLDIMQ/v27SvxdQEAAAAAAAAAAAAAAIALWSwW9es30FT/6afvdfz4Mbf7zZ8/xxSG9fLyUq9evU3npqamuJzHXWfOnNH333/r8pjdnuV2v4rAk4HYlBTz8y5JhRnpl19+dvk6zcrieS+KmjVrO4VhJen3338rVK/MzAxTLSgo2FTr27e/qfbbb0uUmJjo1nopKSlasWK5U83b21udOv0vnOrvH6Du3Xuarp0162MZhuHWepL01VefKz093alWubK/una91O1e7hgwYJCpFh9/St99N9ftXsePH9fChT+b6n369CvUbBVJmQjEJiQkmGoNGzYs8XUDAwMVERHhVHP3mxYAAAAAAAAAAAAAAAAoLrfcMkJWq3OkJy0tVS+88JxbwcIjR6L12WczTfUBA65QcLD5U5tDQ8NMtY0b1xV4PUmy2+2aOHGsaYfbHDabza1+FUWlSpVMtdIKkYaFmZ93SdqwwfyR8xezf/8+TZs2xeUxmy3T7bnwP82bt1BoaKhTLSbmiBYtWuBWn8TERG3dutlUb9asuanWoUMnXXJJM6daSkqypkyZ5Naan3zyoSl03bNnb1WpEu5Uu/XW20zXrl//t779do5b623btkVffvmZqT5o0JUKCAh0q5e7WrZsrfbtO5rqH330nnbv/qfAfQzD0KRJL5u+bwIDAzVw4JVFnvPfrkwEYi9MZEtS1apVS2XtiIgIpyR5Xr/1AAAAAAAAAAAAAAAAAJS0OnXqasCAK0z17du36YknRrvcyfVCx47F6cknH1F6uvNHoXt5eenOO+9xeU2zZi1MtVWr/tKaNasKNHd8fLwef/xhbdiQd4jWVUYI53bIvFBCQnyprF2jRk2FhJgD0h99NF3JyckF6rF27Wo9/PB9SktLdXk8I8O8KykKztvbW1dffZ2pPmXKm9q2bUuBemRlZemVVyYoM9M5ZNmhQydTODXHbbfdaar9/vsyTZkyqUA7t/7443eaP9850GqxWHTLLebwa9u27Z12jc0xbdpkzZv3Tb5rSdKmTRv0xBNjlJ2d7VQPDAzUnXfeXaAeRXXHHXebdny22Wx69NGHtHXrlnyvdzgcmjTpFa1bt9Z0bNiwEQoONu/mC2dlIhBbuXJlU620fhBmZGQ4vQgv/A0bAAAAAAAAAAAAAAAAoDQ99thTqlOnrqm+ceN6jRhxkxYtWuDyo88zMjL03XfzdOedIxQbG2M6fvfdD6h27Tou13T1EemGYej555/SvHlfu1xPkk6cOK5PP52h2267SRs3XnxX0aQk1zvHVnRVqlQx1RYs+MEUXiwJXl5e6tWrr6l+5MhhPfjgf/MM8TkcDm3dukXPPfeknnhidJ67AktSUtLZ4hq3wrrpplsUFOQchkxPT9Po0ffro4/eU3x83gHqLVs26cEH/6u1a1ebjuUVkJfO/UwYNGiwqf7dd/N03313asuWTS6DsXFxsXr55Ql6663XTMeuu+5GtWrV2uV648a9qLAw5+8FwzD07rtv69FHH9KuXTtcXhcXF6dJk17VI4886DKU/eijTyk8PMLFlcUvMrKLy91uk5OTNHr0fZo8+Q0dP37c5bVbt27WAw/8VwsW/Gg61qTJJRo+/D/FPe6/krenB5Bcb7196tSpUkk0nzp1yul+QID5Ny4AAAAAAAAAAAAAAACA0hIQEKiXXnpdDz98n+nTjuPjT+nVV1/Q5MlvqFWrNoqIiJDFYtWpUye1a9eOPHdh7dnzct122+15rtmmTTt1795Tq1f/5VTPzMzUu+9O1ieffKQWLVqqatVq8vb2VlJSkqKjD+rIkcOmXt7e3mrbtr02bdrgVD9+PK6gX4IKpX79Bqba9u3bdOut16tDh47y8vJWQkKCxox5TPXqmc8tqjvu+K+WLl1kCuAeOnRQDz10t2rWrKWmTZspODhYWVlZSkiI1759e3T2rDnoWqdOPWVnZ+vYsdjcWmpqqpKSktjdsgiqVAnXo48+qRdfHOdUt9vt+uKLWfrqq9lq0KCh6tVroMDAQNntdiUmJmr//j1KSEhw2fO6625Sx46RF1338cef1b59e3Xw4AGn+q5dOzRq1L2KiKiqSy5pptDQMGVmZig6OloHD+53GZRt2bK1HnhgdJ5rRURU1QsvvKonnhgjm835tbh+/d9av/5vVa9eQ40bN1VoaKjS0lIVGxujffv25tnzzjvv0aBBV170MRa3e+99SHv27NHGjc67ZWdnZ+v777/V999/qyZNLlGdOnUUGBikpKQk7dnzj06ccB2UDQkJ0YsvviZfX9/SGL/cK7OB2I0bN6px48Yluu6BAwd09uxZWSyW3G/CmjVrluiaAAAAAAAAAAAAAAAAQH6aNm2mDz+cpaefftTlbq8ZGRn57siao0+f/pow4WXTR3lf6JlnntcDD/zX5XppaakFWq9ateoaP/4lGYZhCsRu2bJJw4aNKNDMFUn79p0UGhqqM2fOONVPnjyhJUsW597fvXtwiQRiq1evobFjJ+qFF56Tw+EwHT92LE7HjuUfZu7Z83I9++wETZ8+xSkQK5177nv16l1cI1dIAwcO1okTJ/TRR9NNxxwOhw4ePGAKrualX7+BGjPm8XzP8/f313vvfaLnnnvS9P0snQvox8efcnGls+bNW+qtt951+Uny5+vYMVLTpn2ksWMfdxnkPXHieJ7B0fN5eXnp4Ycf1Y033pLvucXN29tbb701VZMmvaLFixe6PGf//r3avz/vIG+OiIiqmjLlPdWrV7+4x/zXsnp6AElq1qyZqbZ06dISX/fCNSwWixo2bFji6wIAAAAAAAAAAAAAAAD5adCgoWbM+ExXX32tvLy83L4+ICBAjz/+jF588TV5e+e/b16VKuF6990P1aZNW7fX8vLy0nXX3aTPP5+r9u07qlmz5vLxcd7RcOPGDS4/0ryiq1y5sp58cmy+z/H+/ftKbIZ+/QboxRdfU2BgkNvXVq1aTePGvajXXntbwcHBat3a/PqJilpZHGNWeCNH3qEXXnhVVaqEF+r6wMBAPfLIE5o48ZUC/UyQpKCgIL399jT95z93yc/Pz631LBaLhg0brg8+mFngHYJbtWqtGTNmq0+f/vmG+F1f30affPKFR8KwOSpVqqTnnpuop59+XlWrVitUj379BmrWrK/VsGGjYp7u361M7BDbtWvX3Ns5u7WuXr1aW7duVbt27UpkzeTkZH3++eemb5oOHTqUyHoAAAAAAAAAAAAAAACAu0JCQvX008/rttvu0Lx5X2vt2tUud3A9X5069TRkyNW66qprXX5y88VUr15D06d/rCVLFmn+/Lnau3f3Rc9v0KChunW7TNdee4Nq166TW/f3D1DPnr20fPmy3FpaWqoWLPiRXWJduPzyvpoy5T298cbLeT6/Bw7sL9EZevfup9at22ru3K+1aNHPOnv2bJ7n+vr6qnXrturXb6AGDRosX9//BSX79Omvd955y+lj73/7bYnuu+8hhYdHlOhjqAj69Ruorl27a/Hihfr111+0d+/u3E9Hz0vjxk00YMAVuuaa6wscTD1fpUqVdO+9D+r662/WnDlfKipqpWJijuZ5fmBgoPr06a9bb72tULsaV69eQy+99Lr27dujb7+do7//Xu1yx9gc/v7+6tq1u6655jp17tw1z/NK29VXX6uBAwfr559/0IoVy7Vz53bZ7fY8zw8ICFCvXn103XU3qmXL1qU46b+Hxcjvu6GUDBo0SEeOHJGk3G/Qli1bas6cOfLx8Sn29caNG6dvv/02NxBrGIYsFouWLl2qunXrFvt6QFmWmJgmuz3b02PATVWqBMjLy6rsbIdOn+Y36AAAFQ/vhQCAio73QgBARcd7IQAUr5MnY+RwZMtq9VK1anXyvwAe5+VllcUiGYaUnW3+iHP8u8XFxergwQM6cyZRZ8+ekWEYCgoKVnh4hFq2bFXo3SNdSUw8rZ07dyg+/qSSk1Pk5WVVSEiowsKqqHnzFsW6FiSHw6E9e/7R/v37lJh4WtK5kFy1atXVsGFj1alTOrkmwzB06NBB7d+/V2fPnlVaWqr8/QMUEhKq6tVrqEWLliWS6YL70tJStW/fXsXGxiglJUXp6WmyWr0UGBioWrVq65JLmiksrEqxrxsTc1QHDx5QYuJpJSWdlY+Pj4KDQ9SwYSNdcklzWa3F9+H1hmFo//59io09qjNnEpWUlKRKlXwUFhamxo0bq1GjJvLyKhN7g15UWlqq/vlnlxISEnTmTKLS09MUEBCg4OBQNW7cRA0bNirWr1thlNa/Cb29vRQW5l/sfctMIPbTTz/VpEmTTAHVPn36aPr06cX6RH/44Yd65513TGu1a9dOc+bMKbZ1gPKCQGz5xH/sBQBUdLwXAgAqOt4LAQAVHe+FAFC8CMSWPwRiAQAVHe+Fxa+8B2I9Gyc+z7BhwxQUFJR732KxyDAM/fHHH7r77rt14sSJIq+RmZmpl156SVOnTs0Nw57vrrvuKvIaAAAAAAAAAAAAAAAAAAAAKF1lJhAbEBCge+65Rzkb1ubs2moYhtasWaOrr75aM2bMUEJCgtu9MzIyNH/+fF1zzTX6+uuvdf6muDnrtG/fXgMHDiy2xwMAAAAAAAAAAAAAAAAAAIDSYTHOT4d6mMPh0G233aZNmzblhmFz/pbO7Rrr5eWlbt26qV27dmrdurXq1q2roKAgBQUFycvLS8nJyUpOTtaJEye0c+dObd++XVFRUUpJSXHqk8MwDFWuXFnz589X48aNPfK4AU9LTEyT3Z7t6THgJj4ODABQ0fFeCACo6HgvBABUdLwXAkDxKq2Px0Xx4WOiAQAVHe+Fxa+0/k3o7e2lsDD/4u9b7B2LwGq16s0339QNN9ygs2fPOoVipXPhVbvdrqioKEVFRRW4r6sgbE7darXqpZdeIgwLAAAAAAAAAAAAAAAAAABQTpWpQKwk1a5dWzNnztSdd96p5ORkpxDr+cFYd1wYhM3pYbFY9Nxzz+mqq64q2tAAAAAAAAAAAAAAAAAAyoWEhHiPrh8YGChfXz+PzoCC4bUClC9lLhArSa1atdLcuXM1atQoHThwwBRodRVwdYdhGAoKCtKrr76qAQMGFKkXAAAAAAAAAAAAAAAAgPJj6NArPLr+2LETdOWVV3t0BhQMrxWgfLF6eoC8NGzYUN9//73uv/9++fj4uL0rrCs5PQYNGqSFCxcShgUAAAAAAAAAAAAAAAAAAPgXKJM7xObw9fXVI488ov/85z/68ssv9fPPPysmJsbpnLx2i70wQBsYGKgrr7xSw4cPV/PmzUtsZgAAAAAAAAAAAAAAAAAAAJSuMh2IzVGlShWNHj1ao0eP1u7du7Vx40bt2LFDhw8f1vHjx5WUlKSMjAwZhiEfHx8FBASoevXqqlu3rpo3b66OHTuqY8eO8vYuFw8XAAAAAAAAAAAAAAAAAAAAbih3CdHmzZuzwysAAAAAAAAAAAAAAACAQomK2uDpEVBO8FoByherpwcAAAAAAAAAAAAAAAAAAAAAiuJfH4i12+2eHgEAAAAAAAAAAAAAAAAAAAAlqNwEYmNiYjR37lylpKS4dd3YsWM1aNAgjR07VkuWLFF2dnYJTQgAAAAAAAAAAAAAAAAAAABP8Pb0ABdjt9u1YMECzZo1S/v27ZMkNW/eXO3atStwj5iYGB0+fFhHjhzRDz/8oIiICA0bNkx33323/Pz8Smp0AAAAAAAAAAAAAAAAAAAAlJIyu0Ps5s2bNXjwYI0dO1b79u2TYRiSpEOHDrnVJzY2VhaLRYZhyDAMnTp1Su+9956uueYarV27tiRGBwAAAAAAAAAAAAAAAAAAQCkqk4HYzz77TCNHjtTRo0dzg7A53AnE2mw2nTx5UpJksVhy/xiGoSNHjuiuu+7S3Llzi3V2AAAAAAAAAAAAAAAAAAAAlC5vTw9woS+++EKvv/66pHMh1gu5E4g9duyYDMMw9cm573A4NHHiRNntdo0YMaIIUwMAAAAAAAAAAAAAAAAAAMBTytQOsRs2bNCrr76au5Pr+XJ2dnUnEJuZmammTZvKarXKMAzTbrM5PV977TVt3ry5WB4DAAAAAAAAAAAAAAAAAAAASleZCcTabDY9//zzptCqJBmGoYCAAI0YMULPPfdcgXtecsklWrBggTZs2KC3335bPXr0cBmKtdvtevLJJ5WWllbkxwEAAAAAAAAAAAAAAAAAAIDSVWYCsT/99JOio6OddoY1DEMWi0X//e9/tWLFCo0bN06XXnqp270rV66sIUOGaObMmZo5c6aqVq1qOic2NlZz5swp0mMAAAAAAAAAAAAAAAAAAABA6SszgdhvvvnG6b5hGPLx8dH06dP15JNPKjAwsFjW6dGjh+bOnas6derk1iwWiwzD0Oeff67s7OxiWQcAAAAAAAAAAAAAAAAAAAClo0wEYo8ePapdu3bl7g6bszPsc889p759+xb7ejVr1tQ777wjLy8vp/qJEye0du3aYl8PAAAAAAAAAAAAAAAAAAAAJadMBGK3bNmSe9swDElSy5YtNWzYsBJbs1WrVho6dGjuejn+/vvvElsTAAAAAAAAAAAAAAAAAAAAxa9MBGJ37tzpdN9iseiWW24p8XVdrbFp06YSXxcAAAAAAAAAAAAAAAAAAADFp0wEYuPj4021Ll26lPi6rVu3VmBgoKRzIVzDMHTixIkSXxcAAAAAAAAAAAAAAAAAAADFp0wEYpOSkky16tWrl/i6FotFNWvWdKqdOXOmxNcFAAAAAAAAAAAAAAAAAABA8SkTgdjMzEyPre3n5yfDMHLvp6ene2wWAAAAAAAAAAAAAAAAAAAAuK9MBGIDAwNNtVOnTpXK2gkJCbJYLLn3fXx8SmVdAAAAAAAAAAAAAAAAAAAAFI8yEYitUqWKqbZnz54SXzczM9MUvI2IiCjxdQEAAAAAAAAAAAAAAAAAAFB8ykQgtmnTpqba77//XuLrRkVFKSsrS5JkGIYsFovq1q1b4usCAAAAAAAAAAAAAAAAAACg+JSJQGyrVq1yb1ssFhmGoV9//VUnT54s0XXnzp1rqrVu3bpE1wQAAAAAAAAAAAAAAAAAAEDxKhOB2A4dOigsLMyplp6erjfffLPE1vzjjz/0559/ymKxONW7d+9eYmsCAAAAAAAAAAAAAAAAAACg+JWJQKzVatWAAQNkGIak/+0Su3DhQs2YMaPY19uzZ4+eeeYZUxi2atWq6tKlS7GvBwAAAAAAAAAAAAAAAAAAgJJTJgKxknT77bc7BVRzQrFTpkzRW2+9paysrGJZ56+//tJdd92ls2fP5tYMw5DFYtFtt91mCskCAAAAAAAAAAAAAAAAAACgbCszgdjGjRtr0KBBubvE5oRUDcPQzJkzdd111+mXX36RzWYrVP9t27bpiSee0L333quEhART8LVatWq67bbbivw4AAAAAAAAAAAAAAAAAAAAULq8PT3A+Z5//nmtWbNGSUlJuWHYnL/379+vJ554QkFBQerVq5datWqlFi1aqEaNGgoMDFRgYKCsVqtSUlKUmpqq06dPa+/evdq9e7dWr16t6OhoSf8L2ubIuT9hwgT5+/t76JEDAAAAAAAAAAAAAAAAAACgsMpUIDYiIkKvvvqqRo8eLYfDYQrFGoahpKQk/fLLL/rll18K3Ddn11lJpp1hLRaL7r33XvXt27fYHgcAAAAAAAAAAAAAAAAAFIZhGMrIyFDlypU9PUqZl5aWxiaIAHJZPT3Ahfr166eXX345N7h6/t85f3LCsQX9c+G1OQzD0K233qpHH33UI48VAAAAAAAAAAAAAAAAAHLs3btb9913p/75Z6enRynTYmNj9MQTo7VixXJPjwKgDClTO8TmuO6661SjRg098cQTSkhIcLmra2HlhGK9vb316KOP6r///W9RxwUAAAAAAAAAAAAAAACAQktNTdEnn3yk77+fp+zsbE+PU2bZbDZ9/fXn+vzzWbLZMtW37wBPjwSgDClzO8Tm6NatmxYsWKDhw4fLy8vLaWfXwsrZMbZjx46aP38+YVgAAAAAAAAAAAAAAAAAHrV27WqNGHGTvv32G8KwF/HPPzt1++236JNPPpTNlunpcQCUQWVyh9gcVapU0fjx43XPPfdo/vz5+umnnxQTE+N0Tl67xV4YoPXx8VGfPn10yy23qFu3biU2MwAAAAAAAAAAAAAAAAAU1PLlSxUff8rTY5R5q1dH6ejRI54eA0AZVqYDsTlq1qyphx9+WA8//LAOHTqk9evXa8eOHTpy5IhiYmKUnJys9PR02e12+fj4KCAgQFWrVlXt2rXVrFkztWvXTl27dpWfn5+nHwoAAAAAAAAAAAAAAAAAAACKWbkIxJ6vYcOGatiwoW6++WZPjwIAAAAAAAAAAAAAAAAAAIAywOrpAQAAAAAAAAAAAAAAAAAAAICiIBALAAAAAAAAAAAAAAAAAACAco1ALAAAAAAAAAAAAAAAAAAAAMo1b08PUFKSk5O1bNkybdmyRSdPnpTdbld4eLhat26tfv36qVatWp4eEQAAAAAAAAAAAAAAAGVAamqKdu7coaNHDyslJUWVKlVSWFgVNWnSVE2aXCKLxZJvj8zMTO3cuV3R0YeUkpIsX19fhYaGqVmzFmrQoGGxznv06BEdPhytxMTTOnMmUZUrV1ZYWBVVr15TzZu3kLd3yUSCUlNTtH//fp04cUyJiaeVkZEhSbmPtWbNWmrSpKkCAgJLZH1Jstvt2r17l6KjD+rs2bMyDEPh4RGKiKiqNm3ayc/Pr8TWLo9K+7WSkZGhPXt26+jRw0pOTpbdnqXg4BCFhISoatXqataseYm9PsuTrKws7d+/V9HRh5ScnKSMjAwFBQUrJCRU4eERat68hXx9fYt93czMDO3fvz/3+8duz1JQULDCws79rKpZs3gzdenp6dq5c7tOnTqps2fPyG63KyysisLCqqhp00tUtWq1Yl3vfHa7XevX/62jRw/Lbs9WrVq11LZte1WpEu52r4MH9ysmJkanTycoOTlJAQGBCgsLU+3addS0abMCvUegdFgMwzA8PUR+Dh48qEOHDqlfv375nutwOPTBBx/ok08+yX3TvZDValX//v31xBNPqG7dusU9LlDuJCamyW7P9vQYcFOVKgHy8rIqO9uh06dTPT0OAACljvdCAEBFx3shAKCi470QAIrXyZMxcjiyZbV6qVq1Op4ep1zw8fGSl5dVFotFhmEoO9shm630/n/Xc2tLhiFlZztKbd3yZtGiBXr11Rdy73t5eWnlyr9z7+/bt1ezZ8/UqlV/Kisry2WPatWqa9iw4brhhmEug3zHjx/T7Nmf6rffflV6errLHtWr19Dw4SM1dOgNhQ4Dnjp1UnPmfKVVq/5STMyRPM8LDAxUZGRX3XjjMLVv37FQa53v5MkTWrjwJ0VFrdS+fXuVX9TIarWqVas2Gjz4Kg0adGWBQ30XPleStGLF2tyvV0zMUX311edavnyp0tJc//vP19dXkZFddN11N+nSS7sXaF1P2LRpg0aPvt/t67799ucCBRZL+7WSnZ2t5cuXatGiBdq8eaOys/P+WejvH6AOHTqqd+9+6t9/kCpVqpTnuceOxemmm65xe5533/1QHTtGun1daYiKWqlfflmgv/9eLZvNlud5Pj6+atu2nXr2vFyDB18tf3//Iq27du1q/fzzD/r779XKzMzM87xq1arrqquG6tprbyhUcFQ6F0RdtuxX/fzzD/rnn52y2+15ntu4cVP17Hm5br75VgUHh7i1zqhR92rLlk259wcOHKzx41+SJK1YsVzTpk3RiRPHna6xWq2KjOyikSPvVIcOnS7a/8iRaM2d+7XWrFmlkydP5HleWFgVde3aTcOGjVDTppe49RjKotL6N6G3t5fCwor2unalzAZiExMT9dVXX+nHH39UbGys/P39tXHjxoteY7PZ9MADD2j16tX5vvlaLP/H3n2HSVWe/wN+ZjsLLEsRBaSIYhex19hbogm2REWNJcaGitFYkmjUxGjU2DX6tZvYY9SIFY1dsWFBNFFRUapIL8v2+f3hD8J4BthddlnGve/r8hKec973fWbP2Tlr8tl3UlFSUhIXXnhh7L333s3ZOuQcgdjc5H/sBaCt8ywEoK3zLASgrfMsBGheArEN823WoDDaFedFfmFh1FbMiXR1ZaSKSqKgtCzqampiQVV9VFbWLDO3sLwEYhtmSYHY+vr6uOeev8Utt9y41LDW4tZff8O49NKrory8fFFt+PBH4pprLl9iEPa7Bg4cFH/602XRuXPnBr+GqqrKuPPO2+L+++9eapAtm6233jZ+9aszo1evxn9fz5s3L26++a/xyCP/XGrAcWlWW61H/OY3v4/NNttimecuKRCbn58fd999Z9x66/8tMbSczbbb/iDOPfcP0bFjx0b33dJaKhDbGvfKp59+HH/84+/j888/a9S4iG/vj9NPPzu22Wa7rMe/T4HYKVMmxwUXnBMffPB+o8eWl5fHSSf9Kvbaq/EZt08++W9ceulF8d//ftSocR06dIihQ0+NH/9430aNe/nlF+LKKy9baoB0SesdeugRMWTIzyM/P79BY5YUiB0x4sn44x9/v9Tn8A9+sFNcfPFfsh6bM2dO3HTTX2P48Icb9d6XSqVit932jFNOOS06d+7S4HErm1wPxOY1+4zN4NFHH4299torrr/++pgwYUKk0+moqKiI6dOnL3Xc2WefHa+++mqk0+lIpVJL/SedTseCBQvi17/+dTz44IMr6JUBAAAAAAAAALmooCAvupSXRLvC+pj7zlMx/oaT4qsrj4rx15/w7b9vOCnmvvNUtCusjy7lJVFQsFJGMoiIdDod553327jxxusaHIaNiPjoozFxxhmnLBpz8803xCWXXNjgMGxExOjR78XvfndGg9edNWtWDBt2Yvztb7c1OuAY8e2ukL/85RHxzjtvN2rcxIkT4phjfh7//OcDTQ7DRnwbAjzttJPi9ddfa/Icf/7zH+PGG69rVBg2IuK1116OU045rlHXJ5e1xr3y7rujYujQY5sUho349v4488xT45FHvt/Zrc8//yyOO+6oJoVhI769thdeeF783/9d36hxjzzyz/jlL49odBg24ttA/CWXXBjXXHN5g86vqamJyy67KH7zm183Ogy7cL3/+7/r44wzTo158+Y1evxCX3zxefz5zxcu85dS9tzzh1nrEydOiOOPPyoeeeTBRr/3pdPpeOaZp+KXvzwiPvtsbKPG0nyatgd7C7r99tvj0ksvXXRTLgyvRkR89dVX0bVr9q2Yn3322XjiiScilUotqi0MxmazsP7tDznnxVprrRWDBg1qxlcCAAAAAAAAAHwfFBTkRXmnkqj4/L2Y+vAVka6uTJxTM2NyzHj2jpj50n3Rfb/Torz/oJg1uzJqa+3eurK54YZr4vnnn82olZeXx/rrbxSdO3eOioqK+O9//xOTJ09MjP3Pfz6KBx+8LwoLC+POO2/9zhydY/31N4zy8vKYNWtmfPzxf7Ju/jZ69Hvx0EP/iJ/97JCl9jl9+rQYOvSXMWHC+KzHu3dfNQYMWDs6dSqPBQsWxNSpX8d///tRIsQ1Z87sOO20k+KSS66MrbbaZqlrRkTMnTs3Tj11aNbXHxGx+uq9o2/fftGxY1kUFBTEvHnzYuLE8fHFF59nDfrW1dXFpZf+Ke6664EoLW2/zPUXd8stN8bjjz+aUSsoKIj11tsgVl11tcjPz4spU6bEf/7zUVRXJ0Ogn376Sdx++81x4omnNGrdXNMa98qMGdPj3HPPjoqK5Kc1dOjQMdZaa0Csskr3KCkpicrKypg4cUJ8+unHiWBzOp2OK664NNZee91Yf/0NG/nKV35VVZVx7rlnxfTp0xLH2rVrF2utNSBWXbVHtGvXLqqrq+Lrr7+Ojz/+T9Yg99//fnusvfY6sfPOuy1z3YcffjAuv/zPSzzev/+a0atX7ygrK4vZs2fFRx99GDNmJN+vHnjg3ujYsSyOOuqXS5yrtrY2fve7M+K1117Jevzb79n1o3v3VaOwsCimTfsm/vOfD2P+/OS98+abI+P444+OG264tdG7O6fT6fjzn/+Y9b1gcR06dIxtt/1Bov7FF5/HKaccHzNnzsg6bvXV+8Qaa/SPsrKymD9/XkyaNCk+/fTjRPh2ypTJccIJv4jrr785BgxYu1GvgeWXSrf0Hv2N8Prrr8fRRx8d9fX1WYOtf/7zn2Pw4MFZx+67777x3//+NyNAu3jodXHfDcmm0+no169fPP744w3echm+T2bOrIja2qb/Rhetw8eBAdDWeRYC0NZ5FgLQ1nkWAjSvFfXxuLkolUpFl/KSWDDu/fj6gT9HpBsQcE3lxao/+0206zcwZsyqXOZOdU2Rn58XqVREOh1RVyd0uyRPPDE8LrrogiUe79GjZxx//Mmx4447R0FB5r5yL774fPzpT+cnAn/l5eUxb968ReHP3r37xNChw2LbbX8QeXn/2xm4trY2HnvsX3HNNZdHdXV1xhw9e/aK++57OOP8xdXX18evfnVSjBr1ZuLYrrvuEYcddmTWoNXcuXPj8cf/FXfeeVvMnTsn41inTp3i1lvvjtVWW22JX4+IiEsuuTCGD38kUd9nn8Fx+OFHRa9e2d8j5s6dG08+OTxuu+2mrDs8nnrqr+PAAw9e4rrZrtXiOaCOHcvi8MOPin333T8RrJ01a1Y88MA9cdddd0R9feb3Q1FRUTzwwL+iW7dVlrj2ilZTUxNz5sxe9Perr748nnvumYxz/vSnS2PDDQdm1MrLOyeyTa11r2S7T7p3XzWGDTs9tttuh8T3U8S3gdv77rs77r77zkQYd5NNNotrr/2/jFpdXV3MmjVz0d/vvfeuuO++uzLOOeWU02PXXXfPqJWVdYrCwsIl9r4i3XnnrXHzzTdk1Dp2LIuhQ4fF7rvvFcXFxYkxCxYsiEcffShuvvmGqKzM/AWMZb13RESMGfNBnHTSLxMB9by8vPjxj/eNww47Mnr06JlxrL6+Pl544bm4+uq/JMK7+fn5ceONt8V6622Qdb2rrrosHnzw/kS9Q4cOceSRx8Teew9OhFtramri5ZdfjBtuuDZr+H7bbX8Ql1xyxRI3w4yIOOmkY+O9995ZbL2OMW/e3EV/Ly4uji233CZ69+4TlZULYsyY0fHJJx/Hj3+8X5x11u8y5qqsrIxjjvl5jBv3eeK1//jH+8UhhxyW9b1vxozp8eCD98f999+d2Jl59dV7xy23/D06dOiwxNewMlpRPxMWFORH586lzT7vSrM/f319ffzhD3/ICMN+9wfC8eOz/xbD6NGjM8KwqVRq0Z/btWsXxx13XPz1r3+Nv/zlL/GTn/wk6xvCl19+GQ899FDzvzAAAAAAAAAAIGeVlBRGuq4mpj58RcPCsBER6fqY+vDlEXU1UVKycoSySNpww4Fx2213x6677p41vLfjjjvHOeckw7SzZs1aFDTbZJPN4pZb/hbbb79jIo9SUFAQ++57QPzhDxcn5pg0aWJ88cXnifpCd911RyLgWFxcHH/602VxwQUXLXHXwY4dO8bBBx8Wf/vbfbHmmmtlHJs9e3b86U/nLXHNiG8/LvyJJ4Yn6ieeeEqcffa5SwzDLlz7Zz8bErfffk907dotcfzFF59f6trZLMwOrbnmgLj99ntiyJDDs+4yW15eHscee2Kcd96fEseqq6vjxRefa/TaLamwsDC6du226J9sociOHcsyzunatVvWjf5a416pqKiIZ58dkVErLy+PG264NXbccZes308R3wZVjz32xKzfV+++Oyqxw21+fn7G62/Xrl1iXIcOHRJfp5UlDJtOp+OxxzJ3OC4qKoqrr/5r7LPP4KzXPeLbnWMPOujQ+Mtfrkl8LSdNmhijRr211DWvuOLPiTBsu3alcfnl18YZZ/w2EYaN+DYsu8suu8Wtt94Vq6/eJ+NYXV1d3HLL/yXGRES89947WcOw/fuvGX//+wNx8MGHZd3ptbCwMHbZZbe466774wc/2DFx/LXXXo777797ia8zm8XDsFtttW3cd9/DcfHFf4kTTzwlTjvtrLjttrvjllv+Hj/9aTKYf/XVlyfCsOXlneOaa26MX//67CW+93Xp0jWOPfbEuPnmv0X37qtmHJswYXxcc83ljXoNLL+VJhD77LPPxueff57Y4TWdTkeXLl3iyCOPjB13TN78ERHDh//vQbx4mLZDhw5x7733xq9+9avYZZddYp999olLL7007r777igrK8uYI51Ox9///vcWenUAAAAAAAAAQC5qV5wXc997NtLVlcs+eTHp6sqY+96z0a54pYlmsJjy8vK4+OK/LPMjuXfYYadYc80BWY917dot/vjHS6J9+6Xv/rf99jvGoEGbJuoffTQm6/nz58+Lu+66M6OWl5cXF154Sey4485LXWuhVVbpHtdee1Mi+Pbuu6Ni9Oj3ljjuiSeGZ925c8iQnzdo3Yhvd9099tgTE/X//OfDBs+xuPLy8rj00iuXubNtRMSuu+4eO+20S6I+cuSrTVp7Zdda98rYsZ/EggUVGbWf/GT/WHXVZV+jiIjdd9+rTVynadO+Sex+utNOu8baa6/boPGDBm2adVfl119f8tfppZeej08++Tijlkql4uKL/xJbbLHVMtfs1q1b/PGPf04Ecd9447X46qtxifOvv/7qRK1Hj15x3XU3xyqrdF/mesXFJfHHP14SW2+9beLYXXfdkdghtyE22GCjuOiiy7Kuv+6660X//mtm1CZOnBCPP/6vjFpJSUlcfvm1sfHGmzRozf7914zrrrspOnTIfKY8/fQTMWXK5Ea+ApbHSvNT1z/+8Y9Ff14YhE2n03HIIYfE888/H2eddVZstNFGWcc+88wzGdsjL9wldujQobHOOuskzh80aFBcf/31GetFRHz66afxySefNNdLAgAAAAAAAAByWFFRfuQXFsbcd55u0vg574yI/MLCKCpK7upI6zrkkMOjc+cuDTp32223z1o/+ODDory8vEFzbLnl1ona5MmTsp776KOPREXF/IzaPvsMjm22yd7HkpSVlcXJJ5+WqN9zz9+WOOaVV15K1H7+86MatW5ExPbb75D4qPPKysqoqKhYwogl+9nPhjQ4aBkRMXjw/onad3ce/b5orXvlm2+mJmpdu3Zt1Jp77/2TjLEbbTQwioqKGjXHym7q1OTXqUuXpn+dysvLY731NoiOHcuWeP6jjz6SqO2774Gx+eZbNnjNAQPWjt122zNRf+21VzL+PmbMB4mgeyqVinPOuSCxWeXSFBQUxG9/e17i/XTWrFnx6KON/8T3448/aYm772bzwAP3RH195g7wRxzxi1hnnYYFlxfq2bNXHH30LzNqdXV1cd99jdvpluWzUgRi582bF6+//nrG7q6pVCoOO+ywOO+885Z6g44ZMyamTJmSqBcWFsaBBx64xHGbb755/PjHP160G+1Cr732WhNfBQAAAAAAAADwfZKfnxe1FXOiZkbTdnermTEp6irmRn7+ShHPYDF77vmjBp+7xhr9s9b32qvhc/Ts2StRW/zjvRc3fPjDidphhx3Z4LUW94Mf7Bjduq2SUXvzzdejqqoq6/kHHPCzGDLk54t2sVx99T6x6aZbNHrdTp3KEzslRkRUVi5o9Fz77DO4Ueevu+4GidqsWbMavW4uaK175bu7h0Y0fnfXTTfdIv72t/vj3/9+Jf71r6fjhhtuyxpmzmXZvk5vvjkyEb5cmn791ojbb78nRox4MR577Nm4+eY748gjj8l67pw5c+Ltt9/IqKVSqTj44EMb13hkBnGLiopjzTXXSvT93HMjEuO22GKr2HjjQY1er0uXrnHAAQcl6k8//WSj5unVa/XYZJPNGnx+bW1tPPHEYxm1kpKSrDvzNsQ++wyOwsLCjNrLL7/QpLlompXiJ67Ro0dHTU1NRq1Hjx5x5plnLnPsCy+8kPH3hWHa7bbbbpnb2h9wwAGJ2nvvvbfMNQEAAAAAAACA779UKhXp6sZ/XPPi6msqEztl0rp69Vo9EfxbmrKyTolaz569GrzDbEQsIRyavLdmzJgeX331ZUZtwIC1swZqGyKVSiU+Jr26ujo++mhM1vN/8pP94sQTT4kLL7wkbrvtrrjvvociP79pOxyXlpYmat/NBy1Lr16rN3pHzY4dO0a7du0yatXV2QPAuaw175VsIfHXX38trr/+6qiurm7QesXFxdG//5pRXFzSpH5zQZ8+fRPfP59//llceOF5iZ19lySVSsWAAWtHaWn7ZZ47evS7UVdXl1HbaKONo1ev1Rve9P83cOCg+MtfrokHHvhXPPvsy3HnnffFkCE/zzjnrbfeSIzbZ599G73WQj/+8X6Rl5cZZxw79pOYP39eg+fYcMOBjVrzv//9TyxYkLlz9RZbbJ14D2mo0tL2scEGG2XUvv56SkyZ0rRfrKHxVopA7Jgx/3vjXBhoPeCAAxq0DfZLLyW3ao+I2GWXXZY5dtCgQRlvOul0Or788suljAAAAAAAAAAA2op0Oh2pouULa+UVliQ+vZbW1a/fGo06P1t+ZfXV+yz3HNnui9Gj30vU+vdfs1FrfdcaayTHjxkzernmXJr6+voYM+aDrLvBNvZ7YcCAdZrUw3fDg7W1tU2aZ2XWmvdKnz79ol+/ZCj23nv/HgcfvF/cdNNfY8yYDxq1E+r3Ubt27RIh44iIESOejJ/+9Cdx7bVXxDvvvN1s9+eHHybDy40NiC6Un58fW2+9bfTs2SsRUo2IqKioiC+/HJeob7rp5k1aLyKiW7du0bdvv4xaXV1d1nt9Sb4bRl2WDz54P1Fb3u+jbOOzrUPLSO7L3AomTJiQqG21VfLN4Ltmz54dY8aMyfqbVNttt90yxxcXF0fPnj1jwoQJ3/5WVzodU6ZMaVjTAAAAAAAAAMD3Wl1dfRR0KIvCLj2iZkbjd3cr7NIz8ks7Rt3simWfzArTtWu35Z6jQ4cOzdBJ0scf/zdRe/rpJxv9seHL8s03U5tlntra2pg0aUJ88cXn8dlnY+M///kwPvxwTMyZMzvr+Y0NxJaXlzepr+9+ZPn3MZjZ2vfKMcccF+ecc1aiPnXq1/G3v90Wf/vbbVFW1ik233zL2HLLrWKLLbaOVVddrVl7ywVHHXVsvPXWG4mdW2fPnh33339P3H//PdGuXWlsuulmseWWW8cWW2wdffr0bdJaEyaMT9QGDFi7SXMty8SJExLfV6ut1qPJ37MLrbfeBvHFF59n1LJlC5ekR4+ejVrvk0+S30d33nlr3HnnrY2aZ1m++eabZp2PJVspArHTpk1L1NZcc9lJ65EjR0Z9fX0iENunT5/o2bNhN3fHjh0X7Uob8W16HQAAAAAAAACgurou6mpqouOme8aMZ+9o9PiyTfeIupqaqK6uW/bJrDAdOnRc7jmKi4uboZOk2bNntci8yXWyB1aXZObMGfHf/34UX3zxeYwf/1VMmjQxJk6cEN98MzUR9GtODfmY+Laqte+VnXbaNQ4//Kj4+99vX+LYOXNmx3PPPRPPPfdMRHy7O/M222wf2233gxg4cFDWnUe/bzbYYMM47bSz4rLLLlriOQsWVMSrr74cr776ckR8G+rceuvtYrvtfhCbbbZFIuC9JF9/ndwIcpVVujet8WWYNi0ZlF5ttR7LPW+20PSSAvbZlJV1atR6K+r7qDGvgeWzUgRiFyxIbpFeVla2zHGvvvpqxt8XBlsbsrvsQt99w2jJhzQAAAAAAAAAkFsWVNVHx0G7xcyX7ot0dWWDx6WKSqLjoN2iour7tzNlrisqKmrtFpZozpw5K2SduXOXvU5VVVU8/vij8fTTT8SHH36wArpKaqng8ffBynCvHHvsidG5c5e4+ea/Zs1/fde4cV/EuHFfxL33/j26dOkau+yye+y77wHRr98azdnySmfw4P2jXbvSuOaav8SsWbOWef7kyZPi4Yf/EQ8//I/o0KFj7LjjzjF48P6x/vobLnXcggXJjSBLS0ub2vZSZdt0sn375Q+wZ9t9uzGh1Y4dG/cLDyvq+0ggdsVZKWL22bYlb0gw9dVXX03sDhsRsc022zR47Xnz5mXM0RzfmAAAAAAAAADA90NlZU2k8guj+36nRaQaGLNI5UX3/U6PyC+Mysqalm2QRsuWNVlZzJs3d4WsU11dvdTjr7zyYgwZckBcccUljQ7Ddu++avz0p4cs90ens3Qrw72SSqXiZz87JP7+93/EgQceFB07LnsDxIVmzJgeDz54XxxxxMFx1VWXxfz585qj3ZXWHnvsFXfd9WAcfvhR0bVrtwaPmzdvbjz++KNx7LFHxh/+cG5Mn578JPaFqqqqErWSkpIm9bssNTXJZ1tJSbvlnjdbCD7bWkvS0N10F1pR30eNeQ0sn5Vih9hsu8FWVFQs9Tdyxo0bF5MmTUr8kJJKpWLrrbdu0LrpdDqmTMncKlogFgAAAAAAAABYKJ1Ox+y5VVHef1Cs+rOzY+rDVyx1p9hUUUl03+/0KO2/ccyaXRnpdHoFdkuuKypKhsF+/euz4wc/2KlZ11laaOyBB+6Na6+9okH3bmlp++jbt18MGLB2rLfeBrHxxoOiT59+ERHx8ssvRMSsZuiWbFaGe2Wh1VZbLU499Yw46aRfxVtvvR4vv/xivP76azF16tfLHFtXVxcPPnh/fPzxf+KKK66Pdu2WP1S5siovL4/jjhsav/zlCfH+++/GSy+9ECNHvhITJoxv0PgRI56Mjz76MG644Zbo3LlL4ni7dsndYLOFZJtDtoxdZeWydwlelmw7zxYXt0yoNyL7juGXXnpVrLPOus26Tku+BjKttIHYiRMnLvU3RV5++eWMvy98CK+33nrRuXPnBq37+eefx/z58yOVSi0a36VL8s0CAAAAAAAAAGi7amvrY9bsyujUb+Poc8otMe+9Z2POO09HzYzJi84p7NIzyjbdIzoO2i0ivzBmza6M2trkJ+bC0mTfVG5Bo3aUXB4jR74a11xzedZjXbp0jc022yLWW2/9WGON/tG37xrRvfuqS5wr2ydG03xa+17JpqCgILbZZvvYZpvtIyLi888/i1Gj3opRo96M9957J+bNW/IusB98MDr+9Kfz48ILL1lR7baavLy82GSTzWKTTTaLYcNOj4kTJ8Tbb78Zo0a9Fe+883bMmjVziWMnTPgqzjrrtLjxxtsiLy9z1/KOHTsmzp8/f36z9//tWsn7rznWynaPtGRIuqysU6JWVVXZqt9HLJ+VIhC75pprJmofffRRbLDBBksc88ILLyRqqVQqdtxxxwav++STTybGr7322g0e31ImTZoUw4cPj1GjRsXYsWNj5syZUV1dHR06dIjevXvHwIEDY7fddottttlmpdnGf+TIkfHSSy/Fu+++G5MnT45Zs2ZFXV1ddOrUKfr06RMDBw6MnXbaKbbeeutG9/zGG2/Ez3/+8xbq/H9OOumkOPnkkxt8fn19fbz22mvx1ltvxbvvvhuTJk2KOXPmxPz586NDhw5RXl4eq6++emyxxRaxzTbbxMYbb9yC3QMAAAAAAADQkmpr62PGrMooKSmMDpvuFZ22+nHUVcyN+prKyCssifzSjlFXUxMVVfVROdfOsDRNtpDjpEkTV8ja1dXV8ec//yFR79ChY5x88q9ir732jvz8/AbPV1m55J2UWX6tea80VP/+a0b//mvGT396cNTV1cVHH42JV155KZ599un4+uspifNfeOHf8fHH/2323TlXdr16rR69eq0egwfvH+l0Oj799ON49dWX49lnn44vvxyXOP+jj8bEyy+/EDvuuEtGPVsgdvr0aS3Sc7b7b/LkScs978SJExK1VVbpvtzzLkm2YO/K9n1E46wUgdiBAwcmak899VT89Kc/zXr+N998E2+88UbWYOXOO+/coDXnzp0b9913X2KO9dZbr0HjW8L06dPjoosuiieffDLq6uoSx2fNmhWzZs2KDz74IO6+++4YMGBA/Pa3v41tt922Fbr91lNPPRXXXnttjB07NuvxadOmxbRp0+Kdd96JO+64I/r27RsnnnhiDB48eKUJ8zZWbW1t3HPPPXHnnXfGhAnJN+GI/12rcePGxSuvvBJXXnllbLTRRnH88cfHbrvttoI7BgAAAAAAAKA5pNPpWLCgOhYsiCgqqon8/MJIFRRFuj4ddbMroro6+f/1Q2OsvnqfRO29995ZIWu/+OJzMX369Ixafn5+XHLJlbHxxoMaNVdVVVXMmTO7Gbvju1rzXmmK/Pz82GijjWOjjTaOY489Mf7xj3vj+uuvTvzywEsvPd/mArGL+3ZDx3Vj7bXXjaOO+mU8/fQTccklF0Z1dXXGeS+99HwiENu7d/KeGDv209h11z2a1Mt9990VkydPil69Vo+ePXtFz569ok+fflFQUBC9eq0ehYWFUVNTs+j8r7+eEjNnzmzwp7tn8/HH/0nUevVavcnzLUvv3r0TtffeeycOPfSIFluTlrVSBGI32mijaNeuXVRWVkYqlYp0Oh2vvfZajBw5MrbZZpvE+ddee23U1tYmApU9e/aMjTbaaJnrpdPpOO+882LatGmJObbaaqvlezFNNGrUqBg6dGjMnLnkLa+/69NPP42jjjoqjj766DjjjDMS22C3pAULFsTvfve7ePzxxxs17ssvv4yzzjorHnroobj88stjlVVWaaEOW8aXX34ZZ5xxRrz//vuNHvvBBx/E0KFDY7/99ovzzjuvRbfzBgAAAAAAAKBlfRt+FYCleW288SaJ2rhxn8eUKZNjtdV6NGnOu+++Mz744P1YbbWe0bNnz+jRo2cMGLBOYr5XXnkxMXaHHXZudBg2IuLzz7NvrFZfX9/ouciuNe+ViIiampoYP/6r+PLLL6K+Ph277rp7g9fJz8+Pgw8+LL78clwMH/5IxrEvvvi8Sb2vrGpra2PSpInx5ZdfxOzZs2KfffZt1Pg99/xRTJkyOW6++YaMerav04YbbhwRf8+offTRh41teZEnnhgen3/+WUZt+PAR0blzlyguLom11143Pvzwg4zj77zzVpMDuFOmTM66Q+xaaw1o0nwNMXDgJnHPPZlfs/feezcqKyujpKSkSXNee+0VMWXK5OjRo1f06NEjevToFeuuu1506dK1OVpmGVaKQGxxcXHsvvvu8eijj0YqlVoUij311FPjuuuuiy222GLRubfddls88MADi85Z/N8/+tGPlrlWRUVFnHfeefHEE08sCsMu/E2DtddeO9Zee+2WeZFL8fbbb8cvf/nLqKioaNL42267LebPnx9/+ENy2/qWUFFREccdd1y8+eabTZ7jjTfeiCFDhsRdd90Vq666ajN213LGjRsXhxxySMyYMWO55nn44Yfj888/jzvvvFMoFgAAAAAAAABYpH//NaNjx7KYO3dORv2f/3wghg4d1uj5qqqq4t57/x6zZs3KqJ999rmxzz6DM2qTJiU/7nyjjTZu9JoREa+88lLWerZPTCaa9CnLrXWvVFRUxC9+cVhMmjRx0fVcZZXujQrELrTtttsnArEVFfOXeH6ufRr1scceGZ9++vGiXVQLCgpit932anTQctttf5AIxGbLmW20UfJT2t97b1RMmzYtunXr1qg1v/56SiJ027t3n+jcucuiv2+88aBEIHb48EeaHIh97LF/JXYM7tevf3Tt2rjeG2PgwI0X5Q8XWrCgIh5//NE44ICfNXq+adOmxT//+UDU1tZm1K+++gaB2BVkxW0pugw/+9n/bqCFAdfZs2fHz3/+8zj44IPjtNNOi7322isuu+yyRect/iaXSqUy5viu6dOnxx133BF77713PPbYY4njqVQqfvrTnzbTq2m4qVOnxrBhwxJvUnl5efHDH/4wrrvuunjsscdixIgRcdttt8XBBx8cpaWliXnuv//+uOeee1ZIz+eee27WMGx5eXkcc8wxcfvtt8eIESPiueeei/vvvz/OPPPM6NevX+L8r776Kk466aSMrbNbS4cOHWKvvfZa4vGZM2fG0UcfnTUM26VLl/jFL34RN998czz++OPxwgsvxL/+9a+45JJLYs8998y6c+/7778fp512WuJNHAAAAAAAAABou1KpVNYw2b/+9VBMmTK50fM9+OB9iYBjfn5+7LDDTolz58+fl7Wfxpo1a1Y89NA/sh6rrW39jMjKqClf59a6V0pLSyOVSmWEm7/5ZmqMHv1eo9esrKxM1MrKOi3x/BX56dnNoUOHjhm5qNra2njppecbPU9VVfLr1LFjWaLWuXOX2GSTzTJqdXV18dBDDzR6zWzh1K22yvyk9913/2Fi3KhRb8X777/b6PVmzJgeDz+cfN/YaaddGj1XY5SVdUq8rohvd0ueNy/5nrgsd9xxSyIMW17eOQYN2rTJPdI4K827xOabbx4777xzYtfXdDod77//fjz55JMxbty4jHrE/8Kz++yzT/Tu3Tvr3EcffXRsv/32cckll8TkyZMXjVl8/FprrRWHHHLICnu9C5133nkxbdq0jFq3bt3izjvvjKuuuip23333GDBgQPTt2ze22267uOCCC+LRRx+NjTbaKDHXpZdeGpMnN/6B1hgjRozIGijea6+94tlnn40zzjgjtt122+jbt2/06tUrBg0aFL/4xS/iiSeeiBNPPDExbvTo0XHXXXctdc2tttoqPv7442b558EHH4zi4uKM+QsKCuLqq6+OAQOWvL32VVddFRMnTkzUDz/88Pj3v/8dZ555Zuywww6x1lprRY8ePWLdddeNfffdN6655pp49NFHs8793HPPxb/+9a+lvnYAAAAAAAAAoG05+OBDE8G/ior5ccEFv2vUpmNffTUu7rjj1kR99933yho6LC/vnKiNGtW4Tw+ura2N88//bWLX0oWqq6sbNV9bUVhYmKg15Fq31r2y9dbbJmrf3cG0IV588blEbZ111l3i+QUFyQ9DX5nvqWxfpzvuuKXRPb/wQrav03pZz/3Zz5L5t3vu+Vt8+uknDV7v66+nxH333Z2o/+Qn+2f8fcCAtWPzzbfMqKXT6bjwwvNjzpzs7wHZ1NXVxZ///MeYPXt2Rr2goCAGD95/CaOaz5AhP0/Upk79Oi655MJGbXb47rujYvjwhxP1/fY7MPLz85erRxpupQnERkRccMEF0aNHj4j4328+LAy/LgyuLh6WXahr165x5plnLnHekpKSxByLKyoqigsvvHCF33hvvPFGPPdc5htWaWlp3HTTTbHlllsuYVRE796944477oh11818ACxYsCCuvvrqFul1oWuuuSZR23PPPePKK6+Mjh07LnFcfn5+DBs2LE444YTEsZtvvnmF7BI7bdq0OOmkk6KqqiqjfuaZZ8b222+/xHGfffZZ/OMfyd9AOP300+Occ87JumPv4gYMGBD33XdfrLPOOoljV1xxxUr9YAYAAAAAAAAAVqzVV+8du++e/JTbDz4YHb/+9SlZd3L9rsmTJ8UZZ5waCxZkfmJxfn5+HHXUL7OOyRawe/XVl2PkyFcb1Pe0adPi9NNPjrffXnKIdsGCBQ2aq60pLW2fqE2fPi3LmZla617Zd98DE/mrd98dFddee+Uy11vo6aefSAQ9U6lU7Lzzbksc0759h0StIV+n1vLDH+4T7dq1y6h99dWXceGF5yV2EV2Sd955Ox588L5Efdddd896/nbb7RD9+6+ZUautrY1f//rk+Oyzsctcb+bMmXHmmcn7YZtttkvMGxFx5JHHJO6FyZMnxsknHxvTpn2zzPWqq6vjvPN+G6+99kri2EEHHRqrrNJ9mXMsr0033Tw23niTRP3555+NP/zh3Abl2j7++L9x7rlnZeycHPHtTr4HHXRos/XKsq1Ugdju3bvHLbfcEl27ds1IV383xLr47q7t27ePv/71r9GtW7clztu/f/+McQul0+koKCiIa665JjbeeOPmfCkNctNNNyVqw4YNiw022GCZYzt06BA33nhjIow5fPjwFtsl9tVXX41PP/00o1ZeXh4XXHBBg7ckHzp0aPTq1SujNn369Bg5cmSz9ZlNfX19nHrqqTFlypSM+q677hpHHHHEUsc+8sgjiTer7bffPo499tgGr9+hQ4e49tprE7/R8/XXX7f4awcAAAAAAAAAcstpp50Zq6+e/KTkUaPeikMP/Wk88cTwrB+jXllZGf/85wNx1FGHxsSJExLHjznmhOjVa/Wsa+6ySzKImE6n45xzzowHHrgn63oR3+4medttN8Vhh/00Ro16a6mvqzG7RrYlXbp0SdSGD384selbNq1xr/Tp0zd23XWPRP3++++OYcNOiNGj31tiv1Onfh3XXHN5/OlP5yeO7bnnj6Jnz17JQf9ftq/TM888FXPmzM5yduvr2LFjHHjgwYn6c889E8cee0S8/vprUV9fn3Xs7Nmz4o47bolf//qURHh20KBNY5NNNss6Li8vL84//0+JT9CePn16HHvsEXH77TfH7NmzEuPq6upixIin4qijhiSCs+3atYvTTjsr63qDBm0ahx9+VKL+2Wdj47DDfhr33393zJ07N3G8trY2Xnzxufj5zw+KF174d+L4mmuutcRAdkv4/e//GJ06JXdDfuaZp+KIIw6Ol156IWuIec6cOXHHHbfECSf8ImbNmpU4fvrpZ0WHDskgNy0nuY90K1tzzTVj+PDhce6558azzz4bEdmDrBER66+/flx22WWx5prJ9Pni1lhjjUQtnU5H79694+KLL47NN9+8mbpvuAkTJsRrr72WUevatWsMGTKkwXP06NEjjjjiiLjhhv9tOV5bWxv//Oc/46STTmq2Xhf697+Tbz4HHnhgdO6c3DJ/SQoLC2OPPfaI22+/PaP+/vvvxw477LDcPS7JjTfeGG+9lflDV48ePeLiiy9e5tgnn3wyURs6dGije+jbt2/85Cc/iX/+858Z9eeffz523HHHRs8HAAAAAAAAAHw/tW/fIf74xz/HyScfF/PmZe7yOW3aN3HRRRfEFVdcEhtssFF069YtUqm8+OabqfHRR2OWuAvrD36wYxx22JI3Ddtoo41j221/EK+99nJGvaqqKq655oq45Zb/i/XWWz9WWaV7FBQUxJw5c2LcuM/jq6++TMxVUFAQAwcOinfeeTujPmXKpIZ+CdqUvn37JWoffDA6Djlk/9hkk00jP78gpk+fHsOGnRZ9+mSe2xr3SkTEr351Rrz77tsxffr0jPqoUW/FqFFvRdeuXWPAgHWivLxzFBQUxLx58+Krr8bFuHFfZA2BrrrqanHSsc7ISQAA2IxJREFUSb9a6prffe0RERMmjI8hQw6IzTbbIkpK2sXMmTPj4IMPjU03XfF5sGyOOuqX8corL8YXX3yeUf/kk4/j178+JcrKOsU666wbXbp0jcLCwqioqIgJE8bH55+PzRrA7NChQ5x11jlLXbN//7XitNPOij//+Y8Zm1JWVVXFrbf+X9xxxy2x3nobxKqrrhrFxSUxY8b0GDPmg5g3LxlczcvLi7PPPjd69Oi5xPWOOeb4+PTTjxO7Sc+bNy+uvfbKuOGGa2P99TeMVVbpHoWFhTFjxvT46KMPs64XEdG9+6pxySVXRUlJyVJfZ3NaddXV4ve/vzB+85vTE5/2/dVXX8Zvf/vr6NChY6y//gbRtWu3qK+vi0mTJsXHH/9niZ8OfuCBB8Vuu+25ItpnMStdIDYionPnznHdddfFqFGj4pFHHom33347Jk2aFPX19bHKKqvExhtvHHvvvXfsttuSt8he3MJA7MJv8PLy8jj44IPj2GOPXebH3beUp59+OvHm/uMf/ziKiooaNc/PfvazjEBsRMTjjz/eIoHY7wZKIyJ++MMfNnqePn36JGpff/11k3pqiNGjR8f111+fqF944YVZk/2Lmzp1aowfPz6j1rVr19h0002b1MvOO++cCMSOGzeuSXMBAAAAAAAAAN9fAwasEzfeeHucddavsu7gWVlZucwdWRfaeefd4rzzLkxsSvddZ599Tpxwwi+yrldRMb9B63Xvvmr8/vffBvG+G4h97713fHx4FoMGbRbl5eWJHSanTv06nn76fxu5/fe/P8waCm2Ne6VTp/K4/PLr4tRTT4xZs2Ymjk+fPj2mT38ty8ik7t1XjSuuuC7Ky8uXet4aa/SPfv36x7hxmeHSWbNmxb///cyiv2+wwYYrTSC2qKgoLr/82jjllONjwoTxieNz5syOt956o0FzdejQIS699Kro3TuZvfquvff+SZSUlMSf/nR+IrBZV1cXY8aMjjFjlj5Hfn5+nHnm77LuBry4vLy8uPjiy+OKKy6JRx99OHG8trZ2qbsGL27ttdeJSy65MlZZpXuDzm9OW221TVx11V/jt789I+s9PW/e3HjzzdcbNNdBBw1ZZsCblrFSBmIX2myzzWKzzbJv79wY/fv3j9VWWy223HLL2HbbbeOHP/xhYlvoFe3VV19N1HbZZZdGz9OzZ89YZ5114uOPP15U+/zzz2P8+PHRu3dyO/Tl8fDDD8eXX34ZY8eOjbFjx8a4ceNi3XXXbfQ82bZzz8vLa44WE2pqauJ3v/td4jcm9ttvv9h+++2XOf6zzz5L1DbccMMm97P66smt5KdNm9bk+QAAAAAAAACA769+/daIm266I2688bp44onhUVdX16jx7du3j+OPPzn23feAZQYcIyK6dOka11xzY5x//m/jgw9GN2qt/Pz8+MlP9o/jjhsaHTp0iIqK+VFUVBzV1f/LiYwa9XZUVMyP0tL2jZr7+65du3Zxxhm/jd///jdLvcZjx34ae+yRffO6FX2vRESstdaA+L//uz0uvfSiGDXqzUatt9DOO+8Wp512VoM/ofrss8+NYcOOz5o/Wuizz8Y2qZeW0r37qnHDDbfGlVdeFs8998yyB2Sx2WZbxFlnnRM9e/Zq8Jhdd90jevToGVdeeVn85z8fNmq9Xr1Wj/POuzDWX79hOamCgoI488zfxQYbbBS33HJjfPPN1Eat165duzj00CPisMOOjIKC1os0Dhw4KG655W9x3XVXxYsvPpexw25DdOnSNU499YzYZZeGbfRJ81upA7HNpby8PF544YXWbmOR+vr6GDVqVEatoKAgNt544ybNt+mmm2YEYiMi3n777WYPxBYUFMSaa64Za665Zuy5Z9O3c/7kk08StWxB0eZw2223Jdbr1q1b/OY3v2nQ+LKyshgyZEhMnTo1pk6dGl9//XWsssoqTe4n25bvLRUGBgAAAAAAAAByX6dO5XHWWefEYYcdGQ88cE+8/vprWXcBXdzqq/eJvff+ceyzz74NDhoutOqqq8V1190cTz/9RDz44P3xySf/Xer5/fqtEdtss33su+8B0avX//IfpaXt4wc/2CFj586KivkxfPgjdonNYscdd4krr7w+LrnkwiVe32UFPVf0vRLxbXDy6qv/GiNHvhpPPvlYvPbay1FZWbmMPjvFDjvsHIMHHxDrrrteo9bbcMON4sYbb4+LLjo/Pv00mUGKiPjss08bNeeK0Llzl/jDHy6OAw88KB577F/x0ksvxLx5c5c6prS0fWyzzXYxePD+Td7xdv31N4ybb74zXnjh3zF8+L/ivfdGLTFMnEqlYsCAdeKAA34We+zxwygsLGz0envv/ZPYbbc941//eiief/6Z+OijD5cazu7ff83Yddc9Yr/9DoyysqV/0veKstpqPeLCCy+JTz/9OP7xj/virbfeWGrAN5VKxVprDYh99hkce+21d7Rv32EFdst3pdKNjTGz3L744ovYa6+9Mmprr712DB8+vEnzPfDAA3Huuedm1A477LBEbWUwe/bs2GWXXWLevHkZ9QcffDA22mijZl1r/Pjxsc8++yQeshdddFEccMABzbpWQz311FMxbNiwjNoOO+wQN998c6v0s9DMmRVRW9u43wyi9XXp0j7y8/Oirq4+ZsyY39rtAMAK51kIQFvnWQhAW+dZCNC8pk6dEPX1dZGXlx/du7fMhkY0r/z8vEilItLpiLq65OZMfL9NmjQxPv/8s5g1a2bMnj0r0ul0dOxYFl27dov1198gunTp2mxrzZw5Iz78cExMmzY15s6dF/n5edGpU3l07twl1l13vWZdi283W/v44//E2LGfxsyZMyLi291bu3dfNdZYY81YffXGbZC3Iu+ViIi6urr46qsv4/PPx8bs2bNj/vz5UVdXG6WlpdGtW/fo12+NWGON/g3ehXZpPv98bPz3v/+J6dOn//812scqq6wSffuuEf37r9kMr6blpNPpmDhxQnz22bfXef78+VFTUxMlJSXRtWu36NOnX6y11oDIz89v1nWrqir///fzNzFr1syorKyMsrKy6NZtldhww42jvLy8WdebO3du/Oc/H8aMGdNj5syZUVNTHe3bd4jVVusRa6+9TqyySvflmn9FPQvHjfsivvrqy5g9e1bMmjUr8vPzomPHsujefdVYb70NoqysrMXWXtFW1M+EBQX50blzafPP2+wzskxjxyZ/W2ONNdZo8nx9+/ZN1L744osmz9dSqqur46yzzkqEYQcOHNjsYdiIiMsuuywRht1www1j//33b/a1Gurll19O1Jbn2gMAAAAAAAAAbU/Pnr0a9dHpy6Nz5y6x/fY7rJC1+PaThtdbb4NYb70NmmW+FXmvRETk5+fHGmv0jzXW6N/ia/Xvv1b0779Wi6/TElKpVKy+eu9GB5yXV3FxSZN3m22Kjh07xpZbbr3C1msp/fqtEf36yXjlAp/V3gomTpyYqPXq1fQHz2qrrdagNVrThx9+GIceemg8//zzGfXCwsIW2cn2nXfeiaeffjpR/93vftcsv2HSFLNmzYonnngiUd91111boRsAAAAAAAAAAAD4/rBDbCuYNm1aota9e9O3f+7WrVuiNnXq1CbPtzzq6+sjnU5HRUVFTJw4Md5///148skn4/XXX490Op1xbl5eXvzxj3+MgQMHNnsfl1xySaK2xx57xKabbtrsazXUzTffHBUVFRm1bt26xeabr7jfugAAAAAAAAAAAIDvI4HYVjB9+vREraysrMnztW/fPgoKCqK2tnZRraKiImpqaqKwsLDJ8zbF008/Haeeeuoyz+vatWtcdNFFsdNOOzV7Dy+++GK89957GbW8vLw4+eSTm32thvrwww/jjjvuSNSPOOKIyM/PX/ENAQAAAAAAAAAAwPdIXms30BbNmzcvUevQocNyzVlaWtqgdVra5MmTl3nODjvsEE8++WSLhGEjIm644YZE7Uc/+lGsvfbaLbLessyZMydOO+20jMByRESfPn3iiCOOaJWeAAAAAAAAAAAA4PvEDrGtoLq6OlErLi5erjmLiooatE5LmzRp0jLPeemll2Lw4MFx5JFHxiGHHLLcr31xr732Wrz77rsZtVQqFSeeeGKzrdEY1dXVcdJJJ8W4ceMy6vn5+XHxxRc362tfHmVlJa3dAk2Ql5da9O8uXdq3cjcAsOJ5FgLQ1nkWAtDWeRYCNK+ZMwuipqY+UqlU5OfbWysXpFL/+7drBo0zffq0Vl2/ffsOUVIiq9FSKioqYsGCilZbPy8vPzp37txq67clnoXNL5VKRV5eKgoLC3Lyv7UFYltBtqBqfn7+cs2Zbfx3dyRdEaZMmdKg8yZPnhwXX3xx/OMf/4hrrrkm1lxzzWZZ//bbb0/Udtppp2abvzFqamri1FNPjTfeeCNx7PTTT4/NN998hfe0JB4Iue3b/1Ei1dptAECr8SwEoK3zLASgrfMsBGge3wZKUov9mVzimkHj7LPPHq26/jnnnB/77POTVu3h++yee/4Wt956U6utv9pqPeKRRx5vtfXbKs/C5pTK2ZCxQGwrqKurS9RaIhBbX1+/XHM2xVZbbRW77757rLXWWtG5c+eYP39+jB8/Pl5++eV45JFHoqIi87cvxo4dG4ceemjce++9scYaayzX2l9++WW8/PLLifpRRx21XPM2RXV1dQwbNiyee+65xLGDDjoofvGLX6zwnpamrm7F3yssv7y8VKRSqUin01Ffn27tdgBghfMsBKCt8ywEoK3zLARoXul0RER6sT+zsls8+OOaQe7xffv95vquGJ6FLSUd6XTLZ8paInArENsKCgsLE7Xl3c21pqYmUSsqKlquOZvi8MMPT9QGDBgQu+yyS5x88slx3nnnxYgRIzKOz5w5M4YOHRqPPPLIcvV89913R/o772zrr79+bLXVVk2esynmz58fJ510Urz22muJY/vss0+cf/75K7SfhpgzpzJqa5NBbVZuXbq0j/z8VNTXp2PGjPmt3Q4ArHCehQC0dZ6FALR1noUAzaumpjbq69ORl5e2oU6OyM/Pi1QqVkhgBWhe9fXea1vSyvALc67viuFZ2PwW/tJpTU1ti/63dkFBfnTuXNrs8+benrbfAy0RiM2262y2dVpTly5d4pprromDDjooceyzzz6Lv/3tb02eu6amJv71r38l6tnWaknTpk2Lww8/PGsYdt99941LL7008vJ82wEAAAAAAAAAAEBzskNsKygtTSabFyxYsFxzVlRUJGrFxcXLNWdLSKVS8fvf/z4+/vjjeO+99zKO3X333XH00Uc3KTD60ksvxaxZszJqxcXFsffeey9Ht43z2WefxS9/+cuYOHFi4tiQIUPi97//faQW36cbAAAAAAAAAIAV7pVX3m7tFmhBv/jFcfGLXxzX2m0ArcBWla2gvLw8UZs/v+nbC9fV1UVlZWVGrbi4ONq3b9/kOVtSQUFBnHHGGYn6pEmTYsyYMU2a89FHH03Udt999+jYsWOT5musl19+OQ466KCsYdhTTjklzjvvPGFYAAAAAAAAAAAAaCECsa2gS5cuidr06dObPF+2sd26dWvyfCvC5ptvHr169UrUR48e3ei5Kisr44UXXkjUBw8e3JTWGu2uu+6K4447LubOnZtRLywsjIsuuiiGDh26QvoAAAAAAAAAAACAtqqgtRtoi7IFQadNm9bk+bKNXWWVVZo834qy2WabJXZUnTRpUqPnGTlyZGKH3I4dO8bWW2+9XP0tS11dXVx00UVx1113JY6VlZXFNddcE9tss02L9gAAAAAAAAAAAAAIxLaK3r17J2pfffVVk+fLNrZ///5Nnm9FyRba/e4uqw3x/PPPJ2o77rhjFBUVNamvhqiqqopTTz01nnvuucSx3r17x//93//Fmmuu2WLrAwAAAAAAAAAAAP8jENsK1llnnUilUpFOpxfVPvvssybPl23sWmut1eT5lqS6ujomTpwY48ePj/Hjx0f//v2XawfUxV//Qu3bt2/0PC+//HKitttuuzWpp4aYN29eHHfccfH2228njm2xxRZx7bXXRufOnVtsfQAAAAAAAAAAACCTQGwr6NixY/Tt2zfGjRu3qDZx4sSYMWNGdOnSpdHzjR49OlHbcMMNl6fFhCeffDJOO+20qK+vX1TbeeedlysQO3Xq1EStW7dujZpjwoQJMWnSpIxaXl5ebLfddk3ua2nmzZsXv/jFL+K9995LHBs8eHBceOGFLbozLQAAAAAAAAAAAJCU19oNtFVbbbVVojZy5MhGz1NdXR1vvfVWRq1du3axySabNLm3bPr27ZsRho2IeOutt6KqqqrJc44aNSpR69evX6PmyLZL6/rrrx9lZWVNbWuJqqqq4rjjjssahj3ppJPi0ksvFYYFAAAAAAAAAACAViAQ20p23HHHRO2JJ55o9DwvvvhizJ8/P6O29dZbN3swc6211oqSkpKM2rx58+KZZ55p0nxvv/12TJ48OaNWWFjY6B1n33nnnURtyy23bFJPy3LGGWckArh5eXlxwQUXxMknn9wiawIAAAAAAAAAAADLJhDbSn7wgx9EeXl5Ru3555+Pzz77rMFzpNPpuPXWWxP1Aw88cHnbSygqKorddtstUb/11lsTO8cuSzqdjiuvvDJR32677aJ9+/aNmmvMmDGJ2kYbbdSoORri5ptvjqeffjpR/8Mf/hAHH3xws68HAAAAAAAAAAAANJxAbCspKiqK/fffP6NWV1cXv/nNb6KqqqpBc9x2223x7rvvZtR69uwZO+20U3O1meGAAw5I1D766KO46667GjXP1VdfndhpNSJi6NChjZqntrY2Pv3000R9gw02aNQ8y/Lxxx/H1Vdfnagfd9xx8dOf/rRZ1wIAAAAAAAAAAAAaTyC2FR1zzDFRWlqaUXv//ffj9NNPX2Yo9rHHHou//OUvifqwYcOioKBgqWMnTJgQ66yzTuKfhx56aKnjtt1229h+++0T9UsuuSSeeuqppY6N+HZn2KuuuipuuOGGxLG99947Bg4cuMw5Fjdu3Liorq7OqJWWlkafPn0aNc+yXHjhhVFTU5NR22STTWLYsGHNug4AAAAAAAAAAAC0vlRrN9AkS09O0qK6du0ap5xySvz5z3/OqD/zzDPx05/+NH7/+9/H5ptvnnFs6tSpceONN8bdd9+dmG/zzTePwYMHt2jP5557buy3335RUVGxqFZbWxvDhg2Lgw46KE444YTo0aNHxph0Oh1vvfVWXHHFFYkdbSMi+vfvH+eff36je/nyyy8Ttd69e0cq1XzfjK+99lq8+eabifq7774b66+/frOt8/HHHzfbXAAAAAAAAACNlZeXF/X1dVFfX9/arQAA0ArS6fSinwXz8nJzr1WB2FZ25JFHxsiRI+PFF1/MqH/88cdx6KGHRr9+/WLAgAFRWloaEydOjPfffz+xW2nEt+HaK664olnDoNn069cvrr322jj++OMTfdx///3xwAMPxHrrrRdrrLFGFBcXx4wZM2LMmDExbdq0rPN169YtbrrppigrK2t0L5MmTcraX3P6+9//3qzzAQAAAAAAAKyMUqmFoYd0pNPpFv//ngEAWLmk0+mISEeEQCxNlEql4sorr4zjjz8+606k48aNi3Hjxi11jq5du8btt98eq666agt1mWn77bePq6++Os4888yYN29exrF0Oh0fffRRfPTRR8ucZ4MNNojrrrsuevbs2aQ+pkyZkqh9d3fa5VFZWRmvvvpqs80HAAAAAAAAsLLKzy+ImpqqiIiorq6M4uJ2rdwRAAAr0sKfBSMi8vLyW7GTpsvNGO/3TPv27ePWW2+Nww8/vNG/Zbf55pvH/fffH+uss04LdZfdrrvuGg8//HBssskmjR5bXFwcRx99dNx7771NDsNGRCKMG/HtjrPN5cMPP4yqqqplnwgAAAAAAACQ40pKShf9ubKyohU7AQCgNVRVLVj058V/NswldohdSRQVFcU555wTBx54YNx6660xYsSIqKyszHpuKpWKQYMGxWGHHRY/+tGPWm174j59+sR9990Xr7zyStx5553x5ptvLrHniIh+/frFLrvsEkceeWSz7Ga7YMGCRK05A7HffPNNs80FAAAAAAAAsDIrLi6JVCov0un6qKysiLKyLo3e0AkAgNyUTqejsnJhHi8VRUUlrdpPU6XS6XS6tZsgqbq6OkaPHh1ffPFFzJw5M+rr66OsrCx69OgRgwYNis6dO7d2iwnV1dXx3nvvxcSJE2PWrFlRXV0dnTt3ji5dusS6664bq6++emu3yBLMnFkRtbV1rd0GjdSlS/vIz8+Lurr6mDFjfmu3AwArnGchAG2dZyEAbZ1nIUDzmzVrWlRWfvueWlbWNUpLO7RyRyxNfn5epFIR6XREXV19a7cDACucZ2HzmTdvdsybNysiIoqK2kWXLt1bdL2Cgvzo3Ln5d6G1Q+xKqqioKDbffPPYfPPNW7uVBisqKoott9yytdsAAAAAAAAAoAlKSkoXBWLnzJkeeXl5OftxuQAANExFxbyYN2/2or936NCpFbtZPnmt3QAAAAAAAAAA0PqKi9tFu3b/2xV21qxvoqJiXvjgWQCA75+6utqYPXtGzJkzPSK+/XmvtLQsioqKW7ex5WCHWAAAAAAAAAAgUqlUlJV1iYiIBQvmRcS3O8XOnTszSkpKo6SkNIqKiiOVsvcWAECuSafTUVtbE1VVC6KysiJqa6szjpeWdoyOHctbp7lmIhALAAAAAAAAAERE9lBsOl0fCxbMW/T3iFTk5QnFtrZUKrXoz3bxBaAt8ixsuHS6filfo29//ist7bCE47lDIBYAAAAAAAAAWGRhKLa4uF1UVlZEVdWCSKfrFzsjHfX1da3WH9/Ky0tFRCq+vR5CQAC0PZ6Fy6egoChKStpFSUn7KCgobO12moVALAAAAAAAAACQIZVKRUlJaZSUlEY6XR9VVZVRWVkRdXW1kU7XR319/bInoUUVFhZEKhWRTkfU1NS2djsAsMJ5FjZcXl5epFJ5kZeXH8XFJVFc3C7y879/8dHv3ysCAAAAAAAAAJpNKpW3KBzLyqNLl/aRn58XdXX1MWPG/NZuBwBWOM9CviuvtRsAAAAAAAAAAAAAgOUhEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnFbR2AwAAuSaVisjPz4tUKhXpdDrq6tKRTqdbuy0AAAAAAAAAgDZLIBYAoIEKCvKjXUlBFBcXRCrvfxvtp9P1UVVZE5VVdVFTU9eKHQIAAAAAAAAAtE0CsQAAy5BKpaKsY1EUFRdF1dfjYtpbj8eCcWOivnpB5BWVREnv9aJs8x9Fea8BUVNVHXPmVUd9vR1jAQAAAAAAAABWFIHYldCkSZNi+PDhMWrUqBg7dmzMnDkzqquro0OHDtG7d+8YOHBg7LbbbrHNNttEKpVq7XYjImLkyJHx0ksvxbvvvhuTJ0+OWbNmRV1dXXTq1Cn69OkTAwcOjJ122im23nrrRvf8xhtvxM9//vMW6vx/TjrppDj55JMbNSYXrxUAjZNKpaK8rCiicm5MvPfyqJr4ccbx+gVzY97sb2LemJeiaNU1ovv+p0d5WbeYNadKKBYAAAAAAAAAYAURiF2JTJ8+PS666KJ48skno64u+XHLs2bNilmzZsUHH3wQd999dwwYMCB++9vfxrbbbtsK3X7rqaeeimuvvTbGjh2b9fi0adNi2rRp8c4778Qdd9wRffv2jRNPPDEGDx6c0wHRXLxWADRNp45FkV4wOybdcXbUzZu11HOrv/4iJt1+dvT8+YXRqdOqMXN21YppEgAAAAAAAACgjctr7Qb41qhRo2LvvfeOxx57LGvAMptPP/00jjrqqLjkkkuivr6+hTvMtGDBgjjttNNi2LBhSwzDZvPll1/GWWedFUcccUR88803Ldhhy8m1awVA0xUXF0RBUUFMufePywzDLlRfOS8m3/vHyMtLRUlJYcs2CAAAAAAAAABARAjErhTefvvtOOaYY2LmzJlNGn/bbbfF+eef37xNLUVFRUUce+yx8fjjjzd5jjfeeCOGDBkSX3/9dTN21vJy7VoBsHxKivKi4tNRUTN9YqPG1c2dHvM/fDlKiv2oBQAAAAAAAACwIhS0dgNt3dSpU2PYsGFRUVGRUc/Ly4s999wz9t577+jXr18UFRXFhAkTYsSIEfHoo48mzr///vtj3XXXjSFDhrR4z+eee268+eabiXp5eXkceOCBsd1220WvXr2ioKAgvvnmmxg1alQ88MADMW7cuIzzv/rqqzjppJPinnvuicLC1t1Br0OHDrHXXnst9ZxcvFYANF1+fl4UlRTH9LefbNL42aOeio4b7xKFhbVRU9OwHcUBAAAAAAAAAGiaVDqdTrd2E23ZCSecEM8991xGrVu3bnHllVfGlltumXXM+PHj41e/+lV88MEHGfV27drFk08+GT169GixfkeMGBEnn3xyor7XXnvFhRdeGB07dsw6rq6uLq677rr461//mjh29tlnx1FHHdXsvWbzwQcfxKGHHhpVVVWLagUFBfF///d/sf322y91bK5dq8aYObMiamuFtXJNly7tIz8/L+rq6mPGjPmt3Q5875SUFEb7krwYd+mQiGjaj0t9ht0alVESCxbUNG9zQER4FgKAZyEAbZ1nIQBtnWchAG2dZ2HuKijIj86dS5t9Xp/j24reeOONRMCytLQ0brrppiUGLCMievfuHXfccUesu+66GfUFCxbE1Vdf3SK9LnTNNdckanvuuWdceeWVSwzDRkTk5+fHsGHD4oQTTkgcu/nmm6OmpuWDQtOmTYuTTjopIwwbEXHmmWcuMwybi9cKgOWTSkXUV1VEU8OwERH1lfMjlUo1X1MAAAAAAAAAAGQlENuKbrrppkRt2LBhscEGGyxzbIcOHeLGG2+M0tLMlPTw4cNj8uTJzdbj4l599dX49NNPM2rl5eVxwQUXRF5ew26loUOHRq9evTJq06dPj5EjRzZbn9nU19fHqaeeGlOmTMmo77rrrnHEEUcsc3yuXSsAll86HZEqKFyuOZZ3PAAAAAAAAAAADSMQ20omTJgQr732Wkata9euMWTIkAbP0aNHj0SYs7a2Nv75z382S4/f9e9//ztRO/DAA6Nz584NnqOwsDD22GOPRP39999frt6W5cYbb4y33noro9ajR4+4+OKLlzk2F68VAMuvvj4decWlkd+xS5PG5xWXRn6HzlFXV9/MnQEAAAAAAAAA8F0Csa3k6aefjvr6zIDMj3/84ygqKmrUPD/72c8Stccff3y5eluS7wZKIyJ++MMfNnqePn36JGpff/11k3pqiNGjR8f111+fqF944YXRqVOnZY7PxWsFwPKrrq6NdF1tlA3arUnjO2y0U0QqL6qra5u3MQAAAAAAAAAAEgpau4G26tVXX03Udtlll0bP07Nnz1hnnXXi448/XlT7/PPPY/z48dG7d+/l6vG7Hn744fjyyy9j7NixMXbs2Bg3blysu+66jZ6nqqoqUcvLa5lsdk1NTfzud7+L2trMMNJ+++0X22+/fYPmyMVrBUDzqKyuj46b7RUzX/1nRH1do8aWbbF3VFXXRjrdQs0BAAAAAAAAALCIHWJbQX19fYwaNSqjVlBQEBtvvHGT5tt0000TtbfffrtJcy1NQUFBrLnmmrHnnnvG0KFD47LLLouCgsZnqj/55JNEbfXVV2+OFhNuu+22xHrdunWL3/zmNw0an6vXCoDmsWBBTeS36xhddjm8UePKtzsgCjuvGgsW2B0WAAAAAAAAAGBFEIhtBV9++WVUVlZm1Pr37x8lJSVNmm/99ddP1MaMGdOkuVra7NmzY8SIEYn6Ntts0+xrjR8/Pv76178m6qeddlp06tSpQXO05WsFQER9fTrmzquK8q1+HJ13OjQiUssc02nrwdFlpyExb15V1NXVt3yTAAAAAAAAAABE47f3ZLmNHTs2UVtjjTWaPF/fvn0TtS+++KLJ87WU6urqOOuss2LevHkZ9YEDB8ZGG23U7OtddtlliTDrhhtuGPvvv3+D52ir1wqA/6mqqo05cxZE+bb7Rrs1BsbsN4fH/P++HlG32O6vefnRfsAWUbbFj6Kkz/oxb15lVFbWtF7TAAAAAAAAAABtjEBsK5g4cWKi1qtXrybPt9pqqzVojdb04Ycfxvnnnx+jR4/OqBcWFsa5557b7Ou988478fTTTyfqv/vd7yKVWvbufgu1xWsFQFJVVW3U1dVHuy69o/vgU6N+z/lR+dVHUV81P/KKS6N49XUiv7RTVFfVxOzZC6Kmpq61WwYAAAAAAAAAaFMEYlvBtGnTErXu3bs3eb5u3bolalOnTm3yfMujvr4+0ul0VFRUxMSJE+P999+PJ598Ml5//fVIp9MZ5+bl5cUf//jHGDhwYLP3cckllyRqe+yxR2y66aaNmuf7fK0AaJza2vqYO7c65s+viZKSwsjvu0kURDrSkYqquvqonDE/6uvTy54IAAAAAAAAAIBmJxDbCqZPn56olZWVNXm+9u3bR0FBQdTW/u+jmysqKqKmpiYKCwubPG9TPP3003Hqqacu87yuXbvGRRddFDvttFOz9/Diiy/Ge++9l1HLy8uLk08+udFzfZ+vFQBNU1+fjoqK6tZuAwAAAAAAAACAxeS1dgNt0bx58xK1Dh06LNecpaWlDVqnpU2ePHmZ5+ywww7x5JNPtkgYNiLihhtuSNR+9KMfxdprr93oub7P1woAAAAAAAAAAAC+L+wQ2wqqq5O7yhUXFy/XnEVFRQ1ap6VNmjRpmee89NJLMXjw4DjyyCPjkEMOWe7XvrjXXnst3n333YxaKpWKE088sUnzfZ+v1eLKykpadX2aJi8vtejfXbq0b+VuAGDF8ywEoK3zLASgrfMsBKCt8ywEoK3zLOS7BGJbQbbwY35+/nLNmW18bW3tcs3ZFFOmTGnQeZMnT46LL744/vGPf8Q111wTa665ZrOsf/vttydqO+20U5Pn/z5fq8Xl59ssOpelUqnIz0+1dhsA0Go8CwFo6zwLAWjrPAsBaOs8CwFo6zwLWUggthXU1dUlai0Rsqyvr1+uOZtiq622it133z3WWmut6Ny5c8yfPz/Gjx8fL7/8cjzyyCNRUVGRcf7YsWPj0EMPjXvvvTfWWGON5Vr7yy+/jJdffjlRP+qoo5o85/f5Wi2urq5116dp8vJSkUqlIp1OR319urXbAYAVzrMQgLbOsxCAts6zEIC2zrMQgLbOszC3tcQmjgKxraCwsDBRW94dQmtqahK1oqKi5ZqzKQ4//PBEbcCAAbHLLrvEySefHOedd16MGDEi4/jMmTNj6NCh8cgjjyxXz3fffXek05lvbOuvv35stdVWTZ7z+3ytFjdnTmXU1ibDv6zcunRpH/n5qaivT8eMGfNbux0AWOE8CwFo6zwLAWjrPAsBaOs8CwFo6zwLc1dBQX507lza7PP6nPRW0BIhy2w7mWZbpzV16dIlrrnmmjjooIMSxz777LP429/+1uS5a2pq4l//+leinm2txmir1woAAAAAAAAAAAByiUBsKygtTSabFyxYsFxzVlRUJGrFxcXLNWdLSKVS8fvf/z4GDRqUOHb33XdHfX19k+Z96aWXYtasWRm14uLi2HvvvZs030Jt+VoBAAAAAAAAAABArhCIbQXl5eWJ2vz5Td+yua6uLiorKzNqxcXF0b59+ybP2ZIKCgrijDPOSNQnTZoUY8aMadKcjz76aKK2++67R8eOHZs030Jt/VoBAAAAAAAAAABALhCIbQVdunRJ1KZPn97k+bKN7datW5PnWxE233zz6NWrV6I+evToRs9VWVkZL7zwQqI+ePDgprSWwbUCAAAAAAAAAACAlZ9AbCvIFgSdNm1ak+fLNnaVVVZp8nwrymabbZaoTZo0qdHzjBw5MrHraseOHWPrrbducm8LuVYAAAAAAAAAAACw8hOIbQW9e/dO1L766qsmz5dtbP/+/Zs834qSLQg6d+7cRs/z/PPPJ2o77rhjFBUVNamvxblWAAAAAAAAAAAAsPIraO0G2qJ11lknUqlUpNPpRbXPPvusyfNlG7vWWms1eb4lqa6ujokTJ8b48eNj/Pjx0b9//9hmm22aPN/ir3+h9u3bN3qel19+OVHbbbfdmtTTd+XqtQIAAAAAAAAAAIC2RCC2FXTs2DH69u0b48aNW1SbOHFizJgxI7p06dLo+UaPHp2obbjhhsvTYsKTTz4Zp512WtTX1y+q7bzzzssViJ06dWqi1q1bt0bNMWHChJg0aVJGLS8vL7bbbrsm97W4XLxWAAAAAAAAAAAA0NbktXYDbdVWW22VqI0cObLR81RXV8dbb72VUWvXrl1ssskmTe4tm759+2aEYSMi3nrrraiqqmrynKNGjUrU+vXr16g53n777URt/fXXj7Kysqa2lZBr1woAAAAAAAAAAADaGoHYVrLjjjsmak888USj53nxxRdj/vz5GbWtt946ioqKmtxbNmuttVaUlJRk1ObNmxfPPPNMk+Z7++23Y/LkyRm1wsLCRu84+8477yRqW265ZZN6WpJcu1YAAAAAAAAAAADQ1gjEtpIf/OAHUV5enlF7/vnn47PPPmvwHOl0Om699dZE/cADD1ze9hKKiopit912S9RvvfXWxM6xy5JOp+PKK69M1Lfbbrto3759o+YaM2ZMorbRRhs1ao5lybVrBQAAAAAAAAAAAG2NQGwrKSoqiv333z+jVldXF7/5zW+iqqqqQXPcdttt8e6772bUevbsGTvttFNztZnhgAMOSNQ++uijuOuuuxo1z9VXXx1vv/12oj506NBGzVNbWxuffvppor7BBhs0ap5lycVrBQAAAAAAAAAAAG2JQGwrOuaYY6K0tDSj9v7778fpp5++zKDlY489Fn/5y18S9WHDhkVBQcFSx06YMCHWWWedxD8PPfTQUsdtu+22sf322yfql1xySTz11FNLHRvx7S6pV111Vdxwww2JY3vvvXcMHDhwmXMsbty4cVFdXZ1RKy0tjT59+jRqnoZorWsFAAAAAAAAAAAALJtAbCvq2rVrnHLKKYn6M888Ez/96U+z7qI6derU+MMf/hCnn3561NfXZxzbfPPNY/DgwS3Wb0TEueeemwiG1tbWxrBhw+L3v/99TJ48OTEmnU7Hm2++GYccckjWMGz//v3j/PPPb3QvX375ZaLWu3fvSKVSjZ5rWXLxWgEAAAAAAAAAAEBbYXvKVnbkkUfGyJEj48UXX8yof/zxx3HooYdGv379YsCAAVFaWhoTJ06M999/P2pqahLzdO3aNa644ooWCYMurl+/fnHttdfG8ccfn+jj/vvvjwceeCDWW2+9WGONNaK4uDhmzJgRY8aMiWnTpmWdr1u3bnHTTTdFWVlZo3uZNGlS1v5aSq5dKwAAAAAAAAAAAGgrBGJbWSqViiuvvDKOP/74ePPNNxPHx40bF+PGjVvqHF27do3bb789Vl111RbqMtP2228fV199dZx55pkxb968jGPpdDo++uij+Oijj5Y5zwYbbBDXXXdd9OzZs0l9TJkyJVHr0aNHk+ZqiFy8VgAAAAAAAAAAANAW5LV2A0S0b98+br311jj88MMbvWvo5ptvHvfff3+ss846LdRddrvuums8/PDDsckmmzR6bHFxcRx99NFx7733NjkMGxGJMG7EtzvOtqRcvFYAAAAAAAAAAADwfWeH2JVEUVFRnHPOOXHggQfGrbfeGiNGjIjKysqs56ZSqRg0aFAcdthh8aMf/Sjy8lon19ynT5+477774pVXXok777wz3nzzzSX2HBHRr1+/2GWXXeLII49slh1SFyxYkKi1dCA2IjevFQAAAAAAAAAAAHyfpdLpdLq1myCpuro6Ro8eHV988UXMnDkz6uvro6ysLHr06BGDBg2Kzp07t3aLCdXV1fHee+/FxIkTY9asWVFdXR2dO3eOLl26xLrrrhurr756a7fYInLxWn3XzJkVUVtb19pt0EhdurSP/Py8qKurjxkz5rd2OwCwwnkWAtDWeRYC0NZ5FgLQ1nkWAtDWeRbmroKC/OjcubTZ5xWIBQRic5SHOgBtnWchAG2dZyEAbZ1nIQBtnWchAG2dZ2HuaqlArM9vBwAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMEYgEAAAAAAAAAAADIaQKxAAAAAAAAAAAAAOQ0gVgAAAAAAAAAAAAAcppALAAAAAAAAAAAAAA5TSAWAAAAAAAAAAAAgJwmEAsAAAAAAAAAAABAThOIBQAAAAAAAAAAACCnCcQCAAAAAAAAAAAAkNMKWrsBAJZPKpWKsrKSqK9PR21tfVRV1UQ63dpdAQAAAAAAAAAArDgCsQA5pqgoP9oVF0R+fl7UzpsV1V9/EfXVlZFX2jHa91on2pcWRmVVXSxYUB319ZKxAAAAAAAAAADA959ALEAOKS0tivbti6Pii9Ex463Ho2LsOxHp+kXH80o6RMeBO0XZFntHSXmXmDO3Ompq6lqxYwAAAAAAAAAAgJYnEAuQI0pLi6K0XWF889j1Mff957KeU185L2a/+VjMeWdErDJ4WHRae4uYNbsyamvrs54PAAAAAAAAAADwfZDX2g0AsGyFhfnRvn1xTHvixiWGYReXrq2OqQ9dHgu+GB1lHYtXQIcAAAAAAAAAAACtRyAWIAe0KymIinFjYu77/274oHR9fDP82shLpaK42IbgAAAAAAAAAADA95dALMBKLi8vFcUlRTHn7ccbPbZu/uyY//Hr0a44vwU6AwAAAAAAAAAAWDkIxAKs5EpKCqN2/uyo+OTtJo2fM+qpKCwuivx8b/kAAAAAAAAAAMD3k3QUwEouLy8vqqd+GZGub9L4qq/H/f95Us3YFQAAAAAAAAAAwMpDIBZgJZdKRaSrq5o8Pl1T/f/nEYgFAAAAAAAAAAC+nwRiAVZy6XQ68ko7Nnl8frv2i+YBAAAAAAAAAAD4PhKIBVjJ1dbWR0nPtSKvtKxJ40sHbB7p+vqora1v5s4AAAAAAAAAAABWDgKxACu5ysqaSEdEx413bdL4si32iaqqWjvEAgAAAAAAAAAA31sCsQA5oLKqPjpt8aNIFRY3alxJ3w2juHufWFBZ00KdAQAAAAAAAAAAtD6BWIAcsGBBdeS1K4vu+58ekVfQoDEFnVeLVQ/4dVRVVkdtbX0LdwgAAAAAAAAAANB6BGIBckB9fTpmz62KdmsMitUOOSfyO3ZZ6vklfTeMXkf9OerzimPuvKoV1CUAAAAAAAAAAEDraNg2gwC0utra+pg9pzLKeq0bfU76v6j49K2Y8/ZTUfX1F5GuqYq8dh2idK3NomyLH0XxKn2iqrI65s6tinS6tTsHAAAAAAAAAABoWQKxADmktrY+ZsyqjOLiguiw1mbRfp2tMo6n6+uisqouZs6cH7W19a3UJQAAAAAAAAAAwIolEAuQg6qqaqN9++KIiKirq4958yojnY6ora2zIywAAAAAAAAAANDmCMQCfA9UV9e1dgsAAAAAAAAAAACtJq+1GwAAAAAAAAAAAACA5SEQCwAAAAAAAAAAAEBOE4gFAAAAAAAAAAAAIKcJxAIAAAAAAAAAAACQ0wRiAQAAAAAAAAAAAMhpArEAAAAAAAAAAAAA5DSBWAAAAAAAAAAAAABymkAsAAAAAAAAAAAAADlNIBYAAAAAAAAAAACAnCYQCwAAAAAAAAAAAEBOE4gFAAAAAAAAAAAAIKcJxAIAAAAAAAAAAACQ0wRiAQAAAAAAAAAAAMhpArEAAAAAAAAAAAAA5DSBWAAAAAAAAAAAAABymkAsAAAAAAAAAAAAADlNIBYAAAAAAAAAAACAnCYQCwAAAAAAAAAAAEBOE4gFAAAAAAAAAAAAIKcJxAIAAAAAAAAAAACQ0wRiAQAAAAAAAAAAAMhpArEAAAAAAAAAAAAA5DSBWAAAAAAAAAAAAAByWkFrN0DSpEmTYvjw4TFq1KgYO3ZszJw5M6qrq6NDhw7Ru3fvGDhwYOy2226xzTbbRCqVau12IyJi5MiR8dJLL8W7774bkydPjlmzZkVdXV106tQp+vTpEwMHDoyddtoptt566xbpefLkyfHUU0/Fm2++GZ9//nlMnTp10desvLw8Nthgg9hiiy3iRz/6UXTq1KnZ1v3Pf/4TL774Yrz11lvx1VdfxcyZM6OysjI6deoUnTt3jvXXXz+22GKL2G233aJz587Nti4AAAAAAAAAAADwP6l0Op1u7Sb41vTp0+Oiiy6KJ598Murq6pZ5/oABA+K3v/1tbLvttiugu+yeeuqpuPbaa2Ps2LENOr9v375x4oknxuDBg5slGDtu3Li44oor4plnnon6+vplnl9aWhoHH3xwDBs2LEpKSpq87ujRo+Oqq66KV199tUHnt2vXLg488MA4+eSTmzWQ21xmzqyI2tpl33OsXLp0aR/5+XlRV1cfM2bMb+12AGCF8ywEoK3zLASgrfMsBKCt8ywEoK3zLMxdBQX50blzabPPKxC7khg1alQMHTo0Zs6c2eixRx99dJxxxhmRl5fXAp1lt2DBgvjd734Xjz/+eJPGb7XVVnH55ZfHKqus0uQe7rvvvrj44oujsrKy0WP79+8f1113Xay55pqNHnvHHXfEX/7yl6ipqWn02J49e8aVV14ZgwYNavTYliQQm5s81AFo6zwLAWjrPAsBaOs8CwFo6zwLAWjrPAtzV0sFYldcgpIlevvtt+OYY45pUhg2IuK2226L888/v3mbWoqKioo49thjmxyGjYh44403YsiQIfH11183afyVV14Z5513XpPCsBERn3/+eRx55JExfvz4Ro277rrr4uKLL25SGDYiYtKkSXHEEUfEO++806TxAAAAAAAAAAAAQJIdYlvZ1KlTY7/99otp06Zl1PPy8mLPPfeMvffeO/r16xdFRUUxYcKEGDFiRDz66KNRUVGRmOu8886LIUOGtHjPp59+ejz22GOJenl5eRx44IGx3XbbRa9evaKgoCC++eabGDVqVDzwwAMxbty4xJiBAwfGPffcE4WFhQ1e/4477oiLL744US8qKoof//jHsdtuu0X//v2jsLAwpkyZEiNHjoz77rsvvvnmm8SYddddN/75z39GQUHBMtd94okn4le/+lWinpeXF7vvvnvsueeesc4660T79u1jxowZ8d5778UDDzwQ//3vfxNjysvL46GHHopevXo18FW3LDvE5ia/5QJAW+dZCEBb51kIQFvnWQhAW+dZCEBb51mYu1pqh1iB2FZ2wgknxHPPPZdR69atW1x55ZWx5ZZbZh0zfvz4+NWvfhUffPBBRr1du3bx5JNPRo8ePVqs3xEjRsTJJ5+cqO+1115x4YUXRseOHbOOq6uri+uuuy7++te/Jo6dffbZcdRRRzVo/Q8//DAOOuigxA6t66+/flx55ZXRr1+/rOMWLFgQf/jDH+Khhx5KHDvrrLPi6KOPXuq6FRUVseeee8bUqVMz6quuumpcddVVsemmm2Ydl06n44477ojLLrss6uoyA6d77rlnXHPNNUtdd0URiM1NHuoAtHWehQC0dZ6FALR1noUAtHWehQC0dZ6FuaulArF5zT4jDfbGG28kwrClpaVx0003LTEMGxHRu3fvuOOOO2LdddfNqC9YsCCuvvrqFul1oWwBzj333DOuvPLKJYZhIyLy8/Nj2LBhccIJJySO3XzzzYmA65Kcf/75iXO33HLLuOeee5YYho34Nix88cUXx/777584duedd0Z9ff1S133wwQcTYdiysrK44447lhiGjYhIpVJx1FFHxTnnnJM49vTTT8cnn3yy1HUBAAAAAAAAAACAZROIbUU33XRTojZs2LDYYIMNljm2Q4cOceONN0ZpaWZKevjw4TF58uRm63Fxr776anz66acZtfLy8rjgggsiL69ht9LQoUOjV69eGbXp06fHyJEjlzn2mWeeidGjR2fUevXqFddff320a9euQeufffbZUVZWllGbMmVKvPrqq8tc+7uGDh0a/fv3b9C6Q4YMic033zxRHzFiRIPGAwAAAAAAAAAAAEsmENtKJkyYEK+99lpGrWvXrjFkyJAGz9GjR4844ogjMmq1tbXxz3/+s1l6/K5///vfidqBBx4YnTt3bvAchYWFscceeyTq77///jLH/u1vf0vU/vCHPyQCrkvTqVOnGDx4cKL+1ltvLXXcu+++m/H3vLy82HfffRu8bkTEAf+PvfsOk7I+98d/b192WWApIiAK9ooNJWIXS6IxeCzB6DHGFs3RSBJjSTS2o0HNMdYk9pgYFWKNxoYaa2JEsCDqsaM0QWDpZdv8/uCnX8dngJnZXZY5+3pdl5fs/TyfMoNwO7vv+cxhhyVqr7/+ek5zAAAAAAAAAAAAAEkCse3kiSeeiObm5rTawQcfHOXl5TnN893vfjdRe+SRR1q0t5XJFBr91re+lfM866+/fqI2c+bMVY6ZMmVKjBs3Lq02ZMiQ2G233XJef9999/3y12VlZdGrV6+YP3/+Su+vq6uLhoaGtFptbW1069Ytp3U33XTTRG3WrFk5zQEAAAAAAAAAAAAklbb3Bjqqf/7zn4naPvvsk/M8ffv2jc022yzefffdL2sfffRRTJkyJfr379+iPX7dAw88EJ988kl88MEH8cEHH8TkyZNj8803z3me5cuXJ2rFxavOZmc6nfb73/9+zmtHROy0007x1FNPRW1tbXTu3Hm19y9dujRRa2xszHnd0tLkH7evB20BAAAAAAAAAACA3AnEtoPm5uaYMGFCWq20tDS23XbbvObbYYcd0gKxERHjx49v9UBsaWlpbLTRRrHRRhvFAQcckPc87733XqK23nrrrXLMCy+8kPZ1VVVV7L777nmtX1JSktNz07Vr10Rt/vz5MXPmzOjdu3fW83z00UeJ2jrrrJP1eAAAAAAAAAAAACCzVR/LSZv45JNPYtmyZWm1DTfcMCorK/Oab8stt0zUJk2alNdcbW3+/PkxduzYRH2XXXZZ6ZhUKhVvvvlmWm277baLioqKVt9fJtXV1bH++usn6n/7299ymuehhx5K1Lbffvu89wUAAAAAAAAAAACsIBDbDj744INEbeDAgXnPt8EGGyRqH3/8cd7ztZX6+vo4++yzY9GiRWn1QYMGxTbbbLPScVOmTIn58+en1bbaaqtVrtXQ0BDz5s2L+vr6/Df8FcOGDUvUbrrppqyf58cffzyeeeaZtFpJSUkccsghrbE9AAAAAAAAAAAA6NBK23sDHdG0adMStX79+uU937rrrpvVGu3prbfeigsvvDAmTpyYVi8rK4tf/epXqxybKXT69RBwc3NzvPDCC/H444/HhAkTYsqUKdHc3BwREd26dYtNN900hg0bFgceeGCss846Oe//+9//fowePTqWLl36ZW3hwoVx/PHHx7XXXrvKQO/f/va3jI/x6KOPjgEDBuS8FwAAAAAAAAAAACCdQGw7mD17dqKWT0jzCz179kzUZs2alfd8LdHc3BypVCqWLFkS06ZNizfeeCMee+yx+Pe//x2pVCrt3uLi4vjv//7vGDRo0Crn/PTTTxO1rz5fzz77bFx22WUrPa113rx5MW7cuBg3blxcffXVccIJJ8SJJ54YnTp1yvpx9e3bN84999w477zz0urTp0+PESNGxAEHHBD7779/bLrpplFdXR3z5s2LN998Mx588MEYP358Yr7ddtstzjrrrKzXBwAAAAAAAAAAAFZOILYdzJkzJ1Hr0qVL3vNVV1dHaWlpNDY2fllbsmRJNDQ0RFlZWd7z5uOJJ56In/zkJ6u9r0ePHvHrX/869tprr9XeO3PmzIzjm5qa4tJLL40777wz6/0tXbo0rr/++nj66afjxhtvjN69e2c99ogjjoj6+vr49a9/nfZcNzU1xaOPPhqPPvroaucoKSmJY489Nn72s5+t8d8bAAAAAAAAAAAA+L+quL030BEtWrQoUevcuXOL5qyqqspqnbY2Y8aM1d6zxx57xGOPPZZVGDYioq6uLlErKyuLM888M6cw7Fe98847MWLEiJgyZUpO444++ui477774hvf+EbOax544IHx0EMPxdlnny0MCwAAAAAAAAAAAK3ICbHtoL6+PlGrqKho0Zzl5eVZrdPWpk+fvtp7nn/++Rg+fHj84Ac/iO9973urfewLFixI1G655ZZ45JFH0mpDhw6N4cOHx+DBg6NXr16xdOnS+PTTT+PZZ5+NO++8M+bNm5d2/4wZM+L000+P0aNH5/T8b7755jFy5MiIiPj3v/+d9bgXX3wx1llnnTj55JOje/fuWY9bE7p0qWzvLZCH4uKiL//dvXt1O+8GANY8vRCAjk4vBKCj0wsB6Oj0QgA6Or2QrxOIbQeZgqolJSUtmjPT+MbGxhbNmY/PPvssq/tmzJgRo0aNinvuuSeuvfba2GijjVZ677JlyxK1hx566Mtf19TUxOWXXx7Dhg1Lu6eioiK6desWgwYNimOPPTbOPffcePLJJ9Puefvtt+M3v/lNnHfeeVnte8KECXHFFVfE66+/ntX9X7VgwYK4/fbb44EHHojzzz8/vv3tb+c8R1spKXFYdCErKiqKkpKi9t4GALQbvRCAjk4vBKCj0wsB6Oj0QgA6Or2QLwjEtoOmpqZErS0Csc3NzS2aMx9DhgyJ/fbbLzbeeOOora2NxYsXx5QpU+KFF16IBx98MJYsWZJ2/wcffBBHH3103H333TFw4MCMczY0NKx0vZqamrjrrrti0003XeW+unbtGtdee22cccYZ8eijj6ZdGz16dJxwwgnRp0+fVc5x6623xpVXXpn4/evXr18ceeSRsdtuu0W/fv2iU6dOMXfu3Jg0aVI8/fTT8dBDD6WFk+fPnx9nnHFGTJs2LU4++eRVrrmmNDWt+f9WaLni4qIoKiqKVCoVzc2p9t4OAKxxeiEAHZ1eCEBHpxcC0NHphQB0dHphYWuLQxyLUqmU/xLWsBNOOCFefPHFtNrNN98ce+yxR95z7rbbbvH555+n1Z5//vno3bt33nO2trlz58YFF1wQY8eOTVzbaKON4sEHH4zy8vLEte9///vx8ssvZ5zz+uuvj/322y/rPSxevDiGDx8eU6ZMSaxx7rnnrnTc7bffHqNGjUrUTz755DjttNMy7vsLn3zySfzsZz+LSZMmJa5deeWVa8VJsXV1S6KxMRnUZu3WvXt1lJQUR1NTc8ydu7i9twMAa5xeCEBHpxcC0NHphQB0dHohAB2dXli4SktLora2qtXn9Tnp7aCsrCxR++oJovnIdOpspnXaU/fu3ePaa6+NESNGJK59+OGH8ec//znjuJU9jh133DGnMGxERHV1dfzwhz9M1J9++umVjvnf//3f+M1vfpOoX3DBBfGzn/1slWHYiIgNNtgg7rzzzthll10S1y6++OKYO3duFjsHAAAAAAAAAAAAVkYgth1UVSWTzUuXLm3RnEuWLEnUKioqWjRnWygqKorzzz8/tttuu8S1O++8M5qbmxP1lQVijzzyyLz2MHz48MRzM23atMSpsV+4/PLLE4Hlww47LI466qis16ysrIxrrrkm+vbtm1afP39+3HrrrVnPAwAAAAAAAAAAACQJxLaDbt26JWqLF+d/ZHNTU1MsW7YsrVZRURHV1dV5z9mWSktL48wzz0zUp0+fHpMmTUrUu3TpknGeTCeuZqOioiK23nrrRP3tt99O1D799NN46aWX0mqdOnWKn/3sZzmv27Vr1xg5cmSi/uCDD2Y84RcAAAAAAAAAAADIjkBsO+jevXuiNmfOnLznyzS2Z8+eec+3JgwePDj69euXqE+cODFRq62tTdSqqqqiV69eea+/4YYbJmpz585N1F588cVIpVJptT322CPv5/eggw6Kzp07p9Vmz54d77//fl7zAQAAAAAAAAAAAAKx7SJTEHT27Nl5z5dpbEvComvKjjvumKhNnz49UVt33XUTtUyn7Oaia9euiVpdXV2i9tZbbyVqQ4YMyXvdsrKy2GmnnRL1d955J+85AQAAAAAAAAAAoKMTiG0H/fv3T9Q+/fTTvOfLNDbTCahrm0yh3YULFyZq66+/fqLW0NDQ6vspLk7+cch0+u4666zTonUyBXwzhXEBAAAAAAAAAACA7JS29wY6os022yyKiooilUp9Wfvwww/zni/T2I033jjv+Vamvr4+pk2bFlOmTIkpU6bEhhtuGLvsskve83318X+huro6Udtkk00Stbq6uqivr4/y8vK81p4/f36iVlNTk6jV19cnakVFRXmt+YWqqqpErbGxsUVzAgAAAAAAAAAAQEcmENsOampqYoMNNojJkyd/WZs2bVrMnTs3unfvnvN8EydOTNS23nrrlmwx4bHHHouf/exn0dzc/GVt7733blEgdtasWYlaz549E7X1118/amtr005RbWxsjPfeey/vx5npVN1MJ9HW1tYmajNmzMhrzS9kOg22R48eLZoTAAAAAAAAAAAAOrLkZ8SzRgwZMiRRe+mll3Kep76+Pl555ZW0WqdOnWL77bfPe2+ZbLDBBmlh2IiIV155JZYvX573nBMmTEjUBgwYkPHeTM/Xc889l9e6jY2N8eabbybqW2yxRaKWKaD79ttv57XuF955551ErVevXi2aEwAAAAAAAAAAADoygdh2sueeeyZqjz76aM7zPPfcc7F48eK02je+8Y0oLy/Pe2+ZbLzxxlFZWZlWW7RoUTz55JN5zTd+/PjESatlZWUrPXF2n332SdTuv//+aGpqynntp556KpYsWZJW22KLLTKGX7fbbrtE7Yknnohly5blvG5ExPTp0+N///d/02plZWWtHmAGAAAAAAAAAACAjkQgtp3svvvu0a1bt7TaM888Ex9++GHWc6RSqbj11lsT9cMPP7yl20soLy+PfffdN1G/9dZbEyfHrk4qlYqrrroqUd91112juro645j99tsvampq0mpTp06N++67L6e1m5ubMz5nBx54YMb7d9999ygrK0urLV68OEaPHp3Tul/4wx/+EKlUKq22ww47JB4bAAAAAAAAAAAAkD2B2HZSXl4ehx56aFqtqakpfvGLX8Ty5cuzmuO2226L1157La3Wt2/f2GuvvVprm2kOO+ywRO3tt9+Ov/zlLznNc80118T48eMT9VNPPXWlY6qqqmLEiBGJ+uWXXx6TJ0/Oeu2bb745Jk6cmFarrKyMI444IuP9nTt3jm9961uJ+m9/+9t4//33s143IuLpp5+Oe+65J1E/+uijc5oHAAAAAAAAAAAASCcQ245OPPHEqKqqSqu98cYbccYZZ6w2FPv3v/89/ud//idRHzlyZJSWlq5y7NSpU2OzzTZL/HP//fevctzQoUNjt912S9Qvv/zyePzxx1c5NmLFybBXX311/OEPf0hcO+igg2LQoEGrHH/yySdHbW1tWm3RokVx3HHHZRVOHTNmTFx99dWJ+gknnJCY96tGjhwZ5eXlabXly5fHcccdlzHYm8lTTz0VP//5zxOnw2633XZxwAEHZDUHAAAAAAAAAAAAkJlAbDvq0aNHnH766Yn6k08+GUcccUTGsOWsWbPi4osvjjPOOCOam5vTrg0ePDiGDx/eZvuNiPjVr36VCPE2NjbGyJEj4/zzz48ZM2YkxqRSqRg3blx873vfyxiG3XDDDePCCy9c7dpdunSJSy+9NFGfPn16HHHEEXH99dfHvHnzMl4/88wz4/zzz088ZwMHDoyTTjppleuut9568bOf/SxR//zzz+PYY4+Nyy+/POPjjoj4+OOP4+yzz47TTjstlixZknatc+fOcckll6xybQAAAAAAAAAAAGD1ilJfP7KSNSqVSsXJJ58czz33XMbrAwYMiE022SSqqqpi2rRp8cYbb0RDQ0Pivh49esQDDzwQvXv3Xu2aU6dOjWHDhiXqo0aNikMPPXS141988cU45ZRTMu6jqKgotthiixg4cGBUVFTE3LlzY9KkSTF79uyMc/Xs2TNGjx4d/fv3X+26X7jlllviN7/5TcZrZWVlse2220b//v2joaEhPvnkk5g0aVLiZNaIiJqamhg9enRsvPHGWa17/vnnx5gxYzJeKyoqik033TQ23njj6NSpU8yfPz/ef//9mDx5csb7S0pK4oYbbog99tgjq7XbWl3dkmhsbGrvbZCj7t2ro6SkOJqammPu3MXtvR0AWOP0QgA6Or0QgI5OLwSgo9MLAejo9MLCVVpaErW1Vau/MUcCsWuBxYsXxymnnBLjxo3La3yPHj3ij3/8Y2y22WZZ3d/SQGxExNNPPx1nnXVWLFq0KKe9ftVWW20V119/ffTt2zfnsXfccUeMGjUqmpryC3F269Ytbrnllthmm22yHtPU1BRXXXVV3HLLLRkDtrmsfeWVV8Zuu+2W9xytTSC2MGnqAHR0eiEAHZ1eCEBHpxcC0NHphQB0dHph4WqrQGxxq89Izqqrq+PWW2+NY445JoqKinIaO3jw4BgzZkzWYdjWMmzYsHjggQdi++23z3lsRUVFHH/88XH33XfnFYaNiDjmmGPiL3/5S2y00UY5j911113joYceyikMG7HiVNef//zn8bvf/S7WW2+9nNf9Yu177713rQrDAgAAAAAAAAAAQKErbe8NsEJ5eXmcd955cfjhh8ett94aY8eOjWXLlmW8t6ioKLbbbrv4z//8zzjwwAOjuLh9cs3rr79+jB49Ol588cX405/+FOPGjVvpniMiBgwYEPvss0/84Ac/iN69e7d4/R122CEefvjh+Pvf/x5//etf49VXX43m5uaM95aVlcXQoUPjmGOOid13371F6w4bNiz23HPP+Pvf/x733XdfvP7661FfX7/S+7t16xZDhw6NY489NrbbbrsWrQ0AAAAAAAAAAAAkFaVa8tnvtJn6+vqYOHFifPzxx1FXVxfNzc3RpUuX6NOnT2y33XZRW1vb3ltMqK+vj9dffz2mTZsW8+bNi/r6+qitrY3u3bvH5ptvnvepqtmaP39+vPnmm/HJJ5/EwoULo6ioKGpqamLgwIGx9dZbR01NTZusu2zZsnjjjTfis88+i3nz5sXSpUujpqYmamtrY8CAAbH55pu3W2g5W3V1S6Kxsam9t0GOHPsOQEenFwLQ0emFAHR0eiEAHZ1eCEBHpxcWrtLSkqitrWr1eQViAYHYAqWpA9DR6YUAdHR6IQAdnV4IQEenFwLQ0emFhautArFr97GVAAAAAAAAAAAAALAaArEAAAAAAAAAAAAAFDSBWAAAAAAAAAAAAAAKmkAsAAAAAAAAAAAAAAVNIBYAAAAAAAAAAACAgiYQCwAAAAAAAAAAAEBBE4gFAAAAAAAAAAAAoKAJxAIAAAAAAAAAAABQ0ARiAQAAAAAAAAAAAChoArEAAAAAAAAAAAAAFDSBWAAAAAAAAAAAAAAKmkAsAAAAAAAAAAAAAAVNIBYAAAAAAAAAAACAgiYQCwAAAAAAAAAAAEBBE4gFAAAAAAAAAAAAoKAJxAIAAAAAAAAAAABQ0ARiAQAAAAAAAAAAAChoArEAAAAAAAAAAAAAFDSBWAAAAAAAAAAAAAAKmkAsAAAAAAAAAAAAAAVNIBYAAAAAAAAAAACAgiYQCwAAAAAAAAAAAEBBE4gFAAAAAAAAAAAAoKAJxAIAAAAAAAAAAABQ0ARiAQAAAAAAAAAAAChoArEAAAAAAAAAAAAAFLTS9t4AANkrKSmKysryqCwvjuKS4v+/VhzdulTEsvrmWLasoZ13CAAAAAAAAAAAra+oKKKioiwqK4qjrLz8y3pxNEd1dUUsXVofzc2pdtwh7U0gFqAAFBUVRU3nsqiorIjGhXNj3ouPR/3MydHcWB8llZ2jatOdovOWu0Z1VWksWdoUS5fWt/eWAQAAAAAAAACgVVRVlUenytKIVHMsmvR8zP3g1WhavjiKyyqifN2B0WXHb0an7l2jfnl9LFxUHym52A5JIBZgLVdcXBRdu1REasn8+Oyh38aSD16NSDWn3bP4f1+KOU/dHl13/GZ02/2IKC6OWLxYKBYAAAAAAAAAgMLWuXN5VFaURt1zd8eCV8dG87LFadeXvD8+5v3z/qjeZKfo8c2ToluXqpi/0GmxHZFALMBarKgoomtNeTTPnxnT7/hVNC9ZsNJ7m5csiLoX/hrLZ02O3oeeGalUxJIlQrEAAAAAAAAAABSm6uryqCwvic/G/DqWfvT6ym9sborF7/47lk1/L/oec0l06Vwb8xYsX2P7ZO1Q3N4bAGDlOnUqj6Lmxphx10WrDMN+1ZJ3x8WcJ2+LqqryKC4uauMdAgAAAAAAAABA6yspKY6qqor4/NEbVh2G/YqmhXNjxl0XRUlxKjp1KmvbDbLWEYgFWItVlhfHggmPR9PCuTmNW/Dqk9G0ZGFUVmrsAAAAAAAAAAAUnsrKsmiYPzsWTXw2p3GN82bGwjf+EZXl4pEdjd9xgLVUeXlpFJeWxsLXxuY+uLkxFr76RFRW+GseAAAAAAAAAIDCU1lRHAvGPxoRqZzHLpjwRJSWl0dZWUnrb4y1lqQUwFqqvLwklk97Lxrnf57X+EVvvRAlpWVRWuqvegAAAAAAAAAACkdZWUkUl5TGordeyGt8w+wpsfzzKVFeXtrKO2NtJiUFsJYqKiqKxoVz8x7ftKjuy3kAAAAAAAAAAKBQfJF3aVo0L+85mhbOjeJiuZmORCAWYC1WVNyCv6ZbMhYAAAAAAAAAANpbUcuyM6lUqvX2wlpPWgpgLZVKpaK0tk/e40u7rhMREc3NGjsAAAAAAAAAAIXji7xLWbd18p6jrFtvgdgORiAWYC21fHljVKyzfpSvOzCv8TXbDYvG+vpoampu5Z0BAAAAAAAAAEDbaWxsiqaGhqjZdp+8xlf23zLKuq0Ty5c3tvLOWJsJxAKspRoamqKxvj667PDNnMcWlXeKmkF7x7J6YVgAAAAAAAAAAArPsvrmqNlh/ygqKct5bJfB34qG5fXR2Cg705EIxAKsxZYub46aQXtFRZ+NchrXfc8jo6ikNJYta2ijnQEAAAAAAAAAQNtZtqwhiss7RbfdDstpXGX/LaN68yGxdHlTG+2MtZVALMBabNmyhqhvaI51j/xVlPcekNWYbrsdHl13/nYsXFQfqVTb7g8AAAAAAAAAANpCc3MqFi2uj9rdjoiuO387qzEVfTeJ3iN+EcvrG2P58sY23iFrm9L23gAAq7Zw0fLoUlMRfY/9dcz71/2x8LWnomnxvMR9FettHt12OSSqNhkcCxcu09QBAAAAAAAAAChoy5Y1RFFRRI/9jouKfpvG/JcfjuXT30/cV1LTPbpsv3903eWQaGhMxcKFy9tht7S3olTK+YHQ0dXVLYnGRkeEr+2qq8ujsrwkioqLYvG746J+5seRaqyP4k41Ub3pkCjvtV40LK+PJcsao77e7ycA//d1714dJSXF0dTUHHPnLm7v7QDAGqcXAtDR6YUAdHR6IQAdSXl5aVRVlkRZRXksnzk5lrz/SjQvWxxFZRVR0WejqNp4cDQ3N8Wy5c2xZEl9e2+X1SgtLYna2qrWn7fVZwSgTSxeXB+LF0dUVJRG5cAdomqTwVFUFJFKpWJ5Q0Rd3eJobGxu720CAAAAAAAAAECrqq9vjPr6xigtbYxOXfpE552+EyUlxSsuFhXFwkXLfZoyUdzeGwAgN8uXN8b8hfWRKiqJopKySBWVxqJFy4VhAQAAAAAAAAD4P62xsSkWLqqPeQtWZGeKS8siFcXCsESEQCwAAAAAAAAAAAAABU4gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUtNL23gBJ06dPj4cffjgmTJgQH3zwQdTV1UV9fX107tw5+vfvH4MGDYp99903dtlllygqKmrv7UZExEsvvRTPP/98vPbaazFjxoyYN29eNDU1RdeuXWP99dePQYMGxV577RXf+MY32mTPM2bMiMcffzzGjRsXH330UcyaNevL56xbt26x1VZbxU477RQHHnhgdO3atVXX/vDDD2Ps2LExfvz4+Pjjj7/8/erSpUv06NEjttlmmxgyZEgccMAB0alTp1ZdGwAAAAAAAAAAAIgoSqVSqfbeBCvMmTMnfv3rX8djjz0WTU1Nq71/k002iV/+8pcxdOjQNbC7zB5//PG47rrr4oMPPsjq/g022CD+67/+K4YPH94qwdjJkyfHb3/723jyySejubl5tfdXVVXFkUceGSNHjozKysoWrT1p0qS48sor41//+ldW93fr1i2OP/74OPHEE6OkpKRFa7e2urol0di4+v/mWLt0714dJSXF0dTUHHPnLm7v7QDAGqcXAtDR6YUAdHR6IQAdnV4IQEenFxau0tKSqK2tavV5BWLXEhMmTIhTTz016urqch57/PHHx5lnnhnFxcVtsLPMli5dGueee2488sgjeY0fMmRIXHnlldGrV6+89zB69OgYNWpULFu2LOexG264YVx//fWx0UYb5Tw2lUrF7373u/j973+fVXD567bffvu47rrrWvTYW5tAbGHS1AHo6PRCADo6vRCAjk4vBKCj0wsB6Oj0wsLVVoHYNZegZKXGjx8fJ554Yl5h2IiI2267LS688MLW3dQqLFmyJH74wx/mHYaNiHj55ZfjqKOOipkzZ+Y1/qqrrooLLrggrzBsRMRHH30UP/jBD2LKlCk5jWtubo6zzz47rrvuurzCsBERr732Whx33HF5/34DAAAAAAAAAAAA6UrbewMd3axZs2LkyJGxZMmStHpxcXEccMABcdBBB8WAAQOivLw8pk6dGmPHjo2HHnoocf+YMWNi8803j6OOOqrN9/yrX/0qxo0bl6h369YtDj/88Nh1112jX79+UVpaGp9//nlMmDAh/vrXv8bkyZPT7v/000/jtNNOi7vuuivKysqyXv/222+PG264IVEvLy+Pgw8+OPbdd9/YcMMNo6ysLD777LN46aWXYvTo0fH555+n3T9r1qw47bTT4r777ovS0uz+KIwaNSr+9re/JeqdO3eOQw89NPbcc89Yf/31o6ioKKZPnx4vvPBCjBkzJhYsWJB2//vvvx/nnHNO3HjjjVk/bgAAAAAAAAAAACCzolQqlWrvTXRkP/rRj+If//hHWq1nz55x1VVXxc4775xxzJQpU+KnP/1pvPnmm2n1Tp06xWOPPRZ9+vRps/2OHTs2fvzjHyfq3/zmN+OSSy6JmpqajOOampri+uuvj9///veJa+ecc04cd9xxWa3/1ltvxYgRI6KhoSGtvuWWW8ZVV10VAwYMyDhu6dKlcfHFF8f999+fuHb22WfH8ccfv9q1//GPf8SPfvSjRH3XXXeNyy+/PHr16pVxXF1dXZx55pnxwgsvJK5de+21ccABB6x27bZWV7ckGhvzO/GW9uPYdwA6Or0QgI5OLwSgo9MLAejo9EIAOjq9sHCVlpZEbW1Vq89b3OozkrWXX345EYatqqqKm266aaVh2IiI/v37x+233x6bb755Wn3p0qVxzTXXtMlev3DttdcmagcccEBcddVVKw3DRkSUlJTEyJEjMwZKb7755kTAdWUuvPDCxL0777xz3HXXXSsNw0asCAuPGjUqDj300MS1P/3pT9Hc3LzKdZcvXx4XX3xxon7QQQfFzTffvNIwbEREbW1t3HjjjbHLLrskrv3xj39c5boAAAAAAAAAAADA6gnEtqObbropURs5cmRstdVWqx3buXPnuOGGG6KqKj0l/fDDD8eMGTNabY9f9c9//jPef//9tFq3bt3ioosuiuLi7P5TOvXUU6Nfv35ptTlz5sRLL7202rFPPvlkTJw4Ma3Wr1+/+N3vfhedOnXKav1zzjknunTpklb77LPP4p///Ocqx919992J53WbbbaJyy67LEpKSla7bklJSVx00UVRWlqaVn/ttdfio48+ymrvAAAAAAAAAAAAQGYCse1k6tSp8a9//Sut1qNHjzjqqKOynqNPnz5x7LHHptUaGxvjvvvua5U9ft3TTz+dqB1++OFRW1ub9RxlZWWx//77J+pvvPHGasf++c9/TtQuvvjiRMB1Vbp27RrDhw9P1F955ZWVjkmlUvGXv/wlrVZaWhqXXXZZlJeXZ732BhtsELvvvntOawMAAAAAAAAAAACrJxDbTp544olobm5Oqx188ME5BSwjIr773e8mao888kiL9rYymYKb3/rWt3KeZ/3110/UZs6cucoxU6ZMiXHjxqXVhgwZErvttlvO6++7775f/rqsrCx69eoV8+fPX+n9L7/8ckyZMiWt9p3vfCc23njjnNfeb7/9vvx1RUVF9O7dO+bMmZPzPAAAAAAAAAAAAMD/U7r6W2gL//znPxO1ffbZJ+d5+vbtG5tttlm8++67X9Y++uijmDJlSvTv379Fe/y6Bx54ID755JP44IMP4oMPPojJkyfH5ptvnvM8y5cvT9SKi1edzc50Ou33v//9nNeOiNhpp53iqaeeitra2ujcufNq72/NtQ866KD4xje+EbW1tVFVVZXXHAAAAAAAAAAAAEA6gdh20NzcHBMmTEirlZaWxrbbbpvXfDvssENaIDYiYvz48a0eiC0tLY2NNtooNtpoozjggAPynue9995L1NZbb71VjnnhhRfSvq6qqordd989r/VLSkpyem6+vvYGG2wQW2yxRV5rV1ZWRr9+/fIaCwAAAAAAAAAAAGS26mM5aROffPJJLFu2LK224YYbRmVlZV7zbbnllonapEmT8pqrrc2fPz/Gjh2bqO+yyy4rHZNKpeLNN99Mq2233XZRUVHR6vv7ugULFsTkyZPTajvvvHObrwsAAAAAAAAAAABkTyC2HXzwwQeJ2sCBA/Oeb4MNNkjUPv7447znayv19fVx9tlnx6JFi9LqgwYNim222Wal46ZMmRLz589Pq2211VarXKuhoSHmzZsX9fX1+W84It56661IpVI5rV1fXx91dXXR2NjYorUBAAAAAAAAAACA7JS29wY6omnTpiVq/fr1y3u+ddddN6s12tNbb70VF154YUycODGtXlZWFr/61a9WOTZTuPfrIeDm5uZ44YUX4vHHH48JEybElClTorm5OSIiunXrFptuumkMGzYsDjzwwFhnnXWy3vdHH32UqA0YMCDt64aGhnjyySfjqaeeitdeey2mT58eERFFRUXRvXv32GqrrWLfffeNb37zm9G1a9es1wYAAAAAAAAAAACyIxDbDmbPnp2o5RLS/LqePXsmarNmzcp7vpZobm6OVCoVS5YsiWnTpsUbb7wRjz32WPz73/9OnLRaXFwc//3f/x2DBg1a5ZyffvppovbV5+vZZ5+Nyy67bKWn4s6bNy/GjRsX48aNi6uvvjpOOOGEOPHEE6NTp06rfTxTpkxZ5doPPvhg/Pa3v42ZM2cm7kulUjFnzpx4/vnn4/nnn4/f/va3ceqpp8ZRRx0VpaX+6AEAAAAAAAAAAEBrkcprB3PmzEnUunTpkvd81dXVUVpaGo2NjV/WlixZEg0NDVFWVpb3vPl44okn4ic/+clq7+vRo0f8+te/jr322mu192YKm/bo0SOampri0ksvjTvvvDPr/S1dujSuv/76ePrpp+PGG2+M3r1757x29+7dY8mSJXHOOefEE088kfXa8+bNi0svvTSeeeaZuO6666Jz585ZjwUAAAAAAAAAAABWrri9N9ARLVq0KFFraTiyqqoqq3Xa2owZM1Z7zx577BGPPfZYVmHYiIi6urpEraysLM4888ycwrBf9c4778SIESMyngC7urVTqVScfPLJOYVhv+pf//pXfO9734v58+fnNR4AAAAAAAAAAABI54TYdlBfX5+oVVRUtGjO8vLyrNZpa9OnT1/tPc8//3wMHz48fvCDH8T3vve91T72BQsWJGq33HJLPPLII2m1oUOHxvDhw2Pw4MHRq1evWLp0aXz66afx7LPPxp133hnz5s1Lu3/GjBlx+umnx+jRo1e6h0xrjxo1KsaNG5dW23///ePb3/52bLvtttG9e/dYtGhRfPTRR/HUU0/FmDFjYsmSJWn3v/fee3HmmWfGjTfeGEVFRat8/GtCly6V7b0F8lBcXPTlv7t3r27n3QDAmqcXAtDR6YUAdHR6IQAdnV4IQEenF/J1ArHtIFNQtaSkpEVzZhrf2NjYojnz8dlnn2V134wZM2LUqFFxzz33xLXXXhsbbbTRSu9dtmxZovbQQw99+euampq4/PLLY9iwYWn3VFRURLdu3WLQoEFx7LHHxrnnnhtPPvlk2j1vv/12/OY3v4nzzjsvr7V79+4dV199deywww5p93Tv3j26d+8egwcPjuOOOy5+8pOfxKuvvpp2z3PPPRe33357HHfccSt55GtOSYnDogtZUVFRlJS0f7AaANqLXghAR6cXAtDR6YUAdHR6IQAdnV7IFwRi20FTU1Oi1haB2Obm5hbNmY8hQ4bEfvvtFxtvvHHU1tbG4sWLY8qUKfHCCy/Egw8+mDgp9YMPPoijjz467r777hg4cGDGORsaGla6Xk1NTdx1112x6aabrnJfXbt2jWuvvTbOOOOMePTRR9OujR49Ok444YTo06dPTmv37ds3Ro8eHb17917l2r17944//vGPceKJJ8Yrr7ySdu3GG2+MESNGRFVV1SrnaGtNTWv+vxVarri4KIqKiiKVSkVzc6q9twMAa5xeCEBHpxcC0NHphQB0dHohAB2dXljY2uIQR4HYdlBWVpaotfQ010zBzfLy8hbNmY9jjjkmUdtkk01in332iR//+MdxwQUXxNixY9Ou19XVxamnnhoPPvhgxj2vKtg7atSo1YZhv1BcXByXXHJJvPnmmzFlypQv6w0NDXHbbbfFueeem/XaJSUlcc0116w2DPuFysrKuPLKK+Pb3/52LFiw4Mt6XV1d/PWvf40f/OAHWc3TVhYsWBaNjcmgNmu37t2ro6SkKJqbUzF37uL23g4ArHF6IQAdnV4IQEenFwLQ0emFAHR0emHhKi0tidra1j9E0uekt4O2CMRmOnU20zrtqXv37nHttdfGiBEjEtc+/PDD+POf/5xx3Moex4477hj77bdfTnuorq6OH/7wh4n6008/nfH+0tLMmfGDDjooBg0alNPavXv3jqOOOirrtQEAAAAAAAAAAIDsCMS2g6qqZLJ56dKlLZpzyZIliVpFRUWL5mwLRUVFcf7558d2222XuHbnnXdmPJF1ZYHYI488Mq89DB8+PPHcTJs2Le3U2C+s7JTdfNc+4ogjErXXX389li1bltd8AAAAAAAAAAAAgEBsu+jWrVuitnhx/kc2NzU1JQKVFRUVUV1dnfecbam0tDTOPPPMRH369OkxadKkRL1Lly4Z59lll13yWr+ioiK23nrrRP3tt9/Oau2qqqrYdttt81p7vfXWi3XXXTetVl9fHx988EFe8wEAAAAAAAAAAAACse2ie/fuidqcOXPyni/T2J49e+Y935owePDg6NevX6I+ceLERK22tjZRq6qqil69euW9/oYbbpiozZ07N6u111tvvSgtLW3ztQEAAAAAAAAAAIDsCMS2g0xB0NmzZ+c9X6axLQmLrik77rhjojZ9+vRE7esnqkZkPmU3F127dk3U6urqslo709i2WBsAAAAAAAAAAADIjkBsO+jfv3+i9umnn+Y9X6axmU4hXdtkCu0uXLgwUVt//fUTtYaGhlbfT3Fx8o9DprUbGxvXyNoAAAAAAAAAAABAdvL/3Hfyttlmm0VRUVGkUqkvax9++GHe82Uau/HGG+c938rU19fHtGnTYsqUKTFlypTYcMMNY5dddsl7vq8+/i9UV1cnaptsskmiVldXF/X19VFeXp7X2vPnz0/Uampqslp75syZea2Z69qwMkVFRVFRURJFRV98HVFcXBTNzck/U7kqKyuJ0tLiL/+OampKRX1964fAAQAAAAAAAAAAWpNAbDuoqamJDTbYICZPnvxlbdq0aTF37tzo3r17zvNNnDgxUdt6661bssWExx57LH72s59Fc3Pzl7W99967RYHYWbNmJWo9e/ZM1NZff/2ora2Nurq6L2uNjY3x3nvv5f04M52qm+k02G222SaKi4vTHveMGTPy/r3KZW34utLS4uhUWRYVFaWRam6K5sXzojnVHMWdaqJHj86xfNnyWLa8Kerrm3Kat6gooqKiLDpVFEdpeXk0LV0UzfVLo6i0PEq61ERzU2ksr2+OpUsbWiV0CwAAAAAAAAAA0NoEYtvJkCFD0gKxEREvvfRSHHTQQTnNU19fH6+88kparVOnTrH99tu3dItpNthgg7RQaETEK6+8EsuXL4+Kioq85pwwYUKiNmDAgIz3DhkyJB5//PG02nPPPZdXILaxsTHefPPNRH2LLbZI1Dp37hxbbbVV2v2pVCqef/75OOSQQ3Jee9asWTF16tS0WlVVVWywwQY5z0XHUlVVHtXVFbF81qcx+x9/j0VvvRiphuUrLhYVR9UmO0aXwQdG14GDYvmy+liwcHlW85aUFEWXmoooLopY9OZzseDVx6P+s4//3/Wa7tFl+/2iZodvRqfa6liwsN6JsQAAAAAAAAAAwFqnuL030FHtueeeidqjjz6a8zzPPfdcLF68OK32jW98I8rLy/PeWyYbb7xxVFZWptUWLVoUTz75ZF7zjR8/PmbMmJFWKysrW+mJs/vss0+idv/990dTU24nYUZEPPXUU7FkyZK02hZbbJHxdNqVrX3vvffmvG5ExMMPP5yoDR06NEpKSvKaj46huro8qjqVxqyHrotpN/80Fr7+9P8Lw0ZEpJpjyXuvxGd3XRTTbv9llKbqo2uX1QfVS0qKoluXymic/WlMuf7kmP3oH9LCsBERTQvnRt3zY+LTa0+KhW88E126VEZ5ufdSAAAAAAAAAAAAaxeB2Hay++67R7du3dJqzzzzTHz44YdZz5FKpeLWW29N1A8//PCWbi+hvLw89t1330T91ltvTZwcuzqpVCquuuqqRH3XXXeN6urqjGP222+/qKmpSatNnTo17rvvvpzWbm5uzvicHXjggSsdc8ghhyQCq6+88kq8+OKLOa29dOnS+Mtf/pLT2lBZWRadOpXHrPt/G4vefHa19y+f9m5Mv+O8KC1qjs7Vqw7Gd+lcHg2zp8SMO86PpsXzVz1xc2PMfvQPsfC1sdGlpjxKSrQPAAAAAAAAAABg7SHR1E7Ky8vj0EMPTas1NTXFL37xi1i+PLuPOr/tttvitddeS6v17ds39tprr9baZprDDjssUXv77bczhjxX5Zprronx48cn6qeeeupKx1RVVcWIESMS9csvvzwmT56c9do333xzTJw4Ma1WWVkZRxxxxErH9O3bN/bff/9E/bzzzou5c+dmvfaoUaNi+vTpabXevXtnnBu+0KmyOBa8+kQsfvffWY9p+HxKzBl7a1RWlkVRUVHGeyoqSqOkrDRm3nN5pBqWZT337MdviYb5n0enTmVZjwEAAAAAAAAAAGhrArHt6MQTT4yqqqq02htvvBFnnHHGakOxf//73+N//ud/EvWRI0dGaemqP8586tSpsdlmmyX+uf/++1c5bujQobHbbrsl6pdffnk8/vjjqxwbseJk2Kuvvjr+8Ic/JK4ddNBBMWjQoFWOP/nkk6O2tjattmjRojjuuOPi/fffX+36Y8aMiauvvjpRP+GEExLzft3PfvazKC9PP21zxowZcdxxx8Vnn3222rWvvvrqGDNmTKI+cuTIKCsTLCSz8vKSKC0rjwWvPJrz2EVvvRjN9ctWGlytrCiJJe+Nj8YFn+c2cao5FrzyaFSUl8RKsrYAAAAAAAAAAABrnEBsO+rRo0ecfvrpifqTTz4ZRxxxRMZTVGfNmhUXX3xxnHHGGdHc3Jx2bfDgwTF8+PA2229ExK9+9atEiLexsTFGjhwZ559/fsyYMSMxJpVKxbhx4+J73/texjDshhtuGBdeeOFq1+7SpUtceumlifr06dPjiCOOiOuvvz7mzZuX8fqZZ54Z559/fuI5GzhwYJx00kmrXXv99dePs846K1H/3//93xg+fHjccccdsXjx4sT1Dz74IE488cSMj3vnnXdOnBIMX1VZURpLP3k7GuZMy3lsqrE+Fr72ZFSWJ/+aLykpjvKK8lgw/rG89rVo4jMRqeaoqBDmBgAAAAAAAAAA1g5FqVQq1d6b6MhSqVScfPLJ8dxzz2W8PmDAgNhkk02iqqoqpk2bFm+88UY0NDQk7uvRo0c88MAD0bt379WuOXXq1Bg2bFiiPmrUqKwCmi+++GKccsopGfdRVFQUW2yxRQwcODAqKipi7ty5MWnSpJg9e3bGuXr27BmjR4+O/v37r3bdL9xyyy3xm9/8JuO1srKy2HbbbaN///7R0NAQn3zySUyaNCky/WdeU1MTo0ePjo033jjrtS+66KK46667Ml6rqqqKbbfdNvr06RNLly6NDz/8MN57772M96677rpx7733Rq9evbJeuy3V1S2Jxsam9t4GX1PbpTwWjvtb1D2fPF04G1WbDI51v/uL+PzzhWn18vLS6Nq1U3x02YiIpsa85u57/G+iuet6sXjxqk+zBoC21L17dZSUFEdTU3PMnZt8cxIA/F+nFwLQ0emFAHR0eiEAHZ1eWLhKS0uitrZq9TfmOm+rz0hOioqK4qqrropTTjklxo0bl7g+efLkmDx58irn6NGjR/zxj3/MKgzbGnbbbbe45ppr4qyzzopFixalXUulUvH222/H22+/vdp5ttpqq7j++uujb9++Oa1/4oknRkVFRYwaNSqamtJDnA0NDTF+/PiMp+t+Vbdu3eKWW27JKQwbEXH++edHdXV13HzzzYlrS5YsiZdeemm1c6y33npx++23rzVhWNZeRUVF0bx8ad7jm+uXfTnPV0PhRUURqaamvMOwERHNyxdHUVHewwEAAAAAAAAAAFpV8rO0WeOqq6vj1ltvjWOOOSaKckyYDR48OMaMGRObbbZZG+0us2HDhsUDDzwQ22+/fc5jKyoq4vjjj4+777475zDsF4455pj4y1/+EhtttFHOY3fdddd46KGHYptttsl5bFFRUfz85z+PP/zhD7HuuuvmPP7b3/52PPDAAzmdiEvHlUqloriiU97ji8srv5wnfd6IopKSiJL83xNRXFEdzhcHAAAAAAAAAADWFk6IXUuUl5fHeeedF4cffnjceuutMXbs2Fi2bFnGe4uKimK77baL//zP/4wDDzwwiovbJ9e8/vrrx+jRo+PFF1+MP/3pTzFu3LiV7jkiYsCAAbHPPvvED37wg1Y5zXaHHXaIhx9+OP7+97/HX//613j11Vejubk5471lZWUxdOjQOOaYY2L33Xdv8dr77LNP7LrrrnHvvffGfffdF2+99dZK762srIy99947jj/++Bg0aFCL16bjaEoVReX6W0fEmLzGV/bfMpoaGpLzNq34c9Kp/5axdPLEnOctrqiK8l79Y/HSptXfDAAAAAAAAAAAsAYUpb5+dCBrhfr6+pg4cWJ8/PHHUVdXF83NzdGlS5fo06dPbLfddlFbW9veW0yor6+P119/PaZNmxbz5s2L+vr6qK2tje7du8fmm28e6623XpuuP3/+/HjzzTfjk08+iYULF0ZRUVHU1NTEwIEDY+utt46ampo2W3v27NkxadKkmDJlSixatChKSkqia9eusdFGG8VWW20VnTrlf8rnmlBXtyQaG4Ub1zbl5SXRtWtVTLnh9GiYMy2nsUWl5bH+yFtjWVNJLFlSn7jetUtFNEx+PWbee3nO++qy00HRfdixMbduiVNiAWhX3btXR0lJcTQ1NcfcuYvbezsAsMbphQB0dHohAB2dXghAR6cXFq7S0pKora1q9XkFYgGB2LVYbbfKWDzx6Zjz+M05javZdp/oeeCPYs7cJZHpr/mKitKoqamIKb/7r2ic/3n2ExcVx3o/ui6aKrvHokXLc9oTALQ2L3AB6Oj0QgA6Or0QgI5OLwSgo9MLC1dbBWKLW31GAFrN0mVN0WWHA6J6s29kPaas1/rRY/8TYtmyhoxh2IiI5csbo6mhMXoffnYUlVVmPXfPb54YZV17xdKlDVmPAQAAAAAAAAAAaGsCsQBrsWXLGmLp0vpY59CfRedBe6/2/op+m0XfY/47GlPFsWhx/SrvXbCoPsp69o8+x1wcJdXdVj1xcWn0PPBHUbP9/rFgYX00NTXn8CgAAAAAAAAAAADaVml7bwCAVVu8uD5SqYh1Dj4tug75Tix45ZFY9NYLkWpYvuKGouKo2mRwdBl8YFQN3CaWL6uPBQuWr3bepqZUzFuwLLr0XD/6n3ZDLJr0XCyY8HjUf/bxl/eU1HSPLtvvHzU7HBAlnapjwYJlUV/f2FYPFQAAAAAAAAAAIC9FqZV9njbQYdTVLYnGxqb23garUVpaHJWVZVFZURqp5qZoXrYoork5ijt1juKyili+rD6WLW+M+vrcfi+LiiIqKsqiU0VxlJaXR9PSRdFcvzSKSiuipKpzNDc1xbLlzbFsWUM0N2sZAKw9unevjpKS4mhqao65cxe393YAYI3TCwHo6PRCADo6vRCAjk4vLFylpSVRW1vV+vO2+owAtInGxuZYtGh5LF5cH+XlJdG5c9coLi6O5ubmmDNnUd5h1VQqYtmyhli2LKKsrDFKS0ujqLRLpFKpaFqw3ImwAAAAAAAAAADAWk8gFqDApFKpWL68MaqrK/7/r6PVTm5taGiKhganBQMAAAAAAAAAAIWluL03AAAAAAAAAAAAAAAtIRALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQStt7A0D7KymRjS90paUl7b0FAGhXeiEAHZ1eCEBHpxcC0NHphQB0dHphYWmrvFpRKpVKtcnMAAAAAAAAAAAAALAGOBYSAAAAAAAAAAAAgIImEAsAAAAAAAAAAABAQROIBQAAAAAAAAAAAKCgCcQCAAAAAAAAAAAAUNAEYgEAAAAAAAAAAAAoaAKxAAAAAAAAAAAAABQ0gVgAAAAAAAAAAAAACppALAAAAAAAAAAAAAAFTSAWAAAAAAAAAAAAgIImEAsAAAAAAAAAAABAQROIBQAAAAAAAAAAAKCgCcQCAAAAAAAAAAAAUNAEYgEAAAAAAAAAAAAoaAKxAAAAAAAAAAAAABQ0gVgAAAAAAAAAAAAACppALAAAAAAAAAAAAAAFTSAWAAAAAAAAAAAAgIImEAsAAAAAAAAAAABAQROIBQAAAAAAAAAAAKCgCcQCAAAAAAAAAAAAUNAEYgEAAAAAAAAAAAAoaAKxAAAAAAAAAAAAABQ0gVgAAAAAAAAAAAAACppALAAAAAAAAAAAAAAFTSAWAAAAAAAAAAAAgIImEAsAAAAAAAAAAABAQROIBQAAAAAAAAAAAKCglbb3BgDWJtOnT4+HH344JkyYEB988EHU1dVFfX19dO7cOfr37x+DBg2KfffdN3bZZZcoKipq7+1GRMSiRYvikUceiXHjxsWkSZOirq4uFi9eHJWVlbHuuuvG5ptvHnvttVfsv//+UVFR0aprz507Nx5++OEYP358vPPOOzFv3rxYunRpVFVVRb9+/WLLLbeMffbZJ/bee+8oKSlp1bUBaBt6YW4mTJgQ//73v+PVV1+NqVOnxrx582LRokVRXV0d3bp1i969e8fgwYNjyJAhMWTIkLXmOQNg5fTC1vXYY4/FT37yk7Tau+++u0b3AEBu9MLczZgxIx5//PEYN25cfPTRRzFr1qwvn7Nu3brFVlttFTvttFMceOCB0bVr11ZfH4DWpRfmZvLkyfHMM8/Eyy+/HB9//HHMmzcvFi9e/GUf3GyzzWLnnXeOYcOGxbrrrtuqawPQNgqxF67Kr3/96/jTn/4UERH9+vWLf/zjH606v+zM2qUolUql2nsTAO1tzpw58etf/zoee+yxaGpqWu39m2yySfzyl7+MoUOHroHdZdbQ0BA33HBD/PGPf4zFixev9v7u3bvHqaeeGkcddVQUF7fsgPDFixfHVVddFWPGjIn6+vrV3t+vX78444wz4qCDDmrRugC0Hb0wNw8++GDceuut8d5772U9ZsMNN4yTTjop/uM//qMgvjkA0NHoha1v5syZ8Z3vfCfmzZuXVheIBVg76YW5mzx5cvz2t7+NJ598Mpqbm1d7f1VVVRx55JExcuTIqKysbPH6ALQuvTA3H3/8cVx99dUxduzYrPpgWVlZfPvb346RI0dGnz59WrQ2AG2jEHvh6rz99tvx3e9+NxoaGiKidQOxsjNrJ4FYoMObMGFCnHrqqVFXV5fz2OOPPz7OPPPMNfKDxK/6/PPP44c//GG8/fbbOY8dOnRoXH311XmfRPDhhx/GSSedFNOmTct57MEHHxyXXnrpGj+RCIBV0wuzN3v27PjlL38Zzz33XM5jv7DHHnvEFVdcEbW1tXnPAUDr0gtbXyqVihNPPDFefPHFxDWBWIC1j16Yu9GjR8eoUaNi2bJlOY/dcMMN4/rrr4+NNtoo7/UBaF16YW4effTROPfcc2PJkiU5j+3WrVtcdtllsffee+e1NgBtoxB74eosXLgwDj/88Jg8efKXtdYKxMrOrL0EYoEObfz48XHSSSfl9WLtCyNGjIiLL764FXe1arNnz46jjz46rWHnauutt44//elP0blz55zGffjhh3HMMcfEnDlz8l57r732it/97ndRWlqa9xwAtB69MPteOHfu3Pje977XonW/sP7668fo0aOjR48eLZ4LgJbRC3N7XZitO+64Iy655JKM1wRiAdYuemHuvfCqq66KG264Ie+1IyLWWWeduOuuu6J///4tmgeAltMLc+uFDzzwQJxzzjl5rxsRUVxcHFdffXUccMABLZoHgNZRiL1wderr6+OEE06IcePGpdVbIxArO7N2E4gFOqxZs2bFf/zHf8Ts2bPT6sXFxXHAAQfEQQcdFAMGDIjy8vKYOnVqjB07Nh566KGM/wNwwQUXxFFHHdXme25qaorjjjsuXn755cS17bffPg477LDYcssto2vXrvHZZ5/Fyy+/HPfcc0/MmDEjcf+3vvWtuPrqq7Nee8mSJXH44YfHhx9+mLi2++67xyGHHBIbb7xxVFdXx4wZM+LZZ5+N+++/P+O7h0488cQ488wzs14bgLahF2bfC+vr6+PII4+Mt956K3Gturo6DjnkkBg6dGisv/76UVNTEwsWLIiPP/44nnvuufj73/+e8WNSBg0aFHfccYePyQRoR3phbq8Ls/Xhhx/GoYceutIT8wRiAdYeemHuvfD222+PUaNGJerl5eVx8MEHx7777hsbbrhhlJWVxWeffRYvvfRSjB49Oj7//PPEmM033zzuu+8+PwAFaEd6YW69cMKECXHsscd++bHTXzV06NA4+OCDY6uttoouXbrE/Pnz480334y//e1v8corryTuLy8vj7vuuiu22WabrNcHoPUVYi9cneXLl8dpp50Wzz//fOJaSwOxsjNrP4FYoMP60Y9+lGhyPXv2jKuuuip23nnnjGOmTJkSP/3pT+PNN99Mq3fq1Ckee+yx6NOnT5vtNyLzN1tLSkri3HPPjaOPPjrjmCVLlsRFF10UDz74YOLaddddF/vvv39Wa19yySVxxx13pNWqqqrisssuW+m7N+fOnRtnnXVWvPDCC2n14uLi+Otf/+oFLkA70wuz74U33XRTXHnllYn6t771rbjwwgujW7duKx07Y8aM+PnPfx7jx49PXPvxj38cp5122mrXB6Bt6IW5vS7MRkNDQ4wYMSLjm0i+IBALsPbQC3PrhW+99VaMGDEiEQLacsst46qrrooBAwZkHLd06dK4+OKL4/77709cO/vss+P444/Pan0AWp9emH0vbG5ujsMOOyzefvvttHpNTU1cfvnlMWzYsJWOffjhh+NXv/pVLF26NK2+zTbbxD333BNFRUWrXR+AtlGIvXBV5s2bFz/+8Y8TJ8N+oaWBWNmZtV9xe28AoD28/PLLiQZXVVUVN91000obekRE//794/bbb4/NN988rb506dK45ppr2mSvX5g/f378/ve/T9QvuOCClb64jVjxuC6//PI4/PDDE9euuOKKaGpqWu3akydPjtGjR6fVSkpKVvtRJt27d48bbrghdtttt7R6c3NzXHHFFatdF4C2oxeukE0vnDdvXsaPwhwxYkRcffXVqwzDRkT06dMnbr/99kQ/jIi49dZbE++4BWDN0AtXyPZ1Ybauv/76VYZhAVh76IUr5NILL7zwwkQYduedd4677rprpWHYiBU/FB41alQceuihiWt/+tOform5Oav1AWhdeuEK2fbCZ555JhGGLSsrixtuuGGVYdiIiIMPPjiuvvrqRPD1zTffjOeee261awPQNgqxF67Ke++9F0ccccRKw7AtJTtTGARigQ7ppptuStRGjhwZW2211WrHdu7cOW644YaoqqpKqz/88MMZP2qktYwZMybmz5+fVhs2bFiMGDEiq/EXXXRRbL311mm1KVOmxGOPPbbasbfddlviG71HH3107LnnnqsdW1paGtdcc03iHUDjxo2L1157LYudA9AW9MIVsumFjz/+eCxevDittskmm8SvfvWrrNaNWPGN4d/+9reJ8OySJUti7NixWc8DQOvRC1fI9nVhNl599dW4+eabW2UuANqeXrhCtr3wySefjIkTJ6bV+vXrF7/73e+iU6dOWa1/zjnnRJcuXdJqn332Wfzzn//MajwArUsvXCHbXvjUU08lat/73vdi8ODBWa291157xXe+851E/YknnshqPACtrxB7YSapVCr+/Oc/x+GHHx6ffvppm60jO1MYBGKBDmfq1Knxr3/9K63Wo0ePOOqoo7Keo0+fPnHsscem1RobG+O+++5rlT1+XSqVir/+9a+Jei4fsVxaWho///nPE/VM837V4sWL4+9//3taraysLE4++eSs1+7cuXOceuqpOa8NQNvQC9Otrh89+uijidrJJ58cZWVlWa8dEdG1a9f4/ve/n6g/88wzOc0DQMvphela47XZ4sWL46yzzko7VWiPPfaIfv36tXhuAFqfXpgum1745z//OVG7+OKLEwHXVenatWsMHz48UX/llVeyngOA1qEXpsumF7766quJWqbTz1flsMMOS9Ref/31nOYAoHUUYi/M5J133okjjzwyLr300li+fHnatdLS0lZbR3amcAjEAh3OE088kfgIqoMPPjjKy8tzmue73/1uovbII4+0aG8rM2nSpJgyZUpabcstt4wtt9wyp3l22WWX6N+/f1pt3LhxMWvWrJWOeeGFFxKn4u21117Rs2fPnNY++OCDE+8MGjt2bOLdMwC0Pb0w+17Y3Nwcb7zxRlqtpKQk9t5775zW/UKmcZMnT85rLgDypxfm9rowG5deemna/rp16xaXXnppi+YEoO3ohbn1wilTpiQ+cnPIkCGJj7vMxr777vvlr8vKyqJXr16Jk/4AaHt6Ye6vCzNdHzhwYE5rb7rpplnNC0DbK8Re+FWffPJJnHnmmXHooYdmfHNF586d4/e//32rrSc7UzgEYoEOJ9PHT+2zzz45z9O3b9/YbLPN0mofffRR4oVoa2itPUesaMhflUql4vnnn2/ztSsrK+Mb3/hGWm3RokUxfvz4nOcCoGX0wr3Svl5VL5w6dWosW7YsrTZw4MDo3LlzXmuvt956idrs2bPzmguA/OmFe6V9vbrXhavz1FNPJU59uOCCC2KdddbJe04A2pZeuFfa16vrhU8//XSilukTQLKx0047xVNPPRUTJkyISZMmxYsvvhgXXXRRXnMBkD+9cK+0r7N5Xfj175NGrDgFMBeZPnVLAAigfRRiL/yq8847Lx566KFEqDciYosttoh777039txzz1ZbT3amcAjEAh1Kc3NzTJgwIa1WWloa2267bV7z7bDDDolaWzSpTB+ZteOOO+Y1V6Y9f/05+aqvn3ywJtcGoPXphbn1o6KiojjmmGPigAMOiO233z769esXvXv3zmvdiMj4ory42MsygDVJL2zd12azZ8+OX/3qV2m1b3/723HggQfmNR8AbU8vzL0XvvDCC2lfV1VVxe67757X2iUlJdG/f/+832gJQMvphfm9LuzSpUui9t577+W07kcffZSoeTMlwJpXqL1wdcrLy+O0006Le+65J+dTzFdHdqZw+Mkr0KF88skniXcvbrjhhlFZWZnXfJk+gmTSpEl5zbUq7777bqK2xRZb5DVXLntevnx54l071dXVscEGG7T52gC0Db0wtz33798/zjvvvLj22mtj9OjR8Y9//CNuu+22vNaNiIzvhm1JwBaA3OmFrbvnc889N+bOnfvl1+uss06cf/75ec0FwJqhF+a251QqFW+++WZabbvttouKioq81gag/emF+e0501p/+9vfclo30/3bb799TnMA0HKF2gtXZd99942HH344fvzjH2c8kbwlZGcKi0As0KF88MEHiVpL3hWSqbl9/PHHec+Xyfz58+Pzzz9Pq9XW1kZtbW1e86233npRWlqaVps8eXKkUqnEvR9++GE0NTWl1db25wuAVdMLc+uFre3rpwpFtOz5ByB3emHr9cK77747nn322bTar3/96+jatWte+wJgzdALc+uFU6ZMifnz56fVttpqq1XO39DQEPPmzYv6+vq89gdA29IL83tdOGzYsETt3nvvzfpEu1dffTXGjBmTqB966KFZjQeg9RRiL1yZnXfeOe6+++743e9+FwMGDGiTNWRnCotALNChTJs2LVHr169f3vOtu+66Wa3REpnm69u3b97zlZaWRo8ePdJq9fX1MWvWrKzWbsnz1bt37ygqKkqrTZ8+PePHRwPQNvTC3Hpha2psbIx77703Uc/0jWQA2o5e2Dq9cPLkyXHFFVek1b73ve/l/fHRAKw5emFuvTDTDyW//sPL5ubmeO655+IXv/hF7L///jFo0KAYMmRIbLPNNjFkyJA45phj4vbbb2/z150AZEcvzO914X/8x39Er1690mqNjY3xox/9KJ5//vlVrvfiiy/GKaecEg0NDWn1ffbZJ3bZZZccdw9ASxViL/y6/fffPx544IG44447YocddmjTtWRnCotALNChzJ49O1FbZ5118p6vZ8+eiVprf1OztfcckXnfX39XaVusXVZWljgpqL6+PnHCAgBtRy9cIdte2Jr++te/Jl4wl5WVxd57792m6wKQTi9coSW9sLGxMc4666xYsmTJl7UBAwbEWWed1aI9AbBm6IUrZNsLP/3001Wu/eyzz8aBBx4YP/zhD+P++++PTz75JO2HmPPmzYtx48bFqFGjYv/994/rrrsuli5d2qK9A9AyeuEKub4u7Ny5c4waNSpKSkrS6vPnz4+TTjopTjrppHjwwQfjvffei88++yzef//9ePjhh+OUU06JE044IfHzwM033zzxRksA1oxC7IVfd8wxx8SWW27Zpmt8QXamsJSu/haA/zvmzJmTqHXp0iXv+aqrq6O0tDQaGxu/rC1ZsiQaGhqirKws73m/KtOeW/rxk5ke84IFC7JauyXP1xfj582bl1g73490ASA3euEK2fbC1vLZZ5/FlVdemagfdthheiDAGqYXrtCSXnjDDTfEG2+88eXXJSUlcdlll0VVVVWL9gTAmqEXrpBtL5w5c2ai1qNHj2hqaopLL7007rzzzqzXXLp0aVx//fXx9NNPx4033hi9e/fObdMAtAq9cIV8Xhfuvvvucc011yTeJBkR8fzzz6/2pNgvDB8+PC644IKorq7OfsMAtJpC7IXtSXamsDghFuhQFi1alKh17ty5RXNm+oFfpnXy1RZ7zvTicuHChWvV2gC0Db1whTXZj+rr6+OnP/1p4nF07do1Tj/99DZZE4CV0wtXyLcXTpw4Mf7whz+k1U466aTYfvvtW7QfANYcvXCFbHthXV1dolZWVhZnnnlmTmHYr3rnnXdixIgRMWXKlLzGA9AyeuEK+b4u3G+//eKhhx6K/fffP4qLc4uc7LrrrjFmzJi44oorhGEB2lEh9sL2tDb1YVbPCbFAh1JfX5+oVVRUtGjO8vLyrNbJV6a5Mq2Zi2z3XIjPFwCrVoh/t7dnL2ypVCoVv/zlL+PVV19NXLvggguiR48erb4mAKumF658/Or2vHTp0jjzzDPTTnrYYost4rTTTmvRXgBYs/TClY/PtE6mk/JuueWWeOSRR9JqQ4cOjeHDh8fgwYOjV69esXTp0vj000/j2WefjTvvvDNx8s+MGTPi9NNPj9GjR7f4+QcgN3rhysdnu+f+/fvHqaeeGqWlpfHoo49mvearr74a99xzT/Tq1Sv69euX9TgAWlch9sL25PkqLE6IBTqUTM2jpKSkRXNmGv/VHw62VKY9l5a27P0M2e65EJ8vAFatEP9ub89e2FIXX3xxPPzww4n60UcfHQcddFCrrwfA6umFK+Sz58suuywmT5785dfl5eVxxRVX/J/42DOAjkQvXCHbPS9btixRe+ihh778dU1NTfz+97+PP/7xj3HIIYfEeuutFxUVFdGtW7cYNGhQnH766TF27NjYb7/9EvO8/fbb8Zvf/KZFjwOA3OmFK+S75/fffz9OOumkGD58eE5h2IgVb7S8995748ADD4zbb789p7EAtJ5C7IXtyfNVWARigQ6lqakpUWuLJtXc3NyiOb8q055z/fiRr8t2z4X4fAGwaoX4d3t79sJ8pVKpuPDCC+Ouu+5KXNtzzz3jl7/8ZautBUBu9MIVct3zc889F6NHj06r/eQnP4lNN920RfsAYM3TC1fIds8NDQ0rnaOmpibuuuuuGDZs2CrX6tq1a1x77bVx4IEHJq6NHj06ZsyYkcWOAWgteuEK+ez5oYceisMPPzyef/75tHptbW3813/9V4wZMyZeeumlePPNN+P555+P2267LY455pjo1KlT2v3Lli2LUaNGxQUXXNCixwBAfgqxF7Ynz1dhEYgFOpRMp9a09B0Wmb4h2tKPKPmqTHvO1GxzkekxZ9pzWzxf2a4NQNvQC1doy37U2NgYZ511Vtx9992JazvvvHNce+21LT69AYD86YUr5NIL586dG+eee25abfDgwXHccce1aA8AtA+9cIVse+GqfiA5atSorN8cUlxcHJdcckn0798/rd7Q0BC33XZbVnMA0Dr0whVy/R7p2LFj4+yzz06cnn7ooYfGU089FSNHjoztttsuunfvHuXl5dG7d+/Ydddd47zzzosnn3wydt9998Sco0ePjptuuqlFjwOA3BViL2xPsjOFRSAW6FDaokllerHZmh8XuaYaa6Z12nNtANqGXrjy8a2x58WLF8cpp5yS9vGZX9h1113jpptuisrKyhavA0D+9MKVj1/Zns8///z4/PPPv/y6qqoqLrvsshafRgRA+9ALVz4+2++RRkTsuOOOsd9+++W0ZnV1dfzwhz9M1J9++umc5gGgZfTClY9f2Z5nzpwZv/jFLxJvFDnxxBNj1KhR0blz51Wu1atXr7jxxhtj+PDhiWvXXnttfPjhhznsHICWKsRe2J7auw+TG9+1BjqUqqqqRG3p0qUtmnPJkiWJWkVFRYvm/KpMe860Zi6y3XMhPl8ArFoh/t3enr0wFzNnzoz//M//jBdeeCFxbd99940bbrgh8dFgAKx5euHKx2fa87333htPPvlkWu2Xv/xl4nQ7AAqHXrjy8Zn2vLIfSB555JF5rTt8+PDEOtOmTYspU6bkNR8AudMLVz5+ZXu+7rrrYtGiRWm1oUOHxhlnnJH1eiUlJXHJJZfE1ltvnVZvaGiI6667Lut5AGi5QuyF7cnzVVgEYoEOpVu3bona4sWL856vqakp8bEgFRUVUV1dnfecX9fae17Z+O7du69VawPQNvTClY9vST9666234ogjjoi33347cW3EiBFx7bXX+pgTgLWEXrjy8V/vhVOmTIlf//rXabW99947jjjiiBatDUD70gtXPj7T68IuXbpkHL/LLrvktW5FRUUiCBQRGV9PAtA29MKVj8/UCxctWhSPPPJIWq2oqCjOPvvsnD85pLy8PM4555xE/amnnop58+blNBcA+SvEXtieCuFnlfw/ArFAh5KpecyZMyfv+TKN7dmzZ97zZZJpz3Pnzm3RnJn23aNHj6zWbsnzFZHce3FxcdTW1rZoTgCypxeukG0vzMYTTzwRRx99dMycOTNx7fTTT4+LL744SkpK8pobgNanF66wul7Y3NwcZ599dto3Zmtra+O///u/W7QuAO1PL1wh29eFmb53WVVVFb169cp77Q033DBRa+njASB7euEK2fbCCRMmJE6x22qrrWLzzTfPa92ddtop0QsbGhpiwoQJec0HQO4KsRe2J9mZwlLa3hsAWJP69euXqM2ePTvv+TKNbck3QjNp7T1nGl9UVJTxf0Zae+358+dHfX19Wq1Hjx5CQgBrkF6YefzKeuHq3HTTTfHb3/42UqlUWr28vDxGjRoV3/72t1u0TwBan16YefzXe+H06dMTP4ysq6uL3XbbrUXrRkRsttlmidqoUaPi0EMPbfHcAKyeXph5/MpeF6677rqJWqbTgXLRtWvXRK2urq5FcwKQPb0w8/iV9cK33norUdt5551btPbQoUPjo48+Squ98847MWzYsBbNC0B2CrEXtifZmcIiEAt0KP3790/UPv3007znyzQ207v7W6JPnz5RVlYWDQ0NX9amTJkSqVQqioqKcp5v7ty5sWjRorRa3759o7KyMnHv+uuvn6i19vM1cODAvOcDIHd6YW69cGWam5vjoosuitGjRyeu1dbWxu9+97vYcccdc94bAG1PL2ydXghA4dILW/490q/uo7Xk+pHTAORPL8ytF2Y6ibZ37945r/lVmd5w4s0hAGtOIfbC9iQ7U1i8ugY6lM022yzxovDDDz/Me75MYzfeeOO858ukuLg4Ntlkk7Ta0qVLY/r06XnN9/V3W0ZEYv4vrLvuuonTDj799NO8v+Gb6fla2doAtA29MLdemElDQ0P85Cc/yRiG3WSTTeKee+4RhgVYi+mFLe+FABQ2vTC3XpipXldXlzjNJxfz589P1GpqavKeD4Dc6IW59cLly5cnavmEcL+qqqoqUWuLN5wAkFkh9sL2JDtTWARigQ6lpqYmNthgg7TatGnTMr6zMRsTJ05M1Lbeeuu85lqVbbbZJlF7880385rrjTfeSNRWteevX2toaIj//d//zWvtNfV8AbByemHuvfCr6uvrY+TIkfHEE08kru22224xevTojO+qBWDtoRe2rBcCUPj0wtx64frrrx+1tbVptcbGxnjvvffyWjsi82lAmU4cAqBt6IW59cKv98GIiBkzZuS17hcynQbbs2fPFs0JQPYKtRe2J9mZwiEQC3Q4Q4YMSdReeumlnOepr6+PV155Ja3WqVOn2H777fPe28pk2vO//vWvvObKNG7o0KE5rZ3P8xUR8c9//jNR23XXXfOaC4D86YW59cIvNDc3x1lnnRVPP/104trhhx8eN954Y3Tu3DmvPQGwZumFq++Fffr0iRdffLHF/2T6GMxM9x144IF5PRYA8qMXtvx7pM8991xeazc2NmYML22xxRZ5zQdAfvTC7HthpqDqW2+9lde6X3jnnXcStV69erVoTgByU4i9sD3JzhQOgVigw9lzzz0TtUcffTTneZ577rlYvHhxWu0b3/hGlJeX5723ldl1112jpKQkrfbUU0/l/LFcs2fPjpdffjmt1q1bt9h2221XOmaPPfZI1PJ5vt5+++2YPHlyWm3TTTeN3r175zwXAC2jF+bWC79wxRVXxGOPPZaon3LKKXHppZdGaWlpTnsBoP3ohavvhSUlJdGrV68W//P1PUdExvsqKytzehwAtIxemNvrwn322SdRu//++6OpqSmntSNW7HnJkiVptS222MKpeABrmF6YfS/cbrvtErVXXnkl71NilyxZEv/+978T9Z122imv+QDITyH2wvYkO1M4BGKBDmf33XePbt26pdWeeeaZ+PDDD7OeI5VKxa233pqoH3744S3dXkbdunVLNNc5c+bEgw8+mNM8t99+ezQ0NKTVvvOd76wywLP55pvHpptumlZ75513Mr5jZVVuvvnmRO2www7LaQ4AWodemFsvjFjxgvaPf/xjov6jH/0ofvrTn+a0BwDan16Yey8E4P8WvTC3XrjffvtFTU1NWm3q1Klx33335bR2c3NzxufMSekAa55emH0v3GabbRKnt67ssWfjz3/+cyxatCittt5668XGG2+c13wA5KcQe2F7kp0pHAKxQIdTXl4ehx56aFqtqakpfvGLX8Ty5cuzmuO2226L1157La3Wt2/f2GuvvVprmwlHHnlkonbllVfGJ598ktX4CRMmxO23355WKy4uzjhvNmtfcMEFMXfu3KzWfuyxxxLvjKmqqopDDjkkq/EAtC698P/Jphd+/vnnceGFFybq3/72t+MnP/lJVmsDsHbRC/+fbF8XAvB/i174/2TTC6uqqmLEiBGJ+uWXX5442WdVbr755pg4cWJarbKyMo444ois5wCgdeiF/8/qemFRUVHGYNNf/vKX+Ne//pXVul+YOHFi/P73v0/Ujz766JzmAaDlCrUXtifZmcIgEAt0SCeeeGJUVVWl1d54440444wzVtvY//73v8f//M//JOojR45c7Yk6U6dOjc022yzxz/3337/aPe+1116xzTbbpNXmzZsXP/zhD+Ozzz5b5dj33nsvTj311MS7PQ855JDYaKONVrv2EUccEX369EmrTZkyJf7rv/4r5s+fv8qx//73v+Occ85J1E844YTEu40AWHP0whWy6YX/8z//k+h3/fv3j4svvni1ewZg7aUXrpDt60IA/u/RC1fItheefPLJUVtbm1ZbtGhRHHfccfH++++vdvyYMWPi6quvTtRPOOGExLwArBl64QrZ9MITTzwxunfvnlZLpVLx4x//OJ544onV7jtiRRj35JNPTjy3/fr1i//8z//Mag4AWlch9sL2JDtTGARigQ6pR48ecfrppyfqTz75ZBxxxBExfvz4xLVZs2bFxRdfHGeccUY0NzenXRs8eHAMHz68zfb7hfPPPz/xPw6TJ0+O4cOHx9/+9rfEC9ilS5fGX/7yl/jud78bdXV1addqa2uz/ojn8vLy+OUvf5mov/baa/Ef//Ef8cwzzySekwULFsT1118fxx9/fCxbtizt2oABA+KEE07Iam0A2oZemF0v/Oijj+Khhx5K1KdMmRI77LBDxhfr+fwzderUPJ8RAPKlF+b2uhCA/3v0wtx6YZcuXeLSSy9N1KdPnx5HHHFEXH/99TFv3ryM188888w4//zzE8/ZwIED46STTspqfQBan16YfS/s3LlzXHjhhVFUVJRWX7RoUZx++unxi1/8YqUfsf3ZZ5/FpZdeGscee2ziBL3S0tK49NJLo7y8fLV7AKD1FWovbC+yM4WhKJVKpdp7EwDtIZVKxcknnxzPPfdcxusDBgyITTbZJKqqqmLatGnxxhtvJF5ARqz4H4QHHnggevfuvdo1p06dGsOGDUvUR40alTiKfmVuuummuPLKKzNe69GjR2y99dbRo0ePmDVrVkycODEWLFiQuK+4uDhuuumm2H333bNa8wsXXHBBjB49OuO1Pn36xBZbbBFdu3aNGTNmxOuvv55o5hErPgJszJgxsfnmm+e0NgCtTy9cfS+85JJL4o477shqXy3x9NNPx3rrrdfm6wCQTi/M/XVhrvbZZ5+YNm1aWu3dd99t0zUByJ5emHsvvOWWW+I3v/lNxmtlZWWx7bbbRv/+/aOhoSE++eSTmDRpUmT6UVxNTU2MHj06Nt5445zWB6B16YW59cIbb7wxfvvb3670+oABA2KzzTaLmpqaWLhwYUyePHmVrwH/+7//O7773e9mvT4Ara9Qe2G2Nttss7Sv+/XrF//4xz9aNKfszNpt1ecTA/wfVlRUFFdddVWccsopMW7cuMT1yZMnx+TJk1c5R48ePeKPf/xjVg29tfzwhz+Murq6uO222xLX5syZs9L/SflCaWlpXHbZZXn90PP888+PhQsXxiOPPJK4NmPGjJgxY8Yqx1dVVcUf/vAHDR1gLaEXrr4XtvQFMQBrN72wbcOwAKz99MLce+GJJ54YFRUVMWrUqGhqakq71tDQEOPHj894itJXdevWLW655RZhWIC1gF6YWy88+eSTo7KyMn7zm99kDENl83xFrAgBXXTRRXHIIYfktD4Ara9Qe2F7kp1ZuxW39wYA2lN1dXXceuutccwxxyQ+4mN1Bg8eHGPGjEm8m2RNOPvss+OSSy6JqqqqnMb17ds3brnlljj44IPzWrekpCSuvPLK+OlPfxplZWU5jd10003jrrvuim984xt5rQ1A29ALV27mzJmJE+0A+L9HLwSgo9MLc3fMMcfEX/7yl9hoo41yHrvrrrvGQw89FNtss03e6wPQuvTC3Bx77LHxpz/9Ke/HPGjQoLj77ruFYQHWIoXaC9uL7MzaTSAW6PDKy8vjvPPOiwcffDC+853vRGVl5UrvLSoqiu233z6uvPLKuOOOO6J///5rcKfpjjjiiHjqqafixBNPjJ49e67y3v79+8eZZ54ZDz/8cOyyyy4tWreoqChOOeWUeOyxx+LII4+MmpqaVd6/6aabxoUXXhj33XdfbLHFFi1aG4C2oRdmNmvWrNbYJgAFQC8EoKPTC3O3ww47xMMPPxxXXHFFDB48OIqLV/4jt7Kysthzzz3jlltuidtuu63DnJoEUEj0wtzsuOOO8be//S1+97vfxR577LHaUG51dXXsvffecfPNN8c999wTW265ZYvWB6D1FWovbC+yM2uvolQqlWrvTQCsTerr62PixInx8ccfR11dXTQ3N0eXLl2iT58+sd1220VtbW17bzEhlUrFu+++G++++258/vnnUV9fH507d46ePXvGNtts06b/89HY2Bhvv/12fPDBBzF79uxoamqKmpqaWGeddWLbbbf1zV2AAqQXAtDR6YUAdHR6Ye7mz58fb775ZnzyySexcOHCKCoqipqamhg4cGBsvfXWq/3hKABrF70wNw0NDTFp0qSYNm1a1NXVxaJFi6Jz585RW1sb6623Xmy99dZRWlraZusD0PoKsRe2J9mZtYdALAAAAAAAAAAAAAAFbeWf3wIAAAAAAAAAAAAABUAgFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAFrd/fffH5tttlnin+uuu669t5aXl19+OePjOeecc9p7awAAAACEQCwAAAAAAAAAAAAABU4gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEETiAUAAAAAAAAAAACgoAnEAgAAAAAAAAAAAFDQBGIBAAAAAAAAAAAAKGgCsQAAAAAAAAAAAAAUNIFYAAAAAAAAAAAAAAqaQCwAAAAAAAAAAAAABU0gFgAAAAAAAAAAAICCJhALAAAAAAAAAAAAQEErbe8NAAAAAAAdR2NjYzz77LPxj3/8I955552YNm1aLF68OCoqKqJr164xcODA2GabbWLYsGExaNCgNttHc3NzvP/++/HWW2/Fxx9/HJ999lksWLAgli1bFs3NzVFeXh7V1dWxzjrrRP/+/WPLLbeMbbfdNsrLy9tsT1946qmn4p577ok33ngjFi1aFN26dYstttgi9thjjzjkkEOipqYm5zlnzZoVkyZNinfffTdmzJgRs2fPjmXLlkV9fX2UlZVFZWVl9OjRI9Zdd93YfPPNY9ttt41evXq1waPLbObMmfH888/HO++8E9OnT4/FixdHeXl5dOnSJQYOHBjbbrtt7LLLLlk//01NTfHaa6/FuHHj4oMPPoh58+ZFU1NTdO3aNXr06BHbbrttDBkyJPr06dPGj2zt8tFHH8Vbb70VH374YcycOTPq6upi2bJl0dTUFOXl5VFVVRU9e/aM9dZbL7bYYovYbrvtoqqqqr23vVqvv/56PPHEE/H666/HJ598EgsXLoyioqLo2rVr9O3bN7bZZpsYOnRo7LHHHlFaumZ+LLJ8+fJ49tln45///Ge89dZbMXXq1Fi8eHEUFRVFdXV1rLfeerHpppvGbrvtFnvuuWdUV1e32V6mTZsWb775ZnzwwQcxY8aMmDNnTixfvjwaGhqivLw8Kisro2fPntG3b98vf9+7du3aZvsBAAAAaCtFqVQq1d6bAAAAAAAK2znnnBMPPPBAWm2XXXaJ22+//cuvx44dG5dffnlMnTo1qzk32WSTOO200+Kb3/xmq+1z/Pjxce+998azzz4bdXV1OY2tqqqKffbZJ77//e/Htttum/Pa999/f/ziF79Iq/Xs2TP++c9/RkTE4sWL4+c//3n84x//WOUeTjjhhDjppJOioqJilevNnDkz7rnnnhg7dmy8++67Oe21qKgoBg0aFP9fe3cen+Od73/8nU0WSUTQGEsjthBLqyg6NN2N1liiTRlbS2o6DlWjLapa1BzTYzR6PCxT06Lp0SqSODRDj2V4jH1NrBMlkUgTQRCJRNbfH33wq97XfedeJem8nv/5fq/v5/pc7uu6/7i9fa/o6GgNGDDAriBweHi4ydgXX3yhHj163P3zwYMHtWzZMu3evVtV/VQdGBio0aNHa+zYsfL19TU85vbt21q1apXi4uKUm5trsZ6bm5ueeuop/cd//Ic6dOhgxRXVTqdPn9Y333yj7du3Kycnx6a1derUUe/evTV8+HD17t3b5nMb3fOSNGHCBE2cONHmtR4eHjp16tTdP//rX//S7NmzdfjwYav6adiwoUaPHq3Ro0dX+fwY2b9/v0aNGmUyPnjwYP35z3+W9ONzvGLFCn3xxRe6ceOGVXUDAgI0dOhQvf766/L397e5LyMXLlzQmjVrtG3bNqWnp9u01tPTU926ddOwYcP03HPPyd2dlw0CAAAAAIDagV8xAAAAAAAAALhUWVmZPvjgA02cONHqMKwknT17VpMmTdKoUaOqDDdW5fDhw3rxxRc1fPhwJSQk2ByGlaRbt25p06ZNio6O1sSJE5WXl+dQTz9VWlqqCRMmWAzD3ulh0aJFSklJMXtMXl6eZs+eraeeekqLFi2yOQwrSZWVlUpOTtaMGTPUr18/7dmzx+YalhQUFOidd97RiBEj9M9//rPKMKwk5efna9GiRYqKilJaWprJ/JEjR9S/f38tWLDAqvulsrJS27ZtU3R0tOLi4uy6jposNTVVY8eO1aBBg7R69Wqbw7CSVFJSou3bt2vs2LEaOXKkMjMzXdCpfdavX68hQ4ZYHYaVpCtXrmjBggXq16+fjh075vSeDh48qN/+9rdatGiR1WFYSbp586aWL1+uF154weKzbY2srCxNnjxZffv21WeffWZzGFb68Tt73759mjRpkgYPHqyTJ0861BMAAAAAAMD9QiAWAAAAAAAAgMtUVFRoypQp+vrrr+2usX//fkVFRdkVyqqsrNQnn3yi4cOH6/jx43b38HPfffedhgwZ4rSA4MKFC60OnbZo0ULdu3c3nDt8+LAGDBig1atXq6yszCm9Xbx4UWPHjtXatWudUu/SpUuKjo7Whg0b7Fp//vx5jRo1StnZ2XfHNmzYoFGjRikjI8PmemVlZZo7d+49uxnXdl999ZWioqL0z3/+02k1Dxw4oKioKJ04ccJpNe0VFxend999V6WlpXatz8rK0ogRI0x2tXbEunXr9MorrygrK8vuGjk5ORo5cqQOHTpk1/qtW7dqwIABSkpKsipkbo0zZ85o6NCh2rlzp1PqAQAAAAAAuBKBWAAAAAAAAAAuM3/+fG3evNlwzsfHRy1atFBERISCg4Mt1rl8+bLGjh2rc+fO2XT+uXPnasmSJU4Lh/3UDz/8oLffftvh2kePHtXnn39u9fFDhgwxHD906JDGjh2ry5cvO9SPkYqKCs2ePVupqakO1cnPz9eoUaNs/hx/Ljc3V++++64kKSkpSdOmTbM7HHnHX/7yF6eGpqvL559/rlmzZjn892EkPz9fb775poqLi51e21rbtm3Tn/70J8M5T09PNWnSRB07dlTjxo3l4eFhtk5paaneffddJSUlOdzT3r179d577xmG0N3c3NS8eXN17txZbdu2Vb169SzWKi4u1htvvKHr16/b1ENSUpImTpyogoICm9ZZo6SkRG+99ZauXLni9NoAAAAAAADO5FndDQAAAAAAAAD4ZTp16pT27t1rMv7oo49q9OjReuKJJ+Tp+f9/okxLS1NiYqJWrlxpGLi7du2axo8fr8TERPn6+lZ5/sTERH355Zdm53v27KnnnntO7du314MPPqi6devKy8tLBQUFunr1qk6dOqU9e/Zo8+bNunXrlmGNo0ePat26dXrppZeq7MdIRUWF5syZo4qKCquO9/T01KBBg0zG8/LyNGnSJBUVFRmua9q0qZ5//nl1795dLVu2VP369eXr66uioiLdvHlT586d07Fjx/S///u/unDhgmGN0tJSzZo1S6tXr7b6+n7uT3/60z07u0pSw4YN9eKLLyoyMlKtW7eWr6+vbty4oZMnT2r9+vXasmWLYa09e/Zo5cqVio2Nvefvz9PTUy+88IKefvppderUSQ0aNFBhYaEyMzO1ceNGxcfHq7Cw0PD6li5dqiVLlth9fdXtwIEDmj9/vtn5Tp06qV+/furUqZNCQ0MVEBAgb29vFRYW6tq1azpz5owOHjyojRs3mg1kZmZmatmyZXrzzTddcxEWVFRUaNq0aSYh9AcffFBjxoxR//79FRAQcHc8Ly9Pf//73/Xpp58qJyfHsN7UqVPVpk0btWnTxu6+jGo/9NBDGjlypJ588kn5+/vfHa+srNSZM2cUFxenxMRElZeXm6y9evWqlixZcjf0XZXz589r+vTpZr9HWrdurX79+umRRx5RWFiYAgIC7j7/169fV2pqqo4cOaINGzYoNzfXsEZ+fr4++ugji/cXAAAAAABAdXOrdMXWCAAAAAAAAAD+rUybNq3K1497eXlpxowZGjp0qNzc3Mwed+HCBU2ePFknT540nB85cqTee+89i+cqKCjQ008/bRjqe+CBBxQbG6tu3bpZrHFHfn6+5s2bp/j4eMP5Ll266Ouvv66yTnx8vKZPn27xGDc3N/Xv318vv/yy2rdvrzp16igrK0v79u3T2rVrFRISoqVLl5qsmzlzpr755hvDehMmTNC4ceNUp06dKnusrKxUYmKi/vM//1P5+fmGx2zevFlhYWFV1goPD7c47+bmpldeeUVvvPGG/Pz8zB6XkJCg6dOnW7UTb+fOnTV//ny1aNHC7DEZGRkaN26c0tLSTObc3d21detWNW3atMpz1TQVFRV64YUXdP78eZM5f39//fnPf9azzz5rVa3bt2/rk08+0YoVKwxDliEhIdq5c6fF51gyf89PmDBBEydOtGvtzw0dOlRTp061eA8VFBRozpw52rBhg+F8RESE1q1bZ3FHWUnav3+/Ro0aZfGYgIAAzZw5UwMHDqyy9127dmnSpEmGgfvAwEDt3r3bqud2zJgx2r17t8m4l5eX3nvvPUVHR8vdveoXBpaXl2vFihX65JNPVFJSYjJfp04d7d27956ALwAAAAAAQE1S9S8gAAAAAAAAAOAgLy8vLVq0SMOGDasyRBcaGqpVq1apc+fOhvNfffWVMjMzLdZYvXq1YRjW399fX375pdVhWOnHYNq8efM0cuRIw/ljx47p0qVLVtczx8PDQ7GxsfrLX/6i7t27y9/fX3Xq1FFYWJiGDRum+Ph4zZs3z2RdTk6O2bDulClTNGHCBKtCddKPIdXBgwfrb3/7m7y8vAyP+e6776y/KAs++OADTZs2zWKQUZIGDx6sqKioKuv16dNHX375pcUwrPTjbqLLly83/DupqKjQ/v37qzxXTbR582bDMKynp6eWL19udRhWkry9vfXOO+9o6tSphvOXLl3SsWPH7G3VaV5//XXNnj27ynvI399fH330kYYOHWo4f+rUKW3atMnhfurVq6e4uDirwrCS9Pjjj2vmzJmGc/n5+Tp48GCVNZKTkw3DsJL0X//1Xxo6dKhVYVjpx++gmJgYffzxx4bzJSUl+sc//mFVLQAAAAAAgOpAIBYAAAAAAACAy33wwQd68sknrT4+ICBAS5cuVVBQkMlcWVmZli9fbnH9+vXrDcffeusthYaGWt3HT02ePFn16tUzGa+srDS7m60tZs6cqX79+lk8xujvIzExUWVlZSbjDz/8sGJiYuzq5aGHHtKgQYMM506cOGFXzZ+KiorSsGHDrD7+tddeszjfpEkTLViwQN7e3lbVa968uaKjow3nakLQ0x7r1q0zHH/11Vf1yCOP2FVz1KhRZgPGzrgPHDFgwABNnjzZ6uPd3Nw0a9Yss2H4pUuXWrULsSXz5s1T+/btbVoTFRWlNm3aGM4lJydXud7c5/7888/r+eeft6mXO5599lk99thjhnPV/bkDAAAAAABYQiAWAAAAAAAAgEv17t1bL730ks3rGjZsaPaV6Zs2bVJxcbHhXGpqqtLT003GQ0JCNGTIEJv7uKNu3br69a9/bTh35coVu+tKP+5aai6gWRVzO7aOHz++yt14LXnuuecMxy9fvmx3TenH3YLffPNNm9aEhYUpLCzM7HxMTIxhWNkSc59lVbsP10Q3b97Uvn37TMZ9fHw0ZswYu+u6u7ub3VnW0XveEY0aNdJ7771n8zo3NzfNnTvXcHfgtLQ0HTlyxO6eevXqpaefftquteZ2lE1LS7O4rrKyUlu3bjWcGz9+vF293OGq5x8AAAAAAMCVCMQCAAAAAAAAcClzr123xoABA9S4cWOT8cLCQu3YscNwTXZ2ttq2bWvyGvUXXnjBMAhni3bt2hmOFxYWOlR32LBh8vDwsHldaWmpfHx81LBhw3vGGzZsqD59+jjUk6uuNTIyUiEhITavCw8PNxz38fExu5utJS1btjQcv3Hjhs21qltmZqbCw8Pl7+9/z3hkZKSCg4Mdqu2q+8ARf/jDH2wOQN8RFhZmNuy5adMmu3uyJ/R/x0MPPWQ4npOTY3Fdbm6umjZtarJzdMeOHc3uOmutmvi5AwAAAAAAVMWzuhsAAAAAAAAA8Mv18MMPq23btnavd3d316BBg7Rs2TKTud27d6tfv34m45GRkYqMjJT0426GGRkZyszMVJcuXezu4w5zIbzbt287VNfca9yr4uXlpdWrV0uSbt26dfdavby85O7u2H4IPw/Z3VFSUuJQXXuDug888IDheEREhOrWrWtzPXNB0YKCAptrVbeIiAglJCRIkvLy8pSZmamMjAy1atXK4dquuuft5ePjo9/+9rcO1RgyZIhh+HX37t1213zsscfsXtuiRQvD8fz8fIvrQkJCtG7durvHZmRkKCMjwyQgbw9zn7ujzz8AAAAAAIArEYgFAAAAAAAA4DIDBgxwuMZTTz1lGIg9ePBglWsbNWqkRo0aqWvXrg73IcnsDrPl5eV21/Tx8VH79u3tXn+Hn5+f2rVrZ3ZnR1u54lol2X2t5kKvHTt2tKuej4+P4XhZWZld9WqK4OBgBQcHm9111Fauug/sFRkZqcDAQIdq9OzZU35+frp169Y94xcuXNClS5ds3sG4SZMmql+/vt39BAQEGI7bEjoODAxUx44d7X4efq6mfe4AAAAAAADWcGyLAAAAAAAAAACwoHPnzg7XCA8Pl4eHh8l4enq6SaDNVcrKynTgwAHt2LHDcL6ystLu2u3bt5eXl5fd610hIyNDcXFxhnMVFRUO1Q4NDbVrndE9IP0YeraHucAfflRZWamUlBR9++23ZuergzOCvu7u7goPDzecO3PmjM31mjRp4lA/vr6+huPVtRtramqq1q5dazjn6PMPAAAAAADgSuwQCwAAAAAAAMAlvLy8zIbObOHj46MWLVro3LlzJnOZmZlOOcdPlZSU6Pz58zp79qzOnDmjlJQUnThxwmL41pFwoL2BTmf54YcfdPbsWaWmpur48eNKTk5WTk6OS87l5eVl9lXs9vL393dqvX9HZWVlunDhglJTU5WamqqUlBSlpKQoPz/f7JrqCsQ6awfUdu3a6ejRoybjGRkZNtdq0KCBM1q67yoqKpSZmXn3+b/zuV+9erW6WwMAAAAAALALgVgAAAAAAAAALvGrX/3KabtwNmjQwDAQm5OTY1cgtri4WOfPn1d6eroyMjKUmZmpzMxMXbx4UdnZ2fd1F0RHX/9elcrKSl28eFHnz583udbMzEwVFRW59Pw/5e/vLzc3N6fW9PHxcWq9X6rS0lKlpaUpLS1NGRkZdz//zMxMZWdnq7S0tLpbtIq9Owz/nLkQa3Z2ts21avJuw+Xl5bpw4YLS0tLuft6ZmZnKyMhQVlZWte1CCwAAAAAA4AoEYgEAAAAAAAC4REBAgNNq1a1b13C8sLDQ6hr/+te/tHHjRu3atUvff/+9ysvLndWeQ5y9Y6ok3bhxQ5s3b9aWLVuUnJysgoICp5/DHjU5OPhLlJGRoY0bN2rHjh06c+ZMrQm9WuKs7xVzOwtb2gnaHE/PmvVPLbm5ufr222+1detWnThxQsXFxdXdEgAAAAAAwH1Rs36lAQAAAAAAAPCL4cxArLnwmjVBr8OHD2v+/PmGr0e3lbu7u9N3j/X19XVarby8PC1evFhr1qxxOPzoimutacHBX6rU1FTNnz9fu3btcriWK+4De3l4eJgNx9vKke+UmiorK0sff/yxkpKSHP7MatLnDgAAAAAAYC1+fQQAAAAAAADgEs4MP5p7rbelHUdLS0s1Z84cffPNNw6du2nTpurZs6eefvppXblyRe+//75D9Vxl27ZteueddxzaDdbPz09du3bV448/rt/85jfq06ePEzvE/bBo0SItXbrUoR2QGzVqpB49eujJJ5+Uv7+/fv/73zuxQ/t5eHg4rdbt27cNx2vrLsZr1qzR3LlzzX5XWqNevXrq3r27nnjiCUVERCgqKsqJHQIAAAAAALgegVgAAAAAAAAALlFYWOi0WuZCnn5+fobjxcXFGj9+vHbv3m31Odzd3dWsWTO1bNlS4eHh6tChgzp16qQmTZrcPSY+Pt62xu+TNWvWaNasWTbt6BgUFKRWrVqpdevW6tChgzp27Kjw8HB2ca2lKisrNXXqVG3YsMHqNW5ubmrcuLFatWqltm3b3r0PWrRocfeY/fv3u6Bb+5SUlKikpMQpoVVbv1NqstjYWC1btsymNY0aNVLLli3Vtm1bRUREqGPHjmrdurXc3d0lSRcvXnRFqwAAAAAAAC7FL5sAAAAAAAAAXMKRnUqtrRUcHGw4/tFHH1kMw3p5ealLly56+OGH1b59e7Vq1UphYWFVBu0c2XXTVY4dO6Y5c+ZYDMO2aNFCjz76qDp06KDWrVurVatWql+/vsW6ZWVlzm4VLvTZZ59ZDMN6eHioQ4cO6tq1qyIiItSqVSu1bNlSvr6+FuvWtHu+oKDA7HNvax0jzqh9P23evNliGNbNzU3h4eHq1q2bIiIi7j7//v7+FuvWtM8dAAAAAADAGgRiAQAAAAAAALjE5cuXnVYrMzPTcDw0NNRkbPfu3Vq9erXh8b6+vho3bpxGjBihwMBAm/soLi62eY0rlZSU6K233jIbXn3iiSc0ZcoUtW3b1ubaNe1aYd7Zs2e1cOFCwzlPT08NHz5c48aNU8OGDW2uXdPugytXrjgltJqRkWE4bvSdUlNdvXpV77//vuGcm5ubBg4cqAkTJqh58+Y2165pnzsAAAAAAIA1CMQCAAAAAAAAcInr16/r0qVLCgkJcahOTk6O8vLyTMaDgoIMdzldtGiRYR1/f3/FxcUpIiLC7l6uXLli91pXSEhIMBsWHj9+vCZNmmR37atXr9q9FvfXsmXLVFpaajLu5eWlJUuW6PHHH7e7dk27D86cOWNXwPvnTp8+bTgeFhbmcO37ZdWqVbpx44bh3IcffqiXXnrJ7to17XMHAAAAAACwhnt1NwAAAAAAAADgl+vkyZMO1zhx4oTheLdu3UzGsrKydPToUcPjp02b5lAYVpIuXrxoOF5RUeFQXXtt2rTJcLxr164OhWEl87vyVte1wlhxcbG2bt1qOBcTE+NQGFaqeffBqVOnHK6Rn59veF1BQUFq3bq1w/XvF3PP/4ABAxwKw0o173MHAAAAAACwBoFYAAAAAAAAAC6zfft2h2skJSUZjvfq1ctkzFwY1t/fXwMHDnS4F3P1qyMkVlFRoZSUFMO5ESNGOFzf3LWWl5c7XBvOc/r0abOvtx8+fLjD9WvafbBjxw6HayQlJamystJkvEePHnJ3rx3/bJKbm6usrCzDOZ5/AAAAAADw76p2/LIDAAAAAAAAoFZKSkpSUVGR3evz8/MNd7/08PDQs88+azKenZ1tWCc0NFR16tSxuw9JOnLkiNkAmtHr6l3t2rVrZoOQju5yWVlZqW+//dZwrqyszKHacC5z93xQUJAaNWrkUO2cnBwdOnTIcK667oP09HSzPVkrPj7ecLxv374O1b2fcnJyzM45+vwXFRWZ3XWY5x8AAAAAANRkBGIBAAAAAAAAuExhYaFWrlxp9/pPPvlEt2/fNhn/9a9/rZCQEJNxo10fJefsahgbG2t2rjoCseauVXL8ehMSEpSWlmY4Vx3XCts5455fuHCh2d2Pq/M+WLx4sd1rt2zZouTkZJPxevXqGYbsaypXPv9/+9vfdPPmTcM5nn8AAAAAAFCTEYgFAAAAAAAA4FKLFy9WamqqzesOHDig//mf/zGce/XVVw3HGzRoYDh+7tw55efn29zDHZ9++qkOHDhgdt4otOtq9evXN/t69yNHjthd9/z585o3b57Z+eq4VpgXHBxsOH7z5k19//33dtf99ttvlZCQYHa+Ou+DPXv26JtvvrF5XV5enubMmWM4N2zYMId3kb6fzH3uknT06FG76x46dEh//etfzc7z/AMAAAAAgJqMQCwAAAAAAAAAlyotLdVrr71mdsdRI8eOHdP48eMNd0Hs1auXHnvsMcN1rVq1MtvDZ599ZvX5f2rlypX6+OOPLR5TVFRkV21HeHh4KDQ01HBu5cqVdgXXUlNTNWbMGIvh4ZKSEqfsPgrnaNmypdzc3Aznli5dalfNpKQkTZs2zeIx1XHP/9ScOXO0detWq4+/evWqRo8erStXrpjMBQUFKSYmxpntuVzjxo3l5+dnOPfXv/7V4g6y5hw4cEB/+MMfLO4CW92fOwAAAAAAgCUEYgEAAAAAAAC4XE5OjoYPH64tW7ZYPK6yslKrV6/Wq6++avjKbj8/P82cOdPs+s6dO5vdJfbTTz9VYmKi1T1nZ2drwoQJmjdvXpXhMnOvF3e1J5980nA8IyNDb775ptXhtdLSUq1cuVIvv/yysrOzqzzekd124VwPPPCAOnToYDi3adMmm0Kx165d08yZM/XHP/5RJSUlFo+trnv+jtLSUk2aNElLly61GOCUpL179+rll182u1P19OnTFRAQ4Io2XcbLy0t9+vQxnDt8+LA++OADlZWVWVXr1q1bio2N1auvvlrls82zDwAAAAAAajLP6m4AAAAAAAAAwL+Hq1ev6o033lD37t01cOBAdevWTSEhISovL1dOTo52796thIQEnTlzxmyNmTNnmt0FVpLc3d01dOhQLV682GSuoqJCU6dO1fbt2zVy5Eg9/PDD8vLyuueYgoICHTx4UH//+9+VlJRUZdDujsuXL1t1nLNFR0crLi7OsM/t27dr4MCBGjdunJ555hkFBQXdM19eXq7U1FRt27ZNa9euVU5OjtXnvXLliurXr+9o+3CS3/3ud3r33XcN5xYuXKh9+/ZpzJgx6tmzp7y9ve+ZLy4u1tGjR/Xdd98pMTFRt27dsuqc1XXP/1RZWZkWLlyoxMREDR48WJGRkWrSpIm8vb2Vm5ur5ORkbdy4UTt37jRbIyoqSoMGDbp/TTvR7373O7P/yWDNmjU6ceKEYmJiFBkZqbp1694zX1JSopMnT+r//u//tH79el2/ft2qc966dUu3bt0yuzstAAAAAABAdSIQCwAAAAAAAMBlWrRoofT09HvGDh48qIMHD9pc6+2331ZUVFSVx8XExCg+Pt7sTqdbtmzRli1b5O3trWbNmsnf31+lpaW6fv26srOzze4G6+npqXfeeUcJCQk6ffr0PXPnzp1TSUmJ6tSpY/N1OSIsLEwjRozQihUrDOcvXLigGTNmaMaMGWratKmCgoLk4eGhgoICZWVl6fbt22Zr9+7dWw899JBhuPj06dNq06aN064Djhk8eLBWr16tEydOGM7v27dP+/btk6enp5o1a6bAwECVl5crPz9fWVlZqqioMFv7tdde0/fff68dO3bcM37t2jXl5OSocePGTr2Wqhh9p6Snpys2NlaxsbE21XrmmWc0Z84cJ3Z3f/Xs2VPPPfecvvvuO8P5kydPavLkyXJ3d1ezZs1Ur149ST/u7puVlWUx8D9o0CB5e3trzZo1JnOnT59W165dnXMRAAAAAAAATuRe3Q0AAAAAAAAA+OV6//339cwzzzhUw8fHRx9++KFiYmKsOt7Pz0/Lli2r8hXot2/f1rlz55ScnKxTp07phx9+MBuGDQ0NVVxcnEaPHq327dubzBcVFeno0aNW9edsU6ZMUe/evas8LisrSydPnlRKSorOnz9vNgzr5eWlP/7xj1q+fLl69uxpeMyePXsc6hnO5e7ursWLF+tXv/qVxePKysqUnp6ulJQUnTx5UpmZmWbDsA0bNtTSpUv11ltvqWPHjobHVMd90L9/f7399tsO1xk6dKgWLlxoskt0bTNv3jzD76SfqqioUEZGho4fP67jx48rPT3dbBi2bt26mjt3rj766CN16dLF8BiefwAAAAAAUFMRiAUAAAAAAADgMp6enlq4cKFef/11eXra/sKqLl26aN26dYqOjrZpXbt27bRixQo1b97c5nP+lLe3t8aNG6cNGzbokUcekSR1797d8NjNmzc7dC57eXl5adGiRerfv7/DtXr27Kn4+Hj9/ve/l7u7uzp27Gj4avR//OMfKi4udvh8cJ7GjRtr1apV6tChg0N1PDw8FB0drU2bNumpp56SVPPu+ZiYGC1YsEBBQUE2r23atKkWL16s2bNn1/owrCT5+/vrs88+02OPPeZwrb59+2rTpk166aWXJEndunWTm5ubyXFbtmxx+FwAAAAAAACuQCAWAAAAAAAAgEt5eXlp8uTJWrdunXr16lXl8W5uburRo4eWLFmir7/+Wm3atLHrvJ06ddKGDRs0ZswYBQYG2rQ2MDBQr7zyirZs2aIpU6bI19f37lzfvn0NQ6IJCQnKy8uzq1dH+fn5acGCBYqNjVV4eLhNa93d3dW7d299/vnnWrVqldq2bXtP3b59+5qsuXbtmtavX+9w33Cu0NBQrVmzRpMnT1ajRo1sWuvr66sXX3xRGzdu1Icffqj69evfnXv00UfVrFkzkzW7du3S2bNnHe7bHv3791dSUpKGDBliVbC1TZs2mjFjhjZv3uzwrtU1TYMGDfT5559r1qxZevDBB21a6+Xlpd/85jdau3at/vu//1tNmjS5O9e8eXPDMPTZs2e1c+dOh/sGAAAAAABwNrdKc+8AAwAAAAAAAAArTZs2TQkJCSbjX3zxhXr06HHPWHp6unbt2qXTp08rNzdXJSUlCggIUOPGjdWpUyf16tVLjRs3dmp/RUVF2rZtm44cOaLjx4/r8uXLunHjhoqLi+Xj46Pg4GA1b95cHTp0UI8ePdSzZ0/VqVPHbL309HQVFRWZjDdr1kwBAQFO7d0eR44c0Z49e3Ts2DFlZGToxo0bKigokLu7uwICAtSkSRO1adNGjzzyiJ544gmL4clr164pJyfHZNzf39/hHXjhOqWlpdq5c6cOHTqklJQU5eTkKD8/X4WFhfL29lZQUJCaNWum9u3bq3v37urTp889we+fy8rKUn5+vsl4SEiIgoODnd5/fHy8pk+fbjI+YcIETZw48Z6xvLw87dq1S8nJycrKylJRUZH8/PwUHBysiIgIde/eXe3atXN6jzVRRUWF9u7dq/379ys5OVkXL17UzZs3VVBQIE9PTwUGBqpZs2YKDw9Xt27dFBkZafE/DOTm5urq1asm48HBwQoJCXHlpQAAAAAAANiMQCwAAAAAAAAAh9kSiAWAqtgSiAUAAAAAAAAkyb26GwAAAAAAAAAAAAAAAAAAAAAcQSAWAAAAAAAAAAAAAAAAAAAAtRqBWAAAAAAAAAAAAAAAAAAAANRqBGIBAAAAAAAAAAAAAAAAAABQqxGIBQAAAAAAAAAAAAAAAAAAQK1GIBYAAAAAAAAAAAAAAAAAAAC1mmd1NwAAAAAAAAAAQE31xhtv6PLly9XdhqGvvvqqulsAAAAAAAAAagwCsQAAAAAAAAAAmHHixAllZWVVdxsAAAAAAAAAquBe3Q0AAAAAAAAAAAAAAAAAAAAAjiAQCwAAAAAAAAAAAAAAAAAAgFqNQCwAAAAAAAAAAAAAAAAAAABqNbfKysrK6m4CAAAAAAAAAAAAAAAAAAAAsBc7xAIAAAAAAAAAAAAAAAAAAKBWIxALAAAAAAAAAAAAAAAAAACAWo1ALAAAAAAAAAAAAAAAAAAAAGo1ArEAAAAAAAAAAAAAAAAAAACo1QjEAgAAAAAAAAAAAAAAAAAAoFYjEAsAAAAAAAAAAAAAAAAAAIBajUAsAAAAAAAAAAAAAAAAAAAAajUCsQAAAAAAAAAAAAAAAAAAAKjVCMQCAAAAAAAAAAAAAAAAAACgViMQCwAAAAAAAAAAAAAAAAAAgFqNQCwAAAAAAAAAAAAAAAAAAABqNQKxAAAAAAAAAAAAAAAAAAAAqNUIxAIAAAAAAAAAAAAAAAAAAKBWIxALAAAAAAAAAAAAAAAAAACAWo1ALAAAAAAAAAAAAAAAAAAAAGo1ArEAAAAAAAAAAAAAAAAAAACo1QjEAgAAAAAAAAAAAAAAAAAAoFYjEAsAAAAAAAAAAAAAAAAAAIBajUAsAAAAAAAAAAAAAAAAAAAAarX/B8h0RLROjIWfAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "image/png": { - "height": 710, - "width": 1378 - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -319,9 +274,7 @@ " cv=kfold,\n", ")\n", "gs.fit(x, y_class)\n", - "# plot_grid_search_results(gs, plot_type='scatter').show()\n", - "plt.xscale(\"log\")\n", - "plot_grid_search_results(gs, plot_type=\"scatter\")" + "plot_grid_search_results(gs, plot_type=\"bar\")" ] }, { @@ -335,54 +288,17 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 9, "metadata": {}, "outputs": [ - { - "ename": "TypeError", - "evalue": "'<' not supported between instances of 'tuple' and 'int'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "File \u001b[0;32m~/miniconda3/envs/mavrl/lib/python3.9/site-packages/numpy/core/fromnumeric.py:59\u001b[0m, in \u001b[0;36m_wrapfunc\u001b[0;34m(obj, method, *args, **kwds)\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 59\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mbound\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 60\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[1;32m 61\u001b[0m \u001b[38;5;66;03m# A TypeError occurs if the object does have such a method in its\u001b[39;00m\n\u001b[1;32m 62\u001b[0m \u001b[38;5;66;03m# class, but its signature is not identical to that of NumPy's. This\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[38;5;66;03m# Call _wrapit from within the except clause to ensure a potential\u001b[39;00m\n\u001b[1;32m 67\u001b[0m \u001b[38;5;66;03m# exception has a traceback chain.\u001b[39;00m\n", - "\u001b[0;31mTypeError\u001b[0m: '<' not supported between instances of 'tuple' and 'int'", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[11], line 10\u001b[0m\n\u001b[1;32m 2\u001b[0m gs \u001b[38;5;241m=\u001b[39m GridSearchCV(\n\u001b[1;32m 3\u001b[0m nn,\n\u001b[1;32m 4\u001b[0m param_grid\u001b[38;5;241m=\u001b[39m{\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhidden_layer_sizes\u001b[39m\u001b[38;5;124m\"\u001b[39m: [(\u001b[38;5;241m3\u001b[39m), (\u001b[38;5;241m5\u001b[39m), (\u001b[38;5;241m7\u001b[39m), (\u001b[38;5;241m5\u001b[39m, \u001b[38;5;241m3\u001b[39m), (\u001b[38;5;241m7\u001b[39m, \u001b[38;5;241m5\u001b[39m), (\u001b[38;5;241m7\u001b[39m, \u001b[38;5;241m5\u001b[39m, \u001b[38;5;241m3\u001b[39m)]},\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 7\u001b[0m cv\u001b[38;5;241m=\u001b[39mkfold,\n\u001b[1;32m 8\u001b[0m )\n\u001b[1;32m 9\u001b[0m gs\u001b[38;5;241m.\u001b[39mfit(x, y_reg)\n\u001b[0;32m---> 10\u001b[0m \u001b[43mplot_grid_search_results\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mplot_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mbar\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", - "Cell \u001b[0;32mIn[6], line 20\u001b[0m, in \u001b[0;36mplot_grid_search_results\u001b[0;34m(gs, plot_type, ylim)\u001b[0m\n\u001b[1;32m 18\u001b[0m fig, ax \u001b[38;5;241m=\u001b[39m plt\u001b[38;5;241m.\u001b[39msubplots(figsize\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m16\u001b[39m, \u001b[38;5;241m8\u001b[39m))\n\u001b[1;32m 19\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m plot_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbar\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m---> 20\u001b[0m ax \u001b[38;5;241m=\u001b[39m \u001b[43msns\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbarplot\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mscore\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mhue\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtype\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresults\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 21\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 22\u001b[0m ax \u001b[38;5;241m=\u001b[39m sns\u001b[38;5;241m.\u001b[39mscatterplot(x\u001b[38;5;241m=\u001b[39mx, y\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mscore\u001b[39m\u001b[38;5;124m\"\u001b[39m, hue\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtype\u001b[39m\u001b[38;5;124m\"\u001b[39m, data\u001b[38;5;241m=\u001b[39mresults)\n", - "File \u001b[0;32m~/miniconda3/envs/mavrl/lib/python3.9/site-packages/seaborn/categorical.py:2343\u001b[0m, in \u001b[0;36mbarplot\u001b[0;34m(data, x, y, hue, order, hue_order, estimator, errorbar, n_boot, units, seed, orient, color, palette, saturation, fill, hue_norm, width, dodge, gap, log_scale, native_scale, formatter, legend, capsize, err_kws, ci, errcolor, errwidth, ax, **kwargs)\u001b[0m\n\u001b[1;32m 2339\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ax\n\u001b[1;32m 2341\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m dodge \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mauto\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 2342\u001b[0m \u001b[38;5;66;03m# Needs to be before scale_categorical changes the coordinate series dtype\u001b[39;00m\n\u001b[0;32m-> 2343\u001b[0m dodge \u001b[38;5;241m=\u001b[39m \u001b[43mp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dodge_needed\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2345\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m p\u001b[38;5;241m.\u001b[39mvar_types\u001b[38;5;241m.\u001b[39mget(p\u001b[38;5;241m.\u001b[39morient) \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcategorical\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m native_scale:\n\u001b[1;32m 2346\u001b[0m p\u001b[38;5;241m.\u001b[39mscale_categorical(p\u001b[38;5;241m.\u001b[39morient, order\u001b[38;5;241m=\u001b[39morder, formatter\u001b[38;5;241m=\u001b[39mformatter)\n", - "File \u001b[0;32m~/miniconda3/envs/mavrl/lib/python3.9/site-packages/seaborn/categorical.py:384\u001b[0m, in \u001b[0;36m_CategoricalPlotter._dodge_needed\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 382\u001b[0m groupers \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m({\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39morient, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcol\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrow\u001b[39m\u001b[38;5;124m\"\u001b[39m} \u001b[38;5;241m&\u001b[39m \u001b[38;5;28mset\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvariables))\n\u001b[1;32m 383\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhue\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvariables:\n\u001b[0;32m--> 384\u001b[0m orient \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mplot_data\u001b[49m\u001b[43m[\u001b[49m\u001b[43mgroupers\u001b[49m\u001b[43m]\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvalue_counts\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 385\u001b[0m paired \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mplot_data[[\u001b[38;5;241m*\u001b[39mgroupers, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhue\u001b[39m\u001b[38;5;124m\"\u001b[39m]]\u001b[38;5;241m.\u001b[39mvalue_counts()\n\u001b[1;32m 386\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m orient\u001b[38;5;241m.\u001b[39msize \u001b[38;5;241m!=\u001b[39m paired\u001b[38;5;241m.\u001b[39msize\n", - "File \u001b[0;32m~/miniconda3/envs/mavrl/lib/python3.9/site-packages/pandas/core/frame.py:7267\u001b[0m, in \u001b[0;36mDataFrame.value_counts\u001b[0;34m(self, subset, normalize, sort, ascending, dropna)\u001b[0m\n\u001b[1;32m 7264\u001b[0m subset \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcolumns\u001b[38;5;241m.\u001b[39mtolist()\n\u001b[1;32m 7266\u001b[0m name \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mproportion\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m normalize \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcount\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m-> 7267\u001b[0m counts \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgroupby\u001b[49m\u001b[43m(\u001b[49m\u001b[43msubset\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdropna\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdropna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mobserved\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgrouper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msize\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 7268\u001b[0m counts\u001b[38;5;241m.\u001b[39mname \u001b[38;5;241m=\u001b[39m name\n\u001b[1;32m 7270\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m sort:\n", - "File \u001b[0;32m~/miniconda3/envs/mavrl/lib/python3.9/site-packages/pandas/core/groupby/ops.py:689\u001b[0m, in \u001b[0;36mBaseGrouper.size\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 684\u001b[0m \u001b[38;5;129m@final\u001b[39m\n\u001b[1;32m 685\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21msize\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Series:\n\u001b[1;32m 686\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 687\u001b[0m \u001b[38;5;124;03m Compute group sizes.\u001b[39;00m\n\u001b[1;32m 688\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 689\u001b[0m ids, _, ngroups \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgroup_info\u001b[49m\n\u001b[1;32m 690\u001b[0m out: np\u001b[38;5;241m.\u001b[39mndarray \u001b[38;5;241m|\u001b[39m \u001b[38;5;28mlist\u001b[39m\n\u001b[1;32m 691\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ngroups:\n", - "File \u001b[0;32mproperties.pyx:36\u001b[0m, in \u001b[0;36mpandas._libs.properties.CachedProperty.__get__\u001b[0;34m()\u001b[0m\n", - "File \u001b[0;32m~/miniconda3/envs/mavrl/lib/python3.9/site-packages/pandas/core/groupby/ops.py:729\u001b[0m, in \u001b[0;36mBaseGrouper.group_info\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 727\u001b[0m \u001b[38;5;129m@cache_readonly\u001b[39m\n\u001b[1;32m 728\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mgroup_info\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28mtuple\u001b[39m[npt\u001b[38;5;241m.\u001b[39mNDArray[np\u001b[38;5;241m.\u001b[39mintp], npt\u001b[38;5;241m.\u001b[39mNDArray[np\u001b[38;5;241m.\u001b[39mintp], \u001b[38;5;28mint\u001b[39m]:\n\u001b[0;32m--> 729\u001b[0m comp_ids, obs_group_ids \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_compressed_codes\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 731\u001b[0m ngroups \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlen\u001b[39m(obs_group_ids)\n\u001b[1;32m 732\u001b[0m comp_ids \u001b[38;5;241m=\u001b[39m ensure_platform_int(comp_ids)\n", - "File \u001b[0;32m~/miniconda3/envs/mavrl/lib/python3.9/site-packages/pandas/core/groupby/ops.py:753\u001b[0m, in \u001b[0;36mBaseGrouper._get_compressed_codes\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 750\u001b[0m \u001b[38;5;66;03m# FIXME: compress_group_index's second return value is int64, not intp\u001b[39;00m\n\u001b[1;32m 752\u001b[0m ping \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgroupings[\u001b[38;5;241m0\u001b[39m]\n\u001b[0;32m--> 753\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mping\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcodes\u001b[49m, np\u001b[38;5;241m.\u001b[39marange(\u001b[38;5;28mlen\u001b[39m(ping\u001b[38;5;241m.\u001b[39mgroup_index), dtype\u001b[38;5;241m=\u001b[39mnp\u001b[38;5;241m.\u001b[39mintp)\n", - "File \u001b[0;32m~/miniconda3/envs/mavrl/lib/python3.9/site-packages/pandas/core/groupby/grouper.py:691\u001b[0m, in \u001b[0;36mGrouping.codes\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 689\u001b[0m \u001b[38;5;129m@property\u001b[39m\n\u001b[1;32m 690\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcodes\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m npt\u001b[38;5;241m.\u001b[39mNDArray[np\u001b[38;5;241m.\u001b[39msignedinteger]:\n\u001b[0;32m--> 691\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_codes_and_uniques\u001b[49m[\u001b[38;5;241m0\u001b[39m]\n", - "File \u001b[0;32mproperties.pyx:36\u001b[0m, in \u001b[0;36mpandas._libs.properties.CachedProperty.__get__\u001b[0;34m()\u001b[0m\n", - "File \u001b[0;32m~/miniconda3/envs/mavrl/lib/python3.9/site-packages/pandas/core/groupby/grouper.py:801\u001b[0m, in \u001b[0;36mGrouping._codes_and_uniques\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 796\u001b[0m uniques \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_uniques\n\u001b[1;32m 797\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 798\u001b[0m \u001b[38;5;66;03m# GH35667, replace dropna=False with use_na_sentinel=False\u001b[39;00m\n\u001b[1;32m 799\u001b[0m \u001b[38;5;66;03m# error: Incompatible types in assignment (expression has type \"Union[\u001b[39;00m\n\u001b[1;32m 800\u001b[0m \u001b[38;5;66;03m# ndarray[Any, Any], Index]\", variable has type \"Categorical\")\u001b[39;00m\n\u001b[0;32m--> 801\u001b[0m codes, uniques \u001b[38;5;241m=\u001b[39m \u001b[43malgorithms\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfactorize\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# type: ignore[assignment]\u001b[39;49;00m\n\u001b[1;32m 802\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgrouping_vector\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msort\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_sort\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43muse_na_sentinel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dropna\u001b[49m\n\u001b[1;32m 803\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 804\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m codes, uniques\n", - "File \u001b[0;32m~/miniconda3/envs/mavrl/lib/python3.9/site-packages/pandas/core/algorithms.py:802\u001b[0m, in \u001b[0;36mfactorize\u001b[0;34m(values, sort, use_na_sentinel, size_hint)\u001b[0m\n\u001b[1;32m 795\u001b[0m codes, uniques \u001b[38;5;241m=\u001b[39m factorize_array(\n\u001b[1;32m 796\u001b[0m values,\n\u001b[1;32m 797\u001b[0m use_na_sentinel\u001b[38;5;241m=\u001b[39muse_na_sentinel,\n\u001b[1;32m 798\u001b[0m size_hint\u001b[38;5;241m=\u001b[39msize_hint,\n\u001b[1;32m 799\u001b[0m )\n\u001b[1;32m 801\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m sort \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(uniques) \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m--> 802\u001b[0m uniques, codes \u001b[38;5;241m=\u001b[39m \u001b[43msafe_sort\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 803\u001b[0m \u001b[43m \u001b[49m\u001b[43muniques\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 804\u001b[0m \u001b[43m \u001b[49m\u001b[43mcodes\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 805\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_na_sentinel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_na_sentinel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 806\u001b[0m \u001b[43m \u001b[49m\u001b[43massume_unique\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 807\u001b[0m \u001b[43m \u001b[49m\u001b[43mverify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 808\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 810\u001b[0m uniques \u001b[38;5;241m=\u001b[39m _reconstruct_data(uniques, original\u001b[38;5;241m.\u001b[39mdtype, original)\n\u001b[1;32m 812\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m codes, uniques\n", - "File \u001b[0;32m~/miniconda3/envs/mavrl/lib/python3.9/site-packages/pandas/core/algorithms.py:1593\u001b[0m, in \u001b[0;36msafe_sort\u001b[0;34m(values, codes, use_na_sentinel, assume_unique, verify)\u001b[0m\n\u001b[1;32m 1587\u001b[0m ordered: AnyArrayLike\n\u001b[1;32m 1589\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[1;32m 1590\u001b[0m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(values\u001b[38;5;241m.\u001b[39mdtype, ExtensionDtype)\n\u001b[1;32m 1591\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m lib\u001b[38;5;241m.\u001b[39minfer_dtype(values, skipna\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m) \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmixed-integer\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1592\u001b[0m ):\n\u001b[0;32m-> 1593\u001b[0m ordered \u001b[38;5;241m=\u001b[39m \u001b[43m_sort_mixed\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1594\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1595\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n", - "File \u001b[0;32m~/miniconda3/envs/mavrl/lib/python3.9/site-packages/pandas/core/algorithms.py:1667\u001b[0m, in \u001b[0;36m_sort_mixed\u001b[0;34m(values)\u001b[0m\n\u001b[1;32m 1665\u001b[0m num_pos \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m~\u001b[39mstr_pos \u001b[38;5;241m&\u001b[39m \u001b[38;5;241m~\u001b[39mnull_pos\n\u001b[1;32m 1666\u001b[0m str_argsort \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39margsort(values[str_pos])\n\u001b[0;32m-> 1667\u001b[0m num_argsort \u001b[38;5;241m=\u001b[39m \u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margsort\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m[\u001b[49m\u001b[43mnum_pos\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1668\u001b[0m \u001b[38;5;66;03m# convert boolean arrays to positional indices, then order by underlying values\u001b[39;00m\n\u001b[1;32m 1669\u001b[0m str_locs \u001b[38;5;241m=\u001b[39m str_pos\u001b[38;5;241m.\u001b[39mnonzero()[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mtake(str_argsort)\n", - "File \u001b[0;32m~/miniconda3/envs/mavrl/lib/python3.9/site-packages/numpy/core/fromnumeric.py:1133\u001b[0m, in \u001b[0;36margsort\u001b[0;34m(a, axis, kind, order)\u001b[0m\n\u001b[1;32m 1025\u001b[0m \u001b[38;5;129m@array_function_dispatch\u001b[39m(_argsort_dispatcher)\n\u001b[1;32m 1026\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21margsort\u001b[39m(a, axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m, kind\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, order\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m):\n\u001b[1;32m 1027\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 1028\u001b[0m \u001b[38;5;124;03m Returns the indices that would sort an array.\u001b[39;00m\n\u001b[1;32m 1029\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1131\u001b[0m \n\u001b[1;32m 1132\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 1133\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_wrapfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43ma\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43margsort\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkind\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkind\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43morder\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43morder\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/miniconda3/envs/mavrl/lib/python3.9/site-packages/numpy/core/fromnumeric.py:68\u001b[0m, in \u001b[0;36m_wrapfunc\u001b[0;34m(obj, method, *args, **kwds)\u001b[0m\n\u001b[1;32m 59\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m bound(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[1;32m 60\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[1;32m 61\u001b[0m \u001b[38;5;66;03m# A TypeError occurs if the object does have such a method in its\u001b[39;00m\n\u001b[1;32m 62\u001b[0m \u001b[38;5;66;03m# class, but its signature is not identical to that of NumPy's. This\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[38;5;66;03m# Call _wrapit from within the except clause to ensure a potential\u001b[39;00m\n\u001b[1;32m 67\u001b[0m \u001b[38;5;66;03m# exception has a traceback chain.\u001b[39;00m\n\u001b[0;32m---> 68\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_wrapit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mobj\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/miniconda3/envs/mavrl/lib/python3.9/site-packages/numpy/core/fromnumeric.py:45\u001b[0m, in \u001b[0;36m_wrapit\u001b[0;34m(obj, method, *args, **kwds)\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m:\n\u001b[1;32m 44\u001b[0m wrap \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m---> 45\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mgetattr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43masarray\u001b[49m\u001b[43m(\u001b[49m\u001b[43mobj\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 46\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m wrap:\n\u001b[1;32m 47\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(result, mu\u001b[38;5;241m.\u001b[39mndarray):\n", - "\u001b[0;31mTypeError\u001b[0m: '<' not supported between instances of 'tuple' and 'int'" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACmYAAAVZCAYAAAB8ZCY5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AACmw0lEQVR4nOzdfZTWdZ34/9c1d8AMIDOMN4CIoAQiSN5kaic1bXPDVVORTbTM1jVdUzJdW8v1m7YZWsq6tcV6l52szdssRTQ9GrVh3oCHGy3yDhU0EBhBZriZu99f+eviM8DMNe9r5hp7PM7xtL6u6/O63s0/n3M6z/18cu3t7e0BAAAAAAAAAAAAQLeV9fYBAAAAAAAAAAAAAN4vhJkAAAAAAAAAAAAAiQgzAQAAAAAAAAAAABIRZgIAAAAAAAAAAAAkIswEAAAAAAAAAAAASESYCQAAAAAAAAAAAJCIMBMAAAAAAAAAAAAgEWEmAAAAAAAAAAAAQCLCTAAAAAAAAAAAAIBEhJkAAAAAAAAAAAAAiQgzAQAAAAAAAAAAABIRZgIAAAAAAAAAAAAkIswEAAAAAAAAAAAASESYCQAAAAAAAAAAAJCIMBMAAAAAAAAAAAAgEWEmAAAAAAAAAAAAQCLCTAAAAAAAAAAAAIBEhJkAAAAAAAAAAAAAiQgzAQAAAAAAAAAAABKp6O0DbKutrS2mTp0azz//fEREnHzyyTFz5sxePtX/b+PGjTFnzpx4+umnY+nSpdHQ0BCNjY3Rv3//2GOPPWL8+PFx9NFHxyc+8Yno169fbx8XAAAAAAAAAAAA6EElF2b+9Kc/fS/KLCXNzc0xe/bs+OEPfxiNjY2Zzzdu3BgvvfRSvPTSS/Hggw9GXV1dXHDBBTF9+vQoK/NgUgAAAAAAAAAAAPhbUFLF4PPPPx/XXXddbx8j4+23345p06bF9773vQ6jzI6sW7cuvvGNb8Q//dM/xfr164t8QgAAAAAAAAAAAKAUlEyYuXLlyvjCF74QW7Zs6e2j5FmzZk2ceeaZ8cILLxR0/fz58+Pzn/98bNy4MfHJAAAAAAAAAAAAgFJTEq8yX7FiRZx11lnx9ttv9/ZR8rS2tsaXv/zlWL58eeazAw88ME499dSYMGFC7LLLLvHnP/85nnrqqbj77rvjrbfeyvvu0qVL44orroj//M//7JmDAwAAAAAAAAAAAL2i18PMP/7xj/GFL3wh/vznP/f2UTJ+/OMfx1NPPZU3Ky8vj6997Wtxxhln5M333HPPOOSQQ+Lss8+Oq666Ku6///68z+fOnRtTpkyJT3ziE8U+NgAAAAAAAAAAANBLevVV5g8//HCcfvrpJRllrl+/Pr7//e9n5v/v//2/TJT516qrq+Paa6+NqVOnZj677rrrorW1Nek5AQAAAAAAAAAAgNLRK2FmY2NjXHHFFTFjxoxoamrqjSPs1J133hnr16/Pmx177LHxj//4j526/qqrroqJEyfmzd54442YO3dusjMCAAAAAAAAAAAApaXHw8yHH344pkyZEnfffXfms4qKXn+zekREtLe3x1133ZWZf/GLX+z0joqKirj00ksz8472AgAAAAAAAAAAAO8PPRZm/v73v4/TTz89ZsyY0eGry0ePHh1XXXVVTx1nh5YuXRpvvPFG3mzChAkxYcKELu05/PDDY+TIkXmzp59+OlavXt3tMwIAAAAAAAAAAAClp8fCzLPOOisWLlzY4WdTpkyJe+65JxMx9pbf/e53mdkxxxxT0K6jjz4679/b29vjN7/5TUG7AAAAAAAAAAAAgNLW468y/2v19fUxa9asmDVrVgwcOLA3j5LnmWeeycwOPvjggnYddNBBmdmCBQsK2gUAAAAAAAAAAACUtore+NGqqqo488wz4/zzz4/Bgwf3xhF2aNmyZZnZfvvtV9Cujl5/vnTp0oJ2AQAAAAAAAAAAAKWtR8PMysrKOP744+Oiiy6KESNG9ORPd9r69evj7bffzpvV1tZGbW1tQfv23HPPqKioiJaWlvdmy5cvj/b29sjlct06KwAAAAAAAAAAAFBaeizMPO+882L69Omx++6799RPFmTlypWZ2fDhwwveV1FREUOHDo1Vq1a9N9u6dWusXr265P8WAAAAAAAAAAAAQNeU9dQPXXzxxX0iRFyzZk1mtttuu3VrZ319fWa27VM5AQAAAAAAAAAAgL6vx8LMvmLt2rWZ2S677NKtnYMHD87MNmzY0K2dAAAAAAAAAAAAQOkRZm5j48aNmdnAgQO7tbOmpiYze/fdd7u1EwAAAAAAAAAAACg9wsxtbN26NTOrqqrq1s6Oru/odwAAAAAAAAAAAIC+TZi5jY6CyYqKim7tLC8vz8xaWlq6tRMAAAAAAAAAAAAoPcLMbbS2tmZmZWXd+zN1FGa2tbV1aycAAAAAAAAAAABQeoSZ26isrMzMOoo1u6Kjp2N29/XoAAAAAAAAAAAAQOnp3ju634c6CjO7+9rxjq7v6Hd60oYNm6O11VM7AaDUDR7cP8rLy6K1tS02bNjc28cBADrB/RsA+h73bwDoe9y/AaBvKS8vi8GD+/f2MXqMMHMb1dXVmVlTU1O3dnZ0fb9+/bq1s7taW9uipaV7TwIFAHqWezcA9D3u3wDQ97h/A0Df4/4NAJQarzLfxpAhQzKzxsbGbu3s6Pq6urpu7QQAAAAAAAAAAABKjzBzGx0Fk+vWrevWzrVr12ZmQ4cO7dZOAAAAAAAAAAAAoPQIM7cxYsSIzGzNmjXd2rnt9blcLurr67u1EwAAAAAAAAAAACg9wsxtDBs2LCorK/Nmb7zxRrS3txe0b926dbFx48a82fDhw6N///4FnxEAAAAAAAAAAAAoTcLMbZSVlcXYsWPzZps2bYo333yzoH2vvPJKZrbtfgAAAAAAAAAAAOD9QZjZgUmTJmVmS5YsKWjXokWLMrOJEycWtAsAAAAAAAAAAAAobcLMDnz4wx/OzObPn1/Qro6uO+KIIwraBQAAAAAAAAAAAJQ2YWYHPvKRj0R5eXne7LHHHoutW7d2ac+aNWviqaeeypsNGTIkJk+e3O0zAgAAAAAAAAAAAKVHmNmBIUOGxJFHHpk3W7t2bdx///1d2nP77bdHc3Nz3uzEE0+MioqK7h4RAAAAAAAAAAAAKEHCzO349Kc/nZldf/318dprr3Xq+gULFsTtt9+eNysrK+twLwAAAAAAAAAAAPD+8L4OM1esWBHjxo3L/HPfffft9Nqjjz46Jk2alDd755134txzz40///nPO7z2T3/6U1xwwQWZp2V+6lOfin322afr/0UAAAAAAAAAAACAPuF9HWZ215VXXpl57fjy5cvjpJNOil/84heZ8HLTpk1xxx13xLRp06KhoSHvs9ra2rj44ouLfmYAAAAAAAAAAACg91Ts/Ct/uw444ICYMWNGXH/99Xnzd955Jy677LK49tprY+LEiTF06NBYvXp1LF68ODZs2JDZU1ZWFt/+9rdjt91266mjAwAAAAAAAAAAAL1AmLkT5557bjQ0NMRtt92W+Wzt2rUxb968HV5fUVERM2fOjI9+9KPFOiIAAAAAAAAAAABQIrzKvBO+8pWvxH/8x39EdXV1l64bPnx43HLLLXHCCScU6WQAAAAAAAAAAABAKRFmdtJpp50Wjz32WJxzzjlRX1+/w++OHDky/vVf/zUeeOCBOPzww3vohAAAAAAAAAAAAEBvy7W3t7f39iH6mvb29li2bFksW7Ys3n777di6dWsMHDgw6uvrY9KkSTFy5MjePuJONTQ0RUtLa28fAwDYibq6migvL4vW1rZYt66xt48DAHSC+zcA9D3u3wDQ97h/A0DfUlFRHrW1XXtjdV9W0dsH6ItyuVyMHz8+xo8f39tHAQAAAAAAAAAAAEqIV5kDAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiFb31w2+++WY88MADsWDBgnjppZeioaEhtm7dGgMHDoyRI0fGAQccEB//+Mfj8MMPj1wu11vHzLNq1ap47LHH4umnn44//elP0dDQEBs3boyampoYMmRIjB49Og499ND42Mc+FqNHj+7t4wIAAAAAAAAAAAA9LNfe3t7ekz+4du3auOaaa2Lu3LnR2tq60++PHTs2vvrVr8YRRxzRA6fr2OrVq+O//uu/4v7774/m5uadfj+Xy8XHP/7xmDFjRowdO7YHTth1DQ1N0dKy878/ANC76upqory8LFpb22LdusbePg4A0Anu3wDQ97h/A0Df4/4NAH1LRUV51NZW9/YxekyPvsp8wYIFcfzxx8eDDz7YqSgzIuLFF1+Ms88+O6699tpoa2sr8gmznnzyyTj55JPj7rvv7lSUGRHR3t4ejz76aEydOjXuvvvuIp8QAAAAAAAAAAAAKBU9FmY+++yzcc4550RDQ0NB1992223x9a9/Pe2hdmL+/Pnxz//8z7FmzZqCrt+8eXNcccUVcfvtt6c9GAAAAAAAAAAAAFCSKnriR1avXh0zZsyIpqamvHlZWVkcd9xxcfzxx8fee+8dVVVVsWLFivjVr34Vv/zlLzPfv/POO2P8+PExffr0op/5tddeiwsvvLDDp2ROmjQpTj311Jg8eXLU1tZGY2Nj/OEPf4g5c+bEE088kfn+zJkzY+TIkXHssccW/dwAAAAAAAAAAABA78m1t7e3F/tHzj///Hj88cfzZvX19TFr1qw49NBDO7zmjTfeiIsvvjiWLFmSNx8wYEDMnTs3hg0bVrTzRnR85srKyrjyyitj2rRp271u/vz58eUvfznzZNDhw4fHQw89FAMGDCjKebuqoaEpWlo69zp5AKD31NXVRHl5WbS2tsW6dY29fRwAoBPcvwGg73H/BoC+x/0bAPqWioryqK2t7u1j9Jiiv8r8qaeeygSO1dXVcdNNN203yoyIGDlyZNx+++0xfvz4vPmmTZvixhtvLMpZ/+KPf/xj5swREdddd90Oo8yIiCOOOCJuueWW6N+/f978zTffjPvuuy/pOQEAAAAAAAAAAIDSUvQw86abbsrMZsyYEfvvv/9Orx04cGDMnj07qqvzS9kHHngg3nrrrWRn3NZjjz2WmR177LExZcqUTl0/ceLE+PznP5+ZP/zww90+GwAAAAAAAAAAAFC6ihpmrlixIubPn583Gzp0aEyfPr3TO4YNGxZnnXVW3qylpSXuvffeJGfsyMKFCzOzU045pUs7Tj311Mxs0aJFBZ8JAAAAAAAAAAAAKH1FDTMfeeSRaGtry5udcMIJUVVV1aU9Hb0+fM6cOd062468/fbbmdno0aO7tGPPPffMPOlzy5YtsX79+m6dDQAAAAAAAAAAAChdRQ0zf/e732VmxxxzTJf3DB8+PMaNG5c3e+WVV+KNN94o+Gw70tTUlJk1Nzd3eU9lZWWSPQAAAAAAAAAAAEDfULQws62tLRYsWJA3q6ioiMmTJxe076CDDsrMnn322YJ27cwuu+ySmb344otd2rF27drM0zErKytjyJAh3TkaAAAAAAAAAAAAUMKKFma+9tprsXnz5rzZmDFjon///gXtmzBhQma2dOnSgnbtzH777ZeZ/eIXv+jSjo6+f8ABB0RFRUXB5wIAAAAAAAAAAABKW9HCzJdeeikzGz16dMH7Ro0alZm9+uqrBe/bkWOPPTYz++1vfxsPPfRQp65fvnx5/OAHP8jMTznllG6fDQAAAAAAAAAAAChdRQszV65cmZmNGDGi4H177LFHp34jhaOOOirGjx+fmf/bv/1b3H///Tu8dunSpXH22WfHhg0b8ub7779/nHzyySmPCQAAAAAAAAAAAJSYor1Xe82aNZnZbrvtVvC++vr6zGz16tUF79uR8vLymDlzZkyfPj2amprem2/ZsiW+8pWvxM9+9rM4+eST44ADDoghQ4ZEU1NTvPzyy/HII4/E3Llzo7W1NW/f8OHD47//+7+jvLy8KOcFAAAAAAAAAAAASkPRwsy1a9dmZoMHDy54X01NTVRUVERLS8t7s6ampmhubo7KysqC927PfvvtF7fccktceOGFmf8uzz33XDz33HOd2nPkkUfGt771rQ7DUgAAAAAAAAAAAOD9pWivMt+4cWNmNnDgwG7trK6u7tTvpHLwwQfHgw8+GFOnTu1y/Dlx4sS4+eab4+abbxZlAgAAAAAAAAAAwN+Ioj0xc+vWrZlZv379urWzqqqqU7+TUl1dXXzhC1+I/v37xx133NHp65YtWxb33ntv7L777jFu3LginrAwgwf37+0jAACdUFaWe+8/6+pqevk0AEBnuH8DQN/j/g0AfY/7NwBQyno0zCwvL+/Wzo6u/+tXm6f25ptvxvXXXx9z5syJ9vb2Ll3b3NwcDz/8cDz66KPx+c9/Pi6++OJu//dPqby8aA9LBQCKIJfLRXl5rrePAQB0gfs3APQ97t8A0Pe4fwMApahoYWZra2tmVowws62trVs7t2f+/Plx8cUXxzvvvJM3r66ujmnTpsXHPvax2HfffWPw4MGxYcOGWL58ecybNy/uuuuuvGtaW1vj5ptvjpdeeim++93vdvmV6MXS2lqcvxsAkFZZWS5yuVy0t7dHW1vX/h9FAIDe4f4NAH2P+zcA9D3u3wDQ9/wtPUywaGFmRwFid59u2dzcnJl19Hrz7lq4cGGcf/75sXnz5rz5kUceGTNnzoyhQ4fmzevr66O+vj4OOeSQOPfcc+Ob3/xm/PznP8/7zhNPPBHf+MY34uqrr05+3kJs2LA5Wlqy8SwAUFrq6mqivDwXbW3tsW5dY28fBwDoBPdvAOh73L8BoO9x/waAvqWiojxqa6t7+xg9pmgJajHCzI6ewpn6CZRNTU1x6aWXZqLMf/iHf4jZs2dnosxtDRo0KGbOnBnnnXde5rM777wznnzyyaTnBQAAAAAAAAAAAEpH0cLM6ups3bpp06Zu7WxqasrM+vXr162d2/rRj34UK1euzJuNHTs2vvnNb3bpVexf+tKX4phjjsnMb7jhhm6fEQAAAAAAAAAAAChNRQszhwwZkpk1Nhb++PDW1tbMUyz79esXNTU1Be/cVnt7e9x1112Z+Ze//OXo379/l3blcrm4/PLLM0/0XLx4cfzpT3/q1jkBAAAAAAAAAACA0lS0MLOuri4zW7t2bcH7Orq2vr6+4H0deeWVV+LNN9/Mm9XV1cXHPvaxgvbttddecdhhh2Xmv//97wvaBwAAAAAAAAAAAJS2ooWZI0aMyMzWrFlT8L6Ort11110L3teRpUuXZmYf+tCHIpfLFbzziCOOyMz+8Ic/FLwPAAAAAAAAAAAAKF1FCzNHjhyZmb3++usF7+vo2jFjxhS8ryPr1q3LzHbbbbdu7dxjjz0ys4aGhm7tBAAAAAAAAAAAAEpT0cLMcePGZZ40+fLLLxe8r6Nr991334L3dWTLli2ZWVlZ9/5ENTU1mVlzc3O3dgIAAAAAAAAAAAClqWhh5qBBg2LUqFF5s5UrV3b4VMrOWLx4cWY2ceLEgnZtT21tbWb21ltvdWtnR0/HrK+v79ZOAAAAAAAAAAAAoDQVLcyMiPjwhz+cmT355JNd3rN169Z45pln8mYDBgyIAw88sOCzdaSjYPKFF17o1s6Ort911127tRMAAAAAAAAAAAAoTUUNM4866qjM7KGHHurynnnz5kVjY2Pe7LDDDouqqqqCz9aRyZMnZ16/vmLFiliwYEFB+9ra2uLXv/51Zv6hD32ooH0AAAAAAAAAAABAaStqmPnRj340hgwZkjd74okn4uWXX+70jvb29rj11lsz86lTp3b3eBn19fUxadKkzPyWW24paN+cOXPitddey5sNGDAgDjvssIL2AQAAAAAAAAAAAKWtqGFmVVVVnHLKKXmz1tbWuPzyy2PLli2d2nHbbbfFc889lzcbPnx4HH300amOmWfatGmZ2eOPPx533313l/asWLEivvnNb2bmp556avTr16/g8wEAAAAAAAAAAAClq6hhZkTEOeecE9XV1XmzRYsWxSWXXLLTOPPBBx+M73znO5n5jBkzoqKiYofXrlixIsaNG5f557777tvhdaecckrsu+++mflVV10VP/nJT3Z47V+8/PLLcfbZZ0dDQ0PevKamJi644IJO7QAAAAAAAAAAAAD6nqKHmUOHDo2LLrooM3/00UfjtNNOi2effTbz2erVq+Pqq6+OSy65JNra2vI+O+SQQ+Kkk04q2nnLy8vjG9/4RlRVVeXNm5ub4+qrr47zzz8/lixZ0uG1DQ0N8b3vfS+mTp0ar7/+eubzK6+8Murq6opybgAAAAAAAAAAAKD37fixk4l87nOfiyeffDLmzZuXN1+2bFmcccYZsffee8fYsWOjuro6Vq5cGYsWLYrm5ubMnqFDh8YNN9wQuVyuqOc96KCD4pprrolLL70089njjz8ejz/+eIwYMSImTJgQu+yySzQ2NsaKFSvi+eefz4Skf3HeeefFpz71qaKeGwAAAAAAAAAAAOhdPRJm5nK5mDVrVpx33nnx9NNPZz5fvnx5LF++fIc7hg4dGj/84Q9j9913L9Ip851wwglRXl4eX/va16KpqSnz+cqVK2PlypU73VNeXh5f+tKX4txzzy3GMQEAAAAAAAAAAIASUvRXmf9FTU1N3HrrrfGZz3ymy0+8POSQQ+LOO++McePGFel0HZsyZUrcc889cfDBBxd0/ZgxY+KWW24RZQIAAAAAAAAAAMDfiB55YuZfVFVVxRVXXBFTp06NW2+9NX71q1/F5s2bO/xuLpeLD37wg3HmmWfGlClToqysxxrSPPvss0/89Kc/jaeffjruuOOOePLJJ2PDhg3b/X6/fv3ioIMOitNOOy0++clP9tq5AQAAAAAAAAAAgJ6Xa29vb++tH9+6dWssXrw4Xn311WhoaIi2trYYPHhwDBs2LD74wQ9GbW1tbx1tu9ra2uKFF16I119/PRoaGuLdd9+NAQMGRG1tbeyxxx4xefLk6NevX28fc6caGpqipaW1t48BAOxEXV1NlJeXRWtrW6xb19jbxwEAOsH9GwD6HvdvAOh73L8BoG+pqCiP2trq3j5Gj+nVMJPeI8wEgL7B/7AEAH2P+zcA9D3u3wDQ97h/A0Df8rcWZnrPNgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASqeitH37zzTfjgQceiAULFsRLL70UDQ0NsXXr1hg4cGCMHDkyDjjggPj4xz8ehx9+eORyud46Zsa6devi4YcfjqeeeipefPHFWLVqVWzatClqampiyJAh8YEPfCA+9KEPxZQpU2K33Xbr7eMCAAAAAAAAAAAAPSjX3t7e3pM/uHbt2rjmmmti7ty50drautPvjx07Nr761a/GEUcc0QOn277Vq1fHd7/73fj5z38ezc3NO/1+ZWVlnHjiiXHZZZfFkCFDin/ALmpoaIqWlp3//QGA3lVXVxPl5WXR2toW69Y19vZxAIBOcP8GgL7H/RsA+h73bwDoWyoqyqO2trq3j9FjevRV5gsWLIjjjz8+HnzwwU5FmRERL774Ypx99tlx7bXXRltbW5FP2LHHHnssTjjhhLjrrrs6FWVGRDQ3N8e9994bJ554YixcuLDIJwQAAAAAAAAAAABKQY+Fmc8++2ycc8450dDQUND1t912W3z9619Pe6hO+NnPfhYXXnhhvPPOOwVdv2rVqjjnnHNi8eLFaQ8GAAAAAAAAAAAAlJyKnviR1atXx4wZM6KpqSlvXlZWFscdd1wcf/zxsffee0dVVVWsWLEifvWrX8Uvf/nLzPfvvPPOGD9+fEyfPr0njh2PPvpoXHXVVZkndZaVlcUnPvGJ+OQnPxljx46NAQMGxJo1a+KZZ56Ju+66K5YvX573/cbGxrjgggti7ty5MXDgwB45OwAAAAAAAAAAANDzcu3t7e3F/pHzzz8/Hn/88bxZfX19zJo1Kw499NAOr3njjTfi4osvjiVLluTNBwwYEHPnzo1hw4YV7bwREW+99VaceOKJsWHDhrz5iBEj4sYbb4xJkyZ1eF1zc3N873vfi9mzZ2c+O/PMM+Pf//3fi3LermpoaIqWls69Th4A6D11dTVRXl4Wra1tsW5dY28fBwDoBPdvAOh73L8BoO9x/waAvqWiojxqa6t7+xg9puivMn/qqacyUWZ1dXXcdNNN240yIyJGjhwZt99+e4wfPz5vvmnTprjxxhuLcta/9q1vfSsTZe6zzz5xzz33bDfKjIiorKyMiy++OL74xS9mPrvnnnvi3XffTX5WAAAAAAAAAAAAoDQUPcy86aabMrMZM2bE/vvvv9NrBw4cGLNnz47q6vxS9oEHHoi33nor2Rm39fzzz8cjjzySNxs0aFDcfPPNUVdX16kd559/fowaNSpvtnnz5pgzZ06ycwIAAAAAAAAAAAClpahh5ooVK2L+/Pl5s6FDh8b06dM7vWPYsGFx1lln5c1aWlri3nvvTXLGjtxxxx2Z2WWXXRYjRozo9I6Kioo4/fTTM/NnnnmmW2cDAAAAAAAAAAAASldRw8xHHnkk2tra8mYnnHBCVFVVdWnPtGnTMrNiPXmyqakpHnroobzZqFGj4tRTT+3yrr/7u7977/+uqKiI+vr6aGxs7PYZAQAAAAAAAAAAgNJUUczlv/vd7zKzY445pst7hg8fHuPGjYtly5a9N3vllVfijTfeiJEjR3brjNuaP39+bN68OW82ffr0KC8v7/KuPffcMx577LHYZZddYvDgwamOCAAAAAAAAAAAAJSooj0xs62tLRYsWJA3q6ioiMmTJxe076CDDsrMnn322YJ27chvfvObvH/P5XLx93//9wXvGzlypCgTAAAAAAAAAAAA/kYULcx87bXXMk+eHDNmTPTv37+gfRMmTMjMli5dWtCuHVm0aFHev++1116xxx57JP8dAAAAAAAAAAAA4P2naGHmSy+9lJmNHj264H2jRo3KzF599dWC93Vk69atmXPvv//+O7ymtbU11q9fn4lQAQAAAAAAAAAAgL89FcVavHLlysxsxIgRBe/r6KmVHf1Gd7z++uvR0tKSN+soCH322WfjoYceiqeeeiqWL1/+3jWDBg2KMWPGxDHHHBNTpkyJvfbaK+n5AAAAAAAAAAAAgNJWtDBzzZo1mdluu+1W8L76+vrMbPXq1QXv68jrr7+emf31mRcuXBjXXHNNLFmypMPr33333Vi0aFEsWrQovvvd78anP/3puPDCC2PIkCFJzwkAAAAAAAAAAACUpqK9ynzt2rWZ2eDBgwveV1NTExUV+R1pU1NTNDc3F7xzW6tWrcrMhg4dGhERs2fPjjPOOGO7Uea2Wlpa4o477ohTTjmlw9e6AwAAAAAAAAAAAO8/RQszN27cmJkNHDiwWzurq6s79TuFamhoyMz69esX3/72t2PWrFnR1tbW5Z0rV66M008/PRYvXpziiAAAAAAAAAAAAEAJK9qrzLdu3ZqZ9evXr1s7q6qqOvU7hdqwYUNmNmfOnPjlL3+ZN5s0aVJMnTo1DjvssNh9992jpaUlVq5cGb/97W/jJz/5Sbz11luZvRdddFHcd999UVdXl+y83TF4cP/ePgIA0AllZbn3/rOurqaXTwMAdIb7NwD0Pe7fAND3uH8DAKWsR8PM8vLybu3s6PqWlpZu7fxrmzdvzsz+OsqsrKyMK6+8Mk477bTI5XJ53xs/fnyMHz8+PvOZz8TMmTPjf//3f/M+f+utt+KrX/1qzJ49O9l5u6O8vGgPSwUAiiCXy0V5eW7nXwQASob7NwD0Pe7fAND3uH8DAKWoaGFma2trZlaMMLOQ14tvT3Nz83Y/q6ysjJtvvjkOP/zwHe7o379/fP3rX4/q6uq49dZb8z574oknYtGiRTF58uQk5+2O1tZ0fzcAoHjKynKRy+Wivb092trae/s4AEAnuH8DQN/j/g0AfY/7NwD0PX9LDxMsWphZWVmZmXX36ZYdhZMdvd68UDuKPC+99NKdRpl/7ZJLLomFCxfGc889lzf/n//5n/j+979f8BlT2bBhc7S0ZONZAKC01NXVRHl5Ltra2mPdusbePg4A0Anu3wDQ97h/A0Df4/4NAH1LRUV51NZW9/YxekzREtRihJkdPYWzo98p1PZ2jRgxIs4888wu7SovL48LL7wwM/+///u/2LJlS0HnAwAAAAAAAAAAAEpb0cLM6ups3bpp06Zu7WxqasrM+vXr162df217T9887bTToqKi6w8X/chHPhIjRozIm23ZsiUWLlxY0PkAAAAAAAAAAACA0la0MHPIkCGZWWNj4Y8Pb21tjc2bN+fN+vXrFzU1NQXv3NagQYM6nHflFebbOvjggzOzP/zhDwXvAwAAAAAAAAAAAEpX0cLMurq6zGzt2rUF7+vo2vr6+oL3daS2trbD+ahRowreOWbMmMxs3bp1Be8DAAAAAAAAAAAASlfRwsxtX+EdEbFmzZqC93V07a677lrwvo7ssccemVkul4tddtml4J0dXdvQ0FDwPgAAAAAAAAAAAKB0FS3MHDlyZGb2+uuvF7yvo2s7ehpld+y1116ZWXt7e7S0tCT9nbKyov3ZAQAAAAAAAAAAgF5UtEJw3Lhxkcvl8mYvv/xywfs6unbfffcteF9HRo8eHZWVlZn5qlWrCt65fv36zGzgwIEF7wMAAAAAAAAAAABKV9HCzEGDBsWoUaPyZitXrox169YVtG/x4sWZ2cSJEwvatT39+vWLD3zgA5n5Cy+8UPDOjp70ue3fBQAAAAAAAAAAAHh/KOo7tT/84Q9nZk8++WSX92zdujWeeeaZvNmAAQPiwAMPLPhs23PYYYdlZvPmzSt438KFCzOz/fbbr+B9AAAAAAAAAAAAQOkqaph51FFHZWYPPfRQl/fMmzcvGhsb82aHHXZYVFVVFXy27TnmmGMys7lz58bGjRu7vGvp0qWxfPnyvNmQIUNi0qRJhR4PAAAAAAAAAAAAKGFFDTM/+tGPxpAhQ/JmTzzxRLz88sud3tHe3h633nprZj516tTuHq9DBx98cOy99955s6amprj55pu7vOumm27KzI477rgoKyvqnx0AAAAAAAAAAADoJUUtBKuqquKUU07Jm7W2tsbll18eW7Zs6dSO2267LZ577rm82fDhw+Poo49Odcw8uVwuzjrrrMz8lltuiQULFnR6z5w5c+KRRx7J7P7sZz/b7TMCAAAAAAAAAAAApanoj24855xzorq6Om+2aNGiuOSSS3YaZz744IPxne98JzOfMWNGVFRU7PDaFStWxLhx4zL/3HfffTs987Rp02LMmDF5s5aWljjvvPPi2Wef3en1v/71r+Pyyy/PzE866aTYd999d3o9AAAAAAAAAAAA0DcVPcwcOnRoXHTRRZn5o48+GqeddlqHoePq1avj6quvjksuuSTa2tryPjvkkEPipJNOKtp5IyIqKiriuuuui8rKyrz5hg0b4rOf/Wxcc801sWrVqsx169ati2uuuSb+5V/+JROdDh06NC699NKinhsAAAAAAAAAAADoXTt+7GQin/vc5+LJJ5+MefPm5c2XLVsWZ5xxRuy9994xduzYqK6ujpUrV8aiRYuiubk5s2fo0KFxww03RC6XK/qZJ02aFNdee21ceumleXFoa2tr/OhHP4o77rgjJkyY8N6TNVesWBGLFi2KlpaWzK7Kysq44YYbYtdddy36uQEAAAAAAAAAAIDe0yNhZi6Xi1mzZsV5550XTz/9dObz5cuXx/Lly3e4Y+jQofHDH/4wdt999yKdMuv444+PioqKuOyyy2Lz5s15n7W2tsaSJUtiyZIlO9wxYMCAuPHGG+Owww4r5lEBAAAAAAAAAACAElD0V5n/RU1NTdx6663xmc98pstPvDzkkEPizjvvjHHjxhXpdNt33HHHxX333RcHHnhgl6/df//94957742jjjqqCCcDAAAAAAAAAAAASk2PhZkREVVVVXHFFVfE/fffHyeeeGL0799/u9/N5XJx4IEHxvXXXx8//vGPY+TIkT140nz77LNP/OxnP4sf/OAHceSRR0ZlZeV2v1tWVhaHHnpozJo1K+69997YZ599evCkAAAAAAAAAAAAQG/Ktbe3t/fWj2/dujUWL14cr776ajQ0NERbW1sMHjw4hg0bFh/84Aejtra2t462Q01NTbFkyZJYvnx5rF+/Ptra2mLQoEExcuTImDhxYtTV1fX2EXeqoaEpWlpae/sYAMBO1NXVRHl5WbS2tsW6dY29fRwAoBPcvwGg73H/BoC+x/0bAPqWioryqK2t7u1j9JheDTPpPcJMAOgb/A9LAND3uH8DQN/j/g0AfY/7NwD0LX9rYWaPvsocAAAAAAAAAAAA4P1MmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAAAAAAAAAAASEWYCAAAAAAAAAAAAJCLMBAAAAAAAAAAAAEhEmAkAAAAAAAAAAACQiDATAAAAAAAAAAAAIBFhJgAAAAAAAAAAAEAiwkwAAAAAAAAAAACARISZAAAAAAAAAAAAAIkIMwEAAACA/4+9e4+xuj4TP/4McwEG5DLgBegEJLJQtCqW4G1dr1uzUdut6yXBNboubmy0Elfd9dYVm1bXK3WbNZSuaHTbDRpZIyrRdjV0V4gKpQppaoqC3OwiMGqZAYe5/P74ZY3HM8rMmefMmcHXKzHNPGe+z/cD/3yNefd8AQAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEgizAQAAAAAAAAAAABIIswEAAAAAAAAAAAASCLMBAAAAAAAAAAAAEhSU6kbb9u2LZYuXRqrV6+O9evXR1NTU7S2tsbw4cOjsbExjj766DjrrLPixBNPjKqqqkods0d+85vfxOzZs6O9vf2T2X/913/FV77ylQqeCgAAAAAAAAAAAOgrfR5m7ty5M+68885YtmxZQcD4fz744IP44IMPYu3atfGzn/0spkyZErfcckucdNJJfX3UHmlpaYkbb7yxyz8TAAAAAAAAAAAA8OXQp68yX716dZxzzjnx7LPPdjtg/P3vfx9/8zd/E3fffXd0dHSU+YSlu/POO2PTpk2VPgYAAAAAAAAAAABQQX0WZq5atSrmzJkTTU1NJV2/aNGimDdvXu6hkrz00kvx5JNPVvoYAAAAAAAAAAAAQIX1yavMt2/fHnPnzo2WlpaC+aBBg+Lss8+Oc845JyZNmhR1dXWxZcuWePHFF+OZZ54p+v3FixfHtGnTYvbs2X1x7G7ZuXNn3HbbbZU+BgAAAAAAAAAAANAP9EmYefvtt8eOHTsKZmPHjo358+fHrFmzCuYTJ06Mk08+OebMmRPXXXddrF27tuDze+65J04//fQYN25c2c/dHbfeemvs3Lmz0scAAAAAAAAAAAAA+oGyv8r81VdfjZdeeqlgVl9fHwsXLiyKMj+tsbExHn300Zg2bVrBfM+ePfHggw+W5aw99cQTT8TLL79c6WMAAAAAAAAAAAAA/UTZw8yFCxcWzebOnRtHHnnkfq8dPnx4LFiwIOrr6wvmS5cujffeey/tjKXYtGlT3HXXXRU9AwAAAAAAAAAAANC/lDXM3LJlS6xYsaJgNmbMmJg9e3a3d4wbNy4uu+yygllbW1s89dRTKWcsRXt7e/zDP/xDtLS0fDKbNm1azJgxo2JnAgAAAAAAAAAAACqvrGHmCy+8EB0dHQWz8847L+rq6nq056KLLiqaPffcc706W28sWLAg1qxZ88nPtbW1cc8990RtbW3FzgQAAAAAAAAAAABUXlnDzFdeeaVodsYZZ/R4z/jx42Pq1KkFs3feeSc2b95c8tlKtXbt2njooYcKZnPnzi06HwAAAAAAAAAAAPDlU7Yws6OjI1avXl0wq6mpiWOOOaakfccdd1zRbNWqVSXtKtXevXvjxhtvjLa2tk9mX//61+Nv//Zv+/QcAAAAAAAAAAAAQP9UtjDz3Xffjb179xbMJk+eHEOGDClp3/Tp04tm69atK2lXqe6+++7YsGHDJz/X19fH3XffHYMGlfWLRwEAAAAAAAAAAIABomxF4fr164tmhx9+eMn7Jk6cWDT7dCRZbr/61a/i5z//ecHspptuisbGxj47AwAAAAAAAAAAANC/lS3M3Lp1a9FswoQJJe877LDDunWPcmhqaopbbrmlYHbqqafGxRdf3Cf3BwAAAAAAAAAAAAaGsoWZO3bsKJodcsghJe8bO3Zs0Wz79u0l7+uJ22+/Pd5///1Pfh41alT84Ac/6JN7AwAAAAAAAAAAAANH2cLMnTt3Fs1GjBhR8r5hw4ZFTU1NwaylpSX27dtX8s7u+M///M944YUXCmbz5s3rVWQKAAAAAAAAAAAAHJjKFmbu3r27aDZ8+PBe7ayvr+/WfbJs2bKl6Jsxzz333PiLv/iLst0TAAAAAAAAAAAAGLhq9v8rpWltbS2aDR48uFc76+rqunWfDB0dHfGP//iPBeHnoYceGrfffntZ7tfXRowYUukjAADdMGhQ1Sf/29AwrMKnAQC6w/MbAAYez28AGHg8vwGA/qxPw8zq6upe7ezq+ra2tl7t/Dz/9m//FqtWrfrk56qqqrjzzjt79Tr2/qS6umxflgoAlEFVVVVUV1dV+hgAQA94fgPAwOP5DQADj+c3ANAflS3MbG9vL5qVI8zs6Ojo1c6u/O53v4t/+Zd/KZjNnj07/vRP/zT9XpXS3p7/9wYA5Bs0qCqqqqqis7MzOjo6K30cAKAbPL8BYODx/AaAgcfzGwAGni/TlwmWLcysra0tmvX22y337dtXNOvq9ea98fHHH8cNN9xQcK9JkybFjTfemHqfSvvoo73R1lYczwIA/UtDw7Corq6Kjo7O2LWrudLHAQC6wfMbAAYez28AGHg8vwFgYKmpqY7Ro+srfYw+U7YEtRxhZlffwtnVfXrj/vvvj9///vef/FxdXR133313DB06NPU+AAAAAAAAAAAAwIGnbGFmfX1x3bpnz55e7WxpaSmaDR48uFc7P23lypXx2GOPFcyuvPLKOPbYY9PuAQAAAAAAAAAAABy4yhZmjho1qmjW3Fz614e3t7fH3r17C2aDBw+OYcOGlbzz0z766KO46aaborOz85PZ9OnT45prrknZDwAAAAAAAAAAABz4yhZmNjQ0FM127txZ8r6urh07dmzJ+z5r3rx58Yc//OGTn+vq6uKee+5Jf1U6AAAAAAAAAAAAcOCqKdfiCRMmFM127NhR8r6urj344INL3vdZzz33XMHPra2tce655/Z675lnnlk0u+aaa+K73/1ur3cDAAAAAAAAAAAA/UvZvjGzsbGxaLZp06aS93V17eTJk0veBwAAAAAAAAAAAJCtbGHm1KlTo6qqqmD29ttvl7yvq2uPOOKIkvcBAAAAAAAAAAAAZCtbmHnQQQfFxIkTC2Zbt26NXbt2lbTvzTffLJodddRRJe0CAAAAAAAAAAAAKIeaci4//vjjY+PGjQWzlStXxjnnnNOjPa2trfH6668XzIYOHRozZszo7RE/8T//8z+93vHd73431qxZUzB78sknY9y4cQWz+vr6Xt8LAAAAAAAAAAAA6H/KGmaeeuqpsXjx4oLZ888/3+Mwc/ny5dHc3FwwO+GEE6Kurq7XZ/w/Bx98cK931NbWFs0aGhpSdgMAAAAAAAAAAAD9X9leZR4Rccopp8SoUaMKZi+//HK8/fbb3d7R2dkZDz/8cNH8ggsu6O3xAAAAAAAAAAAAAFKVNcysq6uL888/v2DW3t4eN998c3z88cfd2rFo0aKi14OPHz8+TjvttKxjAgAAAAAAAAAAAKQoa5gZETFnzpyor68vmL3xxhtx/fXX7zfOfPbZZ+O+++4rms+dOzdqar74LexbtmyJqVOnFv2zZMmSnv8hAAAAAAAAAAAAALqh7GHmmDFj4tprry2a/+IXv4gLL7wwVq1aVfTZ9u3b4/vf/35cf/310dHRUfDZzJkz41vf+lbZzgsAAAAAAAAAAABQqi/+2skkl19+eaxcuTKWL19eMH/rrbfikksuiUmTJsWUKVOivr4+tm7dGm+88Ubs27evaM+YMWPigQceiKqqqr44NgAAAAAAAAAAAECP9EmYWVVVFfPnz4+rrroqXnvttaLPN27cGBs3bvzCHWPGjIlHHnkkDj300DKdEgAAAAAAAAAAAKB3yv4q8/8zbNiwePjhh+PSSy/t8Tdezpw5MxYvXhxTp04t0+kAAAAAAAAAAAAAeq/PwsyIiLq6urjtttvi6aefjm9+85sxZMiQz/3dqqqqmDFjRtx///3x+OOPR2NjYx+eFAAAAAAAAAAAAKDnqjo7OzsrdfPW1tZ48803Y8OGDdHU1BQdHR0xYsSIGDduXBx77LExevToSh3tgNfU1BJtbe2VPgYAsB8NDcOiunpQtLd3xK5dzZU+DgDQDZ7fADDweH4DwMDj+Q0AA0tNTXWMHl1f6WP0mZpK3ryuri5mzpwZM2fOrOQxAAAAAAAAAAAAAFL06avMAQAAAAAAAAAAAA5kwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCTCTAAAAAAAAAAAAIAkwkwAAAAAAAAAAACAJMJMAAAAAAAAAAAAgCQ1lbrxtm3bYunSpbF69epYv359NDU1RWtrawwfPjwaGxvj6KOPjrPOOitOPPHEqKqqqtQxC/z2t7+NV155JdasWRPvvPNOfPjhh/HHP/4xBg8eHKNGjYpDDjkkZsyYEbNmzYqTTz45amtrK31kAAAAAAAAAAAAoA9VdXZ2dvblDXfu3Bl33nlnLFu2LNrb2/f7+1OmTIlbbrklTjrppD44XddefvnlWLhwYfz617/u9jXjxo2Lyy+/PGbPnh11dXVlPF1pmppaoq1t/3//AEBlNTQMi+rqQdHe3hG7djVX+jgAQDd4fgPAwOP5DQADj+c3AAwsNTXVMXp0faWP0Wf6NMxcvXp1XH311dHU1NTja6+44oq48cYbY9Cgvnv7+u7du+OHP/xhLFmypOQdX/va1+LBBx+MCRMmJJ6s94SZADAw+A9LADDweH4DwMDj+Q0AA4/nNwAMLF+2MLPPKsdVq1bFnDlzSooyIyIWLVoU8+bNyz3UF9izZ0/MmTOnV1FmRMTatWvj/PPPjw0bNiSdDAAAAAAAAAAAAOivavriJtu3b4+5c+dGS0tLwXzQoEFx9tlnxznnnBOTJk2Kurq62LJlS7z44ovxzDPPFP3+4sWLY9q0aTF79uyyn/m6666LNWvWFM3r6uri3HPPjVNOOSUmT54cI0eOjObm5ti0aVOsWLEilixZEs3Nhf9vnA8++CCuvPLKeOKJJ6KhoaHsZwcAAAAAAAAAAAAqo09eZf6d73wnXnrppYLZ2LFjY/78+TFr1qwur9m8eXNcd911sXbt2oL50KFDY9myZTFu3Liynff555+P6667rmg+a9asuPfee+Owww773Gs/+OCD+N73vhcvvvhi0Wfnn39+3HXXXalnLZVXmQPAwOBVLAAw8Hh+A8DA4/kNAAOP5zcADCxeZZ7s1VdfLYoy6+vrY+HChZ8bZUZENDY2xqOPPhrTpk0rmO/ZsycefPDBspw1IqKtrS3uvffeovlpp50WjzzyyBdGmRERo0aNih//+Mdx/vnnF3329NNPx+9+97u0swIAAAAAAAAAAAD9S9nDzIULFxbN5s6dG0ceeeR+rx0+fHgsWLAg6usLS9mlS5fGe++9l3bGT1u5cmVs27atYNbQ0BD33Xdf1NR0/83v3//+9+Pwww8vmHV0dMTSpUtTzgkAAAAAAAAAAAD0P2UNM7ds2RIrVqwomI0ZMyZmz57d7R3jxo2Lyy67rGDW1tYWTz31VMoZP+v5558vml122WVx0EEH9WhPbW1tXHXVVUXzl19+ueSzAQAAAAAAAAAAAP1bWcPMF154ITo6Ogpm5513XtTV1fVoz0UXXVQ0e+6553p1ts/z61//umh21llnlbTr9NNPL5pt2rQpOjs7S9oHAAAAAAAAAAAA9G9lDTNfeeWVotkZZ5zR4z3jx4+PqVOnFszeeeed2Lx5c8ln60pra2vRzvr6+jjiiCNK2jdy5Miib9rct29fNDU1lXxGAAAAAAAAAAAAoP+qKdfijo6OWL16deHNamrimGOOKWnfcccdF2+99VbBbNWqVdHY2FjyGT9r7969cemll8b27dvjf//3f2P79u1RW1vbq52f/cbQiIjq6upe7QQAAAAAAAAAAAD6p7KFme+++27s3bu3YDZ58uQYMmRISfumT59eNFu3bl18+9vfLmlfV0aMGBE333xz2r5du3ZFc3NzwWzIkCExcuTItHsAAAAAAAAAAAAA/UfZXmW+fv36otnhhx9e8r6JEycWzTZs2FDyvr7w3//930Wz3vwdAAAAAAAAAAAAAP1b2cLMrVu3Fs0mTJhQ8r7DDjusW/foT/7jP/6jaHbmmWdW4CQAAAAAAAAAAABAXyhbmLljx46i2SGHHFLyvrFjxxbNtm/fXvK+clu+fHmsWbOmaH722WdX4DQAAAAAAAAAAABAXyhbmLlz586i2YgRI0reN2zYsKipqSmYtbS0xL59+0reWS7Nzc0xb968ovkpp5wSf/Inf9L3BwIAAAAAAAAAAAD6RNnCzN27dxfNhg8f3qud9fX13bpPpd16662xbdu2glltbW3cdNNNFToRAAAAAAAAAAAA0Bdq9v8rpWltbS2aDR48uFc76+rqunWfSnrggQdi2bJlRfNrr702jjjiiAqcqGsjRgyp9BEAgG4YNKjqk/9taBhW4dMAAN3h+Q0AA4/nNwAMPJ7fAEB/1qdhZnV1da92dnV9W1tbr3Zm+ulPfxo/+clPiuann356XHnllRU40eerri7bl6UCAGVQVVUV1dVVlT4GANADnt8AMPB4fgPAwOP5DQD0R2ULM9vb24tm5QgzOzo6erUzy8KFC+P+++8vmh955JFx//33R1VV//oXwfb2/vH3BgB8sUGDqqKqqio6Ozujo6Oz0scBALrB8xsABh7PbwAYeDy/AWDg+TJ9mWDZwsza2tqiWW+/3XLfvn1Fs65eb97XHnjggS6/KXPKlCnx8MMPx7Bh/e9r0z/6aG+0tRXHswBA/9LQMCyqq6uio6Mzdu1qrvRxAIBu8PwGgIHH8xsABh7PbwAYWGpqqmP06PpKH6PPDKgws6tv4ezqPn2lra0tvve978WSJUuKPvvqV78aixYtitGjR1fgZAAAAAAAAAAAAEAllC3MrK8vrlv37NnTq50tLS1Fs8GDB/dqZ6l2794d1157bbzyyitFn82YMSN+8pOfxMiRIytwMgAAAAAAAAAAAKBSyvbS9lGjRhXNmptL//rw9vb22Lt3b8Fs8ODBFXlN+ObNm+Piiy/uMso8/fTT49FHHxVlAgAAAAAAAAAAwJdQ2cLMhoaGotnOnTtL3tfVtWPHji15X6lWrVoVF154Yaxfv77os4svvjj+9V//NYYMGdLn5wIAAAAAAAAAAAAqr2yvMp8wYULRbMeOHSXv6+ragw8+uOR9pXj66afjtttui3379hXMq6qq4oYbbog5c+b06XkAAAAAAAAAAACA/qVsYWZjY2PRbNOmTSXv6+rayZMnl7yvpxYsWBDz588vmg8dOjTuvffe+PM///M+OwsAAAAAAAAAAADQP5UtzJw6dWpUVVVFZ2fnJ7O333675H1dXXvEEUeUvK8nfvjDH8Zjjz1WND/00ENjwYIFMX369D45BwAAAAAAAAAAANC/DSrX4oMOOigmTpxYMNu6dWvs2rWrpH1vvvlm0eyoo44qaVd3dXZ2xh133NFllHnkkUfGk08+KcoEAAAAAAAAAAAAPlG2MDMi4vjjjy+arVy5ssd7Wltb4/XXXy+YDR06NGbMmFHy2brjnnvuiZ///OdF81NPPTX+/d//PQ499NCy3h8AAAAAAAAAAAAYWMoaZp566qlFs+eff77He5YvXx7Nzc0FsxNOOCHq6upKPtv+PP7447Fo0aKi+be//e146KGHor6+vmz3BgAAAAAAAAAAAAamsoaZp5xySowaNapg9vLLL8fbb7/d7R2dnZ3x8MMPF80vuOCC3h7vc61evTr++Z//uWj+l3/5l3HXXXdFTU1N2e4NAAAAAAAAAAAADFxlDTPr6uri/PPPL5i1t7fHzTffHB9//HG3dixatCjWrFlTMBs/fnycdtppWccssGfPnrjpppuira2tYD5r1qz4wQ9+EFVVVWW5LwAAAAAAAAAAADDwlTXMjIiYM2dO0Wu/33jjjbj++uv3G2c+++yzcd999xXN586du99vrdyyZUtMnTq16J8lS5Z84XU//elPY9OmTQWzkSNHxn333Re1tbVfeC0AAAAAAAAAAADw5Vb2d3KPGTMmrr322qJXg//iF7+ICy+8MP7pn/4pZs6cWfDZ9u3bY8GCBfGzn/2saN/MmTPjW9/6VlnO+tFHH8UjjzxSNP/www/jz/7sz9Lu89hjj8Xxxx+ftg8AAAAAAAAAAADoH8oeZkZEXH755bFy5cpYvnx5wfytt96KSy65JCZNmhRTpkyJ+vr62Lp1a7zxxhuxb9++oj1jxoyJBx54oGyvE1+yZEm0tLSUZTcAAAAAAAAAAABw4OuTMLOqqirmz58fV111Vbz22mtFn2/cuDE2btz4hTvGjBkTjzzySBx66KFlOmXEL3/5y7LtBgAAAAAAAAAAAA58g/rqRsOGDYuHH344Lr300h5/4+XMmTNj8eLFMXXq1DKdLqKzszN+85vflG0/AAAAAAAAAAAAcODrszAzIqKuri5uu+22ePrpp+Ob3/xmDBky5HN/t6qqKmbMmBH3339/PP7449HY2FjWszU1NXX5+nQAAAAAAAAAAACA7qrq7OzsrNTNW1tb480334wNGzZEU1NTdHR0xIgRI2LcuHFx7LHHxujRoyt1tANeU1NLtLW1V/oYAMB+NDQMi+rqQdHe3hG7djVX+jgAQDd4fgPAwOP5DQADj+c3AAwsNTXVMXp0faWP0WdqKnnzurq6mDlzZsycObOSxwAAAAAAAAAAAABI0aevMgcAAAAAAAAAAAA4kAkzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACSCDMBAAAAAAAAAAAAkggzAQAAAAAAAAAAAJIIMwEAAAAAAAAAAACS1FTqxtu2bYulS5fG6tWrY/369dHU1BStra0xfPjwaGxsjKOPPjrOOuusOPHEE6OqqqpSxyywe/fueO655+K1116LdevWRVNTUzQ3N8eQIUPisMMOi2nTpsVpp50W3/jGN2Lw4MGVPi4AAAAAAAAAAADQx6o6Ozs7+/KGO3fujDvvvDOWLVsW7e3t+/39KVOmxC233BInnXRSH5yua/v27YsFCxbEI488Es3Nzfv9/YaGhrj66qtj9uzZMWhQ//xS0qamlmhr2//fPwBQWQ0Nw6K6elC0t3fErl37//cQAKDyPL8BYODx/AaAgcfzGwAGlpqa6hg9ur7Sx+gzfRpmrl69Oq6++upoamrq8bVXXHFF3HjjjX0eOr7//vvxd3/3d/Hb3/62x9eedNJJ8aMf/ShGjhxZhpP1jjATAAYG/2EJAAYez28AGHg8vwFg4PH8BoCB5csWZvZZ5bhq1aqYM2dOSVFmRMSiRYti3rx5uYfajx07dsRf//VflxRlRkSsWLEirrjiiti9e3fyyQAAAAAAAAAAAID+qKYvbrJ9+/aYO3dutLS0FMwHDRoUZ599dpxzzjkxadKkqKuriy1btsSLL74YzzzzTNHvL168OKZNmxazZ88u+5nb29vj7//+72Pjxo1Fn82YMSP+6q/+KqZPnx4jR46MP/zhD/Hqq6/Gk08+Ge+9917B765bty5uu+22+NGPflT2MwMAAAAAAAAAAACV1SevMv/Od74TL730UsFs7NixMX/+/Jg1a1aX12zevDmuu+66WLt2bcF86NChsWzZshg3blzZzhsR8eijj8Zdd91VMKuuro5bb701Lrnkki6vaWlpiTvuuCOefvrpos9+/OMfxze+8Y1yHLUkXmUOAAODV7EAwMDj+Q0AA4/nNwAMPJ7fADCweJV5sldffbUoyqyvr4+FCxd+bpQZEdHY2BiPPvpoTJs2rWC+Z8+eePDBB8ty1v/z4YcfxkMPPVQ0v/322z83yoz4/3+uu+++Oy644IKiz+65555obxdCAgAAAAAAAAAAwIGs7GHmwoULi2Zz586NI488cr/XDh8+PBYsWBD19YWl7NKlS4teGZ5p8eLF8eGHHxbMzjzzzLj44ou7df0dd9wRRx11VMFs8+bNsWzZsrQzAgAAAAAAAAAAAP1PWcPMLVu2xIoVKwpmY8aMidmzZ3d7x7hx4+Kyyy4rmLW1tcVTTz2VcsbP6uzsjCeeeKJofs0113R7R01NTdxwww1F8672AgAAAAAAAAAAAAeOsoaZL7zwQnR0dBTMzjvvvKirq+vRnosuuqho9txzz/XqbJ9n3bp1sXnz5oLZ9OnTY/r06T3ac+KJJ0ZjY2PB7LXXXovt27f3+owAAAAAAAAAAABA/1TWMPOVV14pmp1xxhk93jN+/PiYOnVqweydd94pCigzZJ05IuK0004r+LmzszN+9atflbQLAAAAAAAAAAAA6P/KFmZ2dHTE6tWrC2Y1NTVxzDHHlLTvuOOOK5qtWrWqpF1f5PXXXy+aff3rXy9pV1dn/uzfCQAAAAAAAAAAAHDgKFuY+e6778bevXsLZpMnT44hQ4aUtK+rV4mvW7eupF1f5K233iqaffWrXy1pV1+dGQAAAAAAAAAAAOgfyhZmrl+/vmh2+OGHl7xv4sSJRbMNGzaUvK8rH374Ybz//vsFs9GjR8fo0aNL2veVr3wlampqCmYbN26Mzs7Oks8IAAAAAAAAAAAA9F9lCzO3bt1aNJswYULJ+w477LBu3aM3uto3fvz4kvfV1NTEmDFjCmatra2xffv2kncCAAAAAAAAAAAA/VfZwswdO3YUzQ455JCS940dO7Zolh04Zp85outzf/ZbOQEAAAAAAAAAAIADQ9nCzJ07dxbNRowYUfK+YcOGFb0WvKWlJfbt21fyzs/q6swjR47s1c6u/swfffRRr3YCAAAAAAAAAAAA/VPZwszdu3cXzYYPH96rnfX19d26T6nKceZhw4YVzf74xz/2aicAAAAAAAAAAADQP9Xs/1dK09raWjQbPHhwr3bW1dV16z6l6mpXV/fsiXKfuVTV1WVrcgGAMqmpqa70EQCAHvL8BoCBx/MbAAYez28A6P++bL1an4aZ1dW9+5ehrq5va2vr1c5P6+rMn319ek+V+8ylGjFiSKWPAAD0QHX1oBg9uvjbwwGA/svzGwAGHs9vABh4PL8BgP6obBlqe3t70awcYWZHR0evdn5aV2ceNKh3f0XlPjMAAAAAAAAAAADQf5QtzKytrS2a9fabIvft21c06+2rxj+tqzN3FWv2RFd/5swzAwAAAAAAAAAAAP3HgAozu4oku7pPqcpx5q6uzzwzAAAAAAAAAAAA0H+ULcysr68vmu3Zs6dXO1taWopmgwcP7tXOT+vqzF3dsyfKfWYAAAAAAAAAAACg/yhbmDlq1KiiWXNzc8n72tvbY+/evQWzwYMHx7Bhw0re+VnZZ/686xsaGnq1EwAAAAAAAAAAAOifyhZmdhUf7ty5s+R9XV07duzYkvd1pasz79q1q1c7uzr3mDFjerUTAAAAAAAAAAAA6J/KFmZOmDChaLZjx46S93V17cEHH1zyvq5kn7mr66uqqtKDUgAAAAAAAAAAAKB/KFuY2djYWDTbtGlTyfu6unby5Mkl7+vKuHHjora2tmC2efPm6OzsLGnfrl27Yvfu3QWz8ePHx5AhQ0o+IwAAAAAAAAAAANB/lS3MnDp1alRVVRXM3n777ZL3dXXtEUccUfK+rgwaNCimTJlSMNuzZ09s27atpH3vvPNO0eyz+wEAAAAAAAAAAIADR9nCzIMOOigmTpxYMNu6dWvs2rWrpH1vvvlm0eyoo44qadcX+drXvlY0W7t2bUm73njjjaJZOc4MAAAAAAAAAAAA9A9lCzMjIo4//vii2cqVK3u8p7W1NV5//fWC2dChQ2PGjBkln+3zdHXmFStWlLSrq+tOOumkknYBAAAAAAAAAAAA/V9Zw8xTTz21aPb888/3eM/y5cujubm5YHbCCSdEXV1dyWf7PCeffHJUV1cXzH75y19Ga2trj/bs2LEjXn311YLZqFGj4phjjun1GQEAAACA/9fenUdXVZ57HP+dzAlTJhmCkVkQiBhBCniZxEpFGQWUVEvrRcSLQCmzUgUH5hAp1XKZVcoV0IhFCNRcKLWGggwNgwUVjSFhCIQwJZDx3D9YcDnsE0hO9k6yw/ezFms1zz7vsx80Xc/xnGe/LwAAAAAAAABUTpYOZnbu3FnBwcEusW3btuno0aMlzuF0OrVs2TJDfODAgWUtz63g4GB16dLFJZaZman169eXKs/KlSuVn5/vEuvTp498fHzKWiIAAAAAAAAAAAAAAAAAAKikLB3M9PPz04ABA1xihYWFmjJlinJzc0uUY/ny5dq3b59LLCIiQt26dTOrTINnnnnGEIuNjdVPP/1UovV79uzRypUrXWJeXl5u8wIAAAAAAAAAAAAAAAAAgKrD0sFMSRo2bJiCgoJcYsnJyRo3btxthzM///xzzZs3zxAfM2bMbXeeTEtLU/PmzQ1/4uPjb1tzt27dFBUV5RI7d+6chg8frpMnT95y7bfffquRI0cadsvs16+fmjRpctt7AwAAAAAAAAAAAAAAAAAA+7J8MDMsLEyjR482xL/44gsNGjRIu3fvNlzLyMjQG2+8oXHjxqmoqMjlWrt27dS3b1/L6r3mtddeMwx/pqSkqG/fvvrss88Mg5eXL1/WqlWrNHjwYGVlZblcCwkJ0dixYy2vGQAAAAAAAAAAAAAAAAAAVCyH0+l0Wn0Tp9OpF198Udu3b3d7vWHDhmrWrJmCgoKUnp6u5ORkw+CjdHXI89NPP1WdOnVue8+0tDT16NHDEJ85c6bhePXiLF68WLGxsW6vhYWFqXXr1goLC1NGRob279+vCxcuGF7n5eWlxYsXq3PnziW6JwAAAAAAAAAAAAAAAAAAsK9bnwduEofDobi4OI0YMUK7du0yXE9JSVFKSsotc4SFhWnFihUlGso0y/Dhw5WVlaXly5cbrmVmZhY7aHqNj4+PZs2axVAmAAAAAAAAAAAAAAAAAAB3CMuPMr+mWrVqWrZsmZ577jk5HI5SrW3Xrp3WrFmj5s2bW1Rd8SZNmqS33npLQUFBpVoXERGhpUuXqnfv3hZVBgAAAAAAAAAAAAAAAAAAKptyG8yUJD8/P02dOlXr169Xnz59FBAQUOxrHQ6HoqOjFRsbqw8//FCRkZHlWKmrQYMGKTExUcOGDVN4ePgtXxsZGakJEyZow4YN6tixYzlVCAAAAAAAAAAAAAAAAAAAKgOH0+l0VtTN8/LytH//fv3444/KyspSUVGRatasqXr16umBBx5QSEhIRZVWLKfTqSNHjujIkSM6ffq08vLyVL16dYWHhysqKqpCB0gBAAAAAAAAAAAAAAAAAEDFqtDBTAAAAAAAAAAAAAAAAAAAgKqkXI8yBwAAAAAAAAAAAAAAAAAAqMoYzAQAAAAAAAAAAAAAAAAAADAJg5kAAAAAAAAAAAAAAAAAAAAmYTATAAAAAAAAAAAAAAAAAADAJAxmAgAAAAAAAAAAAAAAAAAAmMSnogu4kx0/flwbNmzQnj179P333ysrK0t5eXmqXr26IiMjdf/99+vRRx9Vx44d5XA4KrpcSdKlS5e0ceNG7dq1SwcPHlRWVpays7MVEBCgunXrqkWLFurWrZsee+wx+fv7V3S5AACYzo79+5tvvtFXX32lffv26YcfftD58+d18eJF+fv7Kzg4WLVr11Z0dLTat2+vhx9+WL6+vhVdMgAAprJj/76df/3rX4qJiVFhYeH12P/+7//q7rvvrsCqAAAwj13799mzZ7V582bt3LlT3333nU6dOqXLly+rWrVqCg4O1r333quHHnpIvXr1Uu3atSu6XAAATGXH/n3q1CklJiZq165d+vbbb5WVlaVLly5d792NGjVS+/bt1b17dzVq1KiiywUAoNwUFRVp4MCBOnTokCSpf//+mjVrVgVX9f/sMMPmcDqdzgq58x0sMzNTM2bMUEJCgssXKMVp1qyZXnnlFXXq1KkcqnMvPz9fixYt0ooVK5SdnX3b14eGhmrkyJGKiYmRlxcbswIA7M+O/Xvbtm1avHix9u7dW+I19erV069//WvFxMTIz8/PwuoAALCeHft3SeTk5Khv375KTU11iTOYCQCoCuzavzMyMrRw4UJ9+umnys/Pv+3rfX191adPH02cOFHBwcHWFwgAgIXs2L8zMjL0hz/8QevXry9R73Y4HHr00Uc1ZswYNWvWrBwqBACgYq1atUpvvvnm9Z8ry2CmnWbYGMwsZ3v27NHIkSOVlZVV6rXPP/+8JkyYUO6/JKdPn9bw4cP1zTfflHptp06d9M4776hWrVoWVAYAQPmwW/++dOmS3n77bcXHx3ucIyoqSgsWLFD9+vVNrAwAgPJjt/5dGlOnTtW6desMcQYzAQB2Z9f+nZiYqFdffVXnzp0r9do6deronXfe0YMPPmh+YQAAlAM79u8dO3Zo/PjxOnPmTKnXBgQEaOrUqRo0aJAFlQEAUDkcOnRIQ4YMUW5u7vVYZRjMtNsMW+X8hqGK2r17t4YNG+bRm1JJWr58uaZNm2ZuUbdx5swZPfvssx79QktSUlKSnn/+eV26dMnkygAAKB9269+XL1/WsGHDyjSUKUkHDhzQgAED9OOPP5pUGQAA5cdu/bs0tm7d6nYoEwAAu7Nr//7oo480atQoj4YypavHpw4bNkz79+83tzAAAMqBHft3UlKSXnjhBY+GMiXpypUrmjp1qlauXGluYQAAVBLp6el68cUXXYYyKwM7zrCxY2Y5ycjIUP/+/Q1v8Ly8vNSzZ0898cQTatiwofz8/JSWlqa//vWv+stf/qKcnBxDrtdff10xMTGW11xYWKjf/OY32rlzp+FadHS0nnrqKbVs2VK1atXSyZMntXPnTq1bt04nTpwwvP7xxx/XO++8Y3nNAACYyY79e8SIEdq2bZsh7ufnpyeffFKdO3dW48aNVatWLWVnZys1NVVJSUmKj493u9V7ZGSk1q5dq9DQUMtrBwDADHbs3yWVmZmp3r17KzMz0+11dswEANiVXfv3F198odGjR6uoqMhQ92OPPabHH39czZo1U2BgoM6cOaOvv/5aa9euVUpKiiFX7dq1lZCQoOrVq5dL7QAAlJUd+/dPP/2kAQMGuB3IiIqK0lNPPaU2bdooJCRE2dnZ+ve//62NGze6/czd4XDo3XffVY8ePSyvGwCA8pKWlqahQ4cqLS3NcK0id8y06wwbg5nl5KWXXtLWrVtdYuHh4YqLi1P79u3drjl27JjGjh2rAwcOuMQDAwOVkJCgevXqWVavJK1cuVIzZ850iXl7e+vVV1/VL3/5S7drcnJyNH36dK1fv95wbeHChXrsscesKBUAAEvYrX9v2rRJY8eONcTbt2+vuXPnqm7dusWuPXfunH7/+9/rr3/9q+HagAEDDO8JAACorOzWv0ujuAcwrmEwEwBgV3bs3ydOnFCfPn104cIFl3j9+vW1YMECRUVFuV2Xn5+vP/7xj1q0aJHh2rPPPqvf//73ltQLAIDZ7Ni/3dXs6+ur1157TYMHDy52XVJSkn73u98ZdgaNiIjQpk2bFBgYaEm9AACUp8OHD+vFF1/UyZMn3V6vyMFMu86wcZR5Odi5c6fhDV5QUJAWL15c7JtS6eoOVStXrlSLFi1c4pcvX9aCBQssqfWa8+fP67333jPEX3/99WJ/oaWrf6/Zs2dr4MCBhmtz5sxRYWGhqXUCAGAVu/XvgoICzZ071xDv1q2bVqxYccuhTEkKDg7WwoULNWDAAMO19evX6/Dhw6bVCgCAVezWv0tj7dq1txzKBADAruzav2fOnGkYymzSpIk+/vjjYocypavDH2PHjtXLL79suPbxxx/r4sWLptcKAIDZ7Ni/Dx8+bKhZuvod9q2GMiWpU6dOWrp0qQICAlzix48fV3x8vKl1AgBQETZv3qwhQ4YUO5RZkew8w8ZgZjlYvHixITZmzBi1atXqtmurV6+uRYsWKSgoyCW+YcMGt9utmmXNmjU6f/68S6xHjx56+umnS7R++vTpat26tUvs2LFjSkhIMK1GAACsZLf+vWPHDh0/ftwlFhoaqnnz5snHx6fEed544w01atTIJVZUVKQNGzaYUicAAFayW/8uqdTUVHavBgBUWXbs34cOHdKWLVtcYjVq1NCSJUsUGhpaohwvvfSSGjRo4BK7cuWKNm7caFqdAABYxY79OzEx0RDr0aOHevXqVaL1rVu31vPPP2+Ib968ucy1AQBQUbKzszV16lSNGTNGOTk5FV2OW3aeYWMw02JpaWlKSkpyiYWFhSkmJqbEOerVq6ehQ4e6xAoKCvTJJ5+YUuPNnE6n1q5da4i7e4K3OD4+Pho/frwh7i4vAACVjR3796ZNmwyxoUOHqkaNGqXK4+vrqxEjRhji7NAFAKjs7Ni/S6KwsFATJ050+VCsRYsWio6OrrCaAAAwi13796pVqwyxiRMnqn79+iXO4ePjoyFDhhjiX3/9dZlqAwDAanbt33v37jXE3J0gdStPPfWUIZacnOxxTQAAVKTNmzerV69eWrduneFaaTb+sZLdZ9gYzLTYli1bVFRU5BLr3bu3/Pz8SpXH3fbpVj05e/DgQR07dswl1rJlS7Vs2bJUeTp27KjIyEiX2K5du5SRkVHmGgEAsJId+7e7D5UeffRRj3J1797dEEtNTZXT6fQoHwAA5cGO/bskFi1apH379l3/2dfXV3PmzJGvr2+F1QQAgFns2L9zcnIMD0c2aNDA7aDG7fz85z+//r99fHwUHh6u7OzsMtcIAICV7Ni/Jen06dOG2M2nR93O3XffbdjpMzc317CLFwAAldk///lPDRkyRGPGjHF7dHmjRo00ffr0CqjMyO4zbAxmWuyrr74yxB555JFS54mIiFDz5s1dYj/88IPhl88MZtUsSd26dXP52el06u9//7tHuQAAKC926995eXmGnEFBQWratKlH+WrVqmXYaTM/P19ZWVke1wgAgNXs1r9L4sCBA3rvvfdcYmPGjDHUBwCAXdmxfyclJenKlSsusZiYGHl7e5c61913363ExER9/fXXOnTokL766istWrTIrFIBALCEHfu3JLfHs+bn55c6j7sHJT3JAwBARRk6dKjbTX8kqVevXvr4448NQ4wVxe4zbAxmWqioqEh79uxxifn4+KhNmzYe5XvwwQcNsd27d3uU61bcHZXStm1bj3K5q/nmfyYAAFQmduzfV65c0XPPPadevXqpbdu2ioyMVN26dcuU8+YnniV59CUTAADlwY79+3auXLmiCRMmqKCg4Hqsbdu2+s///M9yrQMAAKvYtX/f/KWNw+HQL37xC4/zRUZGqmbNmmUtCwCAcmHX/i1d3ZDgZt99912pcmRmZhp2x/T19VVwcHBZSgMAoMKFh4crLi5OcXFxql69ekWXc53dZ9gYzLTQTz/9ZHhytnHjxgoICPAon7ttWA8ePOhRrls5cuSIIXbfffd5lKu8agYAwCx27N81a9bUlClTFBcXp9WrVysxMVEJCQke5zt79qzh6LSAgAC3H1wBAFAZ2LF/387s2bP1448/Xv85KChIs2fPlpcXH+UAAKoGu/bv5ORkl5/vueeeMj8cCQCAXdi1f0vuv+/+7LPPSpXD3evvv/9++fj4eFwXAAAVyc/PT88//7wSEhLUq1evii7HwO4zbHyab6Hvv//eEGvUqJHH+Ro0aGCI3fgljRnOnz+v06dPu8RCQkIUEhLiUb67777b8EY0JSVFTqfT4xoBALCSHfu32b788ktDrCz/DAAAsFpV699///vftXr1apfY5MmTK83xMQAAmMGO/TsvL89Qd6tWrW65prCwUOfPnzcMsQAAYEd27N/X9OjRwxD78ssvtWnTphKtT0lJ0Z/+9CdDfMCAAWWuDQCA8ubr66t+/fpp8+bNmjRpUqU8yaEqzLDx6IaF0tPTDbH69et7nM/dU7fu7lEW7vJFRER4nM/Hx0dhYWE6derU9VheXp4yMjJUp04dj/MCAGAVO/Zvs/3P//yPIebuQysAACqLqtS/s7Ky9Morr7jEunbtqqeffrpc7g8AQHmxY/9OTU1VQUGBS8zdQMnu3bu1adMm7dy5UykpKdfX1KhRQ40bN9YjjzyiXr166Z577jG1PgAArGbH/n1N165d1aJFCx0+fNglPnnyZOXl5alfv37Frj148KBGjRqlCxcuuMRbtWql/v37W1EuAACWGTFihGJiYir93FZVmGFjMNNCZ86cMcRq167tcb7w8HBDLCMjw+N87phds3S17ht/qSXp9OnTlf7/4ACAO5Md+7eZtm/frn379hniPXv2rIBqAAAomarUv19//XWXp4CDg4P11ltvlcu9AQAoT3bs36mpqYbYjTXv3btXM2bM0IEDB9yuv3jxopKTk5WcnKyFCxfqmWee0ahRoxQcHGxqnQAAWMWO/fsab29vzZo1SzExMcrJybkez83N1aRJk/TRRx+pf//+uv/++xUcHKycnBwdPXpUW7ZsUUJCggoLC13yRURE6N1335W3t7cl9QIAYJWxY8dWdAklUhVm2BjMtFBmZqYhVpatX6tVqyYfHx+XJ3JzcnKUn58vX19fj/PeyF3NtWrVKlNOd3/nm58mAgCgsrBj/zZLdna2pk2bZoh37txZ9957b/kXBABACVWV/v3pp59qy5YtLrFp06aV+cMmAAAqIzv275u/vJGksLAwSdKiRYu0YMECFRUVlShXQUGBVq1apW3btmnx4sVq2rSpKTUCAGAlO/bvG913331aunSpRo0aZfi77Nu3z+2mBe506dJFM2fOdDtYCgAAzFEVZti8LMsMXbp0yRCrXr16mXIGBQWV6D6esqLmatWqGWIXL14sU04AAKxix/5tlldffVXHjx93ifn6+mry5MkVVBEAACVTFfp3WlqaYWfMJ598Uo8//rhl9wQAoCLZsX9nZWUZYv7+/po7d67i4uJKPJR5o/T0dA0ZMkT79+83o0QAACxlx/59s7Zt2+rzzz/XwIEDSz382bp1ay1ZskRLlixhKBMAAItVhRk2dsy0UF5eniHm7+9fppx+fn4luo+n3OVyd8/SsLpmAADMZMf+bYb58+crISHBEB89ejS7dgAAKj279++ioiJNmjTJ5YOmOnXq6PXXX7fkfgAAVAZ27N/udtHYuHGj/vKXv7jEoqKiNHDgQHXo0EF16tRRQUGB0tPT9eWXX+rPf/6zTpw4Ycg7evRoxcfHKzQ01LR6AQAwmx37tzuhoaF68cUXFRAQoFWrVpV43ZEjR/TJJ5+oTp06at68uYUVAgCAqjDDxo6ZFnL3L87b27tMOd2tv3Fr97JyV7OPT9nmd62uGQAAM9mxf5fVkiVL9N///d+GePfu3fXCCy9UQEUAAJSO3fv30qVLtXv37us/OxwOzZgxo0zHwQEAUNnZsX9fuXLFELtxKNPX11dvvvmm1q1bp2eeeUYNGzZUYGCgatSooRYtWuiFF17Q5s2bNWTIEEOeEydO6JVXXjGtVgAArGDH/n2z48ePa9y4cXrsscdKNZQpSfn5+dq8ebP69++vefPmqbCw0KIqAQBAVZhhY8dMC7l7I2bFG1NPjkcpjruavbzKNr9rdc0AAJjJjv27LBYvXqzY2FhDvFWrVoqNjZXD4aiAqgAAKB079+/Dhw/rD3/4g0ssJiZG//Ef/2H6vQAAqEzs2L/z8/OLvebr66slS5aoY8eOt8wREBCgadOmKSgoSMuWLXO5tm3bNiUnJ6tNmzam1AsAgNns2L9vlJSUpLFjx+rcuXMu8aCgIA0ePFjdu3dX06ZNVbNmTV24cEEpKSnavn271q5d67KmsLBQS5Ys0ffff6+FCxeW+kh0AABwe1Vhho0dMy3k7g1YWads3X3wU9ZtWm/kruayPunj7u9sZs0AAJjJjv3bU/Pnz3c7lNmsWTMtW7ZM1apVq4CqAAAoPbv279zcXI0fP97lXg0bNtSECRNMvQ8AAJWRHfv3rb6sGT9+/G2HMm80btw4RUdHG+LuTrQAAKCysGP/vmbv3r166aWXDEOZXbp0UWJioqZMmaIOHTooPDxcfn5+Cg8PV7t27TRu3DglJiaqf//+hpzbtm3Tm2++aXqtAACgasywMZhpISvemLr7BTPzCRwrana3nqeGAACVlR37d2kVFBRoypQpbr/sue+++/TBBx8oJCSkAioDAMAzdu3fsbGx+u67767/7O3trdmzZyswMNDU+wAAUBnZsX8Xl6t+/fp69tlnS5XL29tbo0aNMsT/8Y9/KDc316P6AACwmh37tyTl5ORo/PjxunLlikv8ySef1KJFixQWFnbL9TVq1NCsWbM0YsQIw7U1a9Zox44dptYLAACqxgwbg5kWCgoKMsQuX75cppw5OTmGmL+/f5ly3shdze7uWRpW1wwAgJns2L9L49KlSxo+fLji4+MN16Kjo/X+++8rNDS0AioDAMBzduzfO3bs0AcffOASe+GFF/TAAw+Ydg8AACozO/bv4nbRGDRokHx8fEqd7+GHH1b9+vVdYrm5udq7d69H9QEAYDU79m9Jev/995Wenu4Sa9asmd5+++1SHcX+29/+Vo888oghPn/+/DLXCAAAXFWFGTYGMy0UHBxsiGVnZ3ucr7Cw0PAUj7+/v6nHjJpdc3HrGfgAAFRWduzfJXXs2DE9/fTT+uqrrwzXunfvrpUrV6pWrVrlXhcAAGVlt/594cIFTZ48WU6n83qsZcuWevnll03JDwCAHditf0tXd8typzRHmN+sbdu2hti///1vj/MBAGAlO/Zvp9OptWvXGuK/+93vFBAQUKpcDodDU6ZMMeystX//fn377bdlqhMAALiqCjNsDGZayN2/uMzMTI/zuVsbHh7ucT533NV89uzZMuV0V/fttoMHAKCi2LF/l8Tu3bs1aNAgff/994ZrTz/9tN59991SfwgFAEBlYbf+PW3aNJ08efL6z35+fpozZ46lR6YAAFDZ2K1/S1JISIjbeIMGDTzO2bhxY0OsrJ/JAwBgFTv27x9++EHHjx93iYWGhqp79+4e5bvnnnvUoUMHQ/yf//ynR/kAAIB7VWGGrfRna6DEbj6CRJLOnDnjcT53a++66y6P87ljds3u1jscjgoZSAEAoCTs2L9vZ/369Zo6dary8/Nd4g6HQ+PHj9ewYcPKtR4AAMxmt/69ceNGl5/z8vL05JNPljlvjx49DLGXX35Zo0aNKnNuAADMZrf+LUl169Y1xBwOR5lOn3C3Nisry+N8AABYyY79++DBg4bYQw89JIfD4XHOTp066csvv3SJseM1AADmqgozbAxmWigyMtIQS01N9Tifu7XunqYti3r16snX19dlcOPYsWNyOp0evTk9e/asLl265BKLiIhgRy4AQKVlx/59K4sWLVJcXJwhHhgYqLlz5+rnP/95udUCAIBVqlr/BgDgTmDH/n3PPfcYYk6nUwUFBfLz8zPtPl5eHHYGAKic7Ni/3e2sVbt27TLldPewBg9WAABgrqoww8Z/3VuoefPmhl+Eo0ePepzP3dqmTZt6nM8dLy8vNWvWzCV2+fJlw/buJfXDDz8YYjfnBwCgMrFj/y7O22+/7XYos06dOlq9ejVDmQCAKqMq9W8AAO4UduzfjRo1kq+vryF+6tQpj3OeP3/eEKtevbrH+QAAsJId+3dubq4hVtaHIKpVq2aI3XxiFQAAKJuqMMPGYKaFatSooQYNGrjE0tPTPT7vfv/+/YZY69atPcp1K1FRUYbYgQMHPMqVnJxsiFlRMwAAZrFr/76R0+nU9OnT9cEHHxiutWrVSuvWrVPLli0trQEAgPJUFfo3AAB3Gjv2b39/f917772G+DfffONxTnc7hd38zwUAgMrCjv07JCTEEDtx4kSZcrrbHdPKY1ABALhT2X2GjaPMLfazn/1MKSkpLrEdO3boiSeeKFWevLw8ff311y6xwMBARUdHl7VEg5/97Gdas2aNSywpKUm/+MUvSp0rKSnJEOvUqZPHtQEAUB7s2L9vNGfOHK1evdoQ79q1q9555x0FBQVZen8AACqCnfr3P/7xjzLnGDVqlPbt2+cSW7dunerVq+cSo+8DACozO/Xvazp06KBDhw65xLZv366ePXt6lG/v3r2G2H333edRLgAAyoPd+re7gcmyPFRR3Pq77rqrTDkBAICR3WfY2DHTYl27djXENm3aVOo827dvV3Z2tkusQ4cO8vPz87i24jz88MPy9vZ2iSUmJiovL69Uec6cOaOdO3e6xIKDg9WmTZsy1wgAgJXs2L+v+fDDD7V8+XJDvH///nrvvfcYzgAAVFl26t933XVXmf+4O0Y1NDTU8Dp3x6sBAFBZ2Kl/X/PII48YYgkJCbp06VKpcx08eNAw2BIcHOx2RxAAACoLu/XvNm3aGI5fT0tL0549ezzKV1RUpL/97W+G+EMPPeRRPgAAUDy7z7AxmGmxzp07Kzg42CW2bds2HT16tMQ5nE6nli1bZogPHDiwrOW5FRwcrC5durjEMjMztX79+lLlWblypfLz811iffr0kY8PG7UCACo3O/ZvSdqzZ49mzZpliPfr108zZ86kBwMAqjS79m8AAO5kduzfbdu2VcOGDV1iOTk5WrJkSalzLV682BDr2bOnvLz46gYAUHnZrX+Hh4e7fehh6dKlHuXbuHGjfvrpJ5dYYGCgOnTo4FE+AABQPLvPsPFf9xbz8/PTgAEDXGKFhYWaMmWKcnNzS5Rj+fLlhuPJIiIi1K1bN7PKNHjmmWcMsdjYWMObzOLs2bNHK1eudIl5eXm5zQsAQGVjx/59+fJlTZ48WQUFBS7x9u3b66233jI8EQwAQFVjx/4NAMCdzo792+FwaOjQoYb40qVLS7Xz1saNG7VlyxZD7l/96ldlrhEAACvZsX8PHjzYENu6davWrVtXqjxpaWl6++23DfGnnnpK/v7+HtcHAACKZ+cZNgYzy8GwYcMMx4YmJydr3Lhxt31z+vnnn2vevHmG+JgxY247tZuWlqbmzZsb/sTHx9+25m7duhmeHDp37pyGDx+ukydP3nLtt99+q5EjRxomjfv166cmTZrc9t4AAFQGduvfS5YsUWpqqkusVq1amjdvntujTgEAqIrs1r8BAIA9+/fgwYPVuHFjl1hBQYFGjBih3bt333b93/72N02ZMsUQ79u3r5o2bXrb9QAAVDS79e8BAwa47bHTp0/Xn//851uuvebo0aP6zW9+o6ysLJd4tWrVNHLkyBLlAADgTnWnzrAxmFkOwsLCNHr0aEP8iy++0KBBg9x+UJORkaE33nhD48aNU1FRkcu1du3aqW/fvpbVe81rr71mePObkpKivn376rPPPjP80l6+fFmrVq3S4MGDDW9IQ0JCNHbsWMtrBgDALHbq3xcuXNCKFSsM8fPnz6tLly5u3+R68mfnzp2W1A8AgFns1L8BAMBVduzfPj4+mjNnjuFByAsXLuhXv/qVZsyYoVOnThnWnT17VjNmzNB//dd/GYZWwsLCNH78eEvrBgDALHbr397e3nrzzTfl5+fnEs/Pz9cbb7yhl156SQcOHHC7NisrS3/84x81cOBAw+YI0tXv1ENDQy2pGwAAXGXXGTZrD0rHdb/+9a+1Y8cObd++3SV+5MgR/fKXv1TDhg3VrFkzBQUFKT09XcnJyYZfGunqm9z58+eXy3Gk999/v8aMGaPY2FiX+Llz5zRx4kTNnj1brVu3VlhYmDIyMrR//35duHDBkMfLy0tz585V7dq1La8ZAAAz2aV/x8fHKycnx5LcAADYjV36NwAA+H927N9RUVGaPXu2xo8f7zJcUlhYqPfff1+rVq1Sy5Ytr++smZaWpuTkZBUUFBhy+fr6av78+brrrrssrxsAALPYrX8/+OCDmjFjhtsHIbZu3aqtW7eqfv36atmypWrVqqXs7GylpaXp0KFDhkHSa0aMGKF+/fpZWjcAALDvDBuDmeXE4XAoLi5OI0aM0K5duwzXU1JSlJKScsscYWFhWrFiherUqWNRlUbDhw9XVlaWli9fbriWmZlpeKN9Mx8fH82aNUudO3e2qkQAACxjl/6dmJhoWW4AAOzGLv0bAAD8P7v27yeeeEI+Pj6aOHGirly54nKtsLBQBw4cKHb3rWsCAwO1YMECdejQwcpSAQAwnR37d+/eveXt7a1XX33V7WYH6enpSk9Pv20eb29v/fa3v9Xw4cOtKBMAALhhxxk2jjIvR9WqVdOyZcv03HPPlfqJn3bt2mnNmjVq3ry5RdUVb9KkSXrrrbcUFBRUqnURERFaunSpevfubVFlAABYr7L3b6fTqX/961+W5QcAwI4qe/8GAABGdu3fPXv2VHx8vKKjo0u9tlWrVvrkk0/UtWtXCyoDAMB6duzfvXr10scff6y2bdt6tL5x48ZaunQpQ5kAAFQAu82wMZhZzvz8/DR16lStX79effr0UUBAQLGvdTgcio6OVmxsrD788ENFRkaWY6WuBg0apMTERA0bNkzh4eG3fG1kZKQmTJigDRs2qGPHjuVUIQAA1qnM/TsrK8vt8S8AANzpKnP/BgAA7tm1fzdp0kQfffSR/vSnP6lLly7y9fUt9rVeXl5q37694uLi9Mknn6hJkyblWCkAAOazY/9u0qSJVq9erQ8//FA9e/ZUzZo1b/l6f39/dezYUfPnz9fGjRvVqVOncqoUAADczE4zbA6n0+ks97viury8PO3fv18//vijsrKyVFRUpJo1a6pevXp64IEHFBISUtElGjidTh05ckRHjhzR6dOnlZeXp+rVqys8PFxRUVF8gQUAqPLs2L8BALjT0b8BALAfu/bvnJwcHThwQCkpKTp//ryKiopUo0YNRUZGqnXr1goNDa3oEgEAsIwd+3dRUZG++eYbpaamKisrSxcvXlRgYKBCQkJUt25dtWnTRv7+/hVdJgAAuElln2FjMBMAAAAAAAAAAAAAAAAAAMAkHGUOAAAAAAAAAAAAAAAAAABgEgYzAQAAAAAAAAAAAAAAAAAATMJgJgAAAAAAAAAAAAAAAAAAgEkYzAQAAAAAAAAAAAAAAAAAADAJg5kAAAAAAAAAAAAAAAAAAAAmYTATAAAAAAAAAAAAAAAAAADAJAxmAgAAAAAAAAAAAAAAAAAAmITBTAAAAAAAAAAAAAAAAAAAAJMwmAkAAAAAAAAAAAAAAAAAAGASBjMBAAAAAAAAAAAAAAAAAABMwmAmAAAAAAAAAAAAAAAAAACASRjMBAAAAAAAAAAAAAAAAAAAMAmDmQAAAAAAAAAAAAAAAAAAACZhMBMAAAAAAAAAAAAAAAAAAMAkDGYCAAAAAAAAAAAAAAAAAACYhMFMAAAAAAAAAAAAAAAAAAAAkzCYCQAAAAAAAAAAAAAAAAAAYBIGMwEAAAAAAAAAAAAAAAAAAEzCYCYAAAAAAAAAAAAAAAAAAIBJGMwEAAAAAAAAAAAAAAAAAAAwCYOZAAAAAAAAAAAAAAAAAAAAJmEwEwAAAAAAAAAAAAAAAAAAwCQMZgIAAAAAAAAAAAAAAAAAAJiEwUwAAAAAAAAAAAAAAAAAAACTMJgJAAAAAAAAAAAAAAAAAABgEgYzAQAAAAAAAAAAAAAAAAAATMJgJgAAAAAAAAAAAAAAAAAAgEkYzAQAAAAAAAAAAAAAAAAAADDJ/wFwb+C05Wse+QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABT0AAALRCAYAAACZLAd7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxd0lEQVR4nOzdeZxd8/0/8NfMZJXIgtCKVOy7IrWUxE5stdTXEvvW4KdKq4pvLbVUg1JKabWqhNIqXeyhIfaQ2CsIGpLQJGTfMzP390ea+01kz0xyZ+48n49HHrnnns855z13zmfu3Nd8zudUFAqFQgAAAAAAykRlqQsAAAAAAKhPQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrzUpdQEPy3nvv5Xe/+10GDhyYsWPHpkOHDtl8881z1FFHZeeddy51eQAAAADAEqgoFAqFUhfREPzzn//MWWedlVmzZi1w/bHHHpsLL7xwBVcFAAAAACwtl7cneeedd/KDH/wgs2bNyhZbbJG+ffvmpZdeyl/+8pfsueeeSZK+ffvm7rvvLnGlAAAAAMDiGOmZ5NRTT83TTz+dtddeO3/961/Tpk2b4rpCoZCzzz47jz32WDp06JB//vOfadu2bQmrBQAAAAAWpcmP9Pzwww/z9NNPJ5kdfs4deCZJRUVFzj///FRWVmb8+PF54oknSlAlAAAAALCkmnzo+eyzzyaZHW7utttuC2zz1a9+NZtsskmS5Mknn1xhtQEAAAAAS6/Jh55DhgxJkqy55ppZZZVVFtpu0003TZL861//WiF1AQAAAADLpsmHniNHjkySrLXWWotst+aaayZJ/vOf/6S6unq51wUAAAAALJsmH3qOGzcuSdK+fftFtlt55ZWTzL6x0cSJE5d7XQAAAADAsmnyoeeMGTOSJC1btlxku1atWhUfz5w5c5mPVygUlnnbFbE/qA+N4bxsDDXStDSWc7Kx1EnT0RjOycZQI01PYzgvG0ONNC2N4ZxsDDXS9JTqvGxWkqM2IFVVVSv0eLW1hUycOLVe9lVVVZl27VrnV/c8n5GjJ9TLPqGuOq/ePmf02ikTJ05LTU1tqctZIH2HhqYx9JtE36HhaQx9R7+hIdJ3YOnpN7BslkffadeudaqqFj+Os8mHnq1bt06y+NGb06dPLz5e3KjQxamurt8fkCNHT8iwkePqdZ9QVzU1tfV+rtc3fYeGpjH0m0TfoeFpDH1Hv6Eh0ndg6ek3sGxK0Xea/OXtc+bqnDRp0iLbzZnHs6qqarHzfwIAAAAApdPkQ8911lknSfLpp58ust1nn32WJFljjTVSWdnkXzYAAAAAaLCafHq34YYbJkmGDx+eyZMnL7TdO++8kyTZZJNNVkhdAAAAAMCyafKh5y677JIkqampydNPP73ANp999lmGDBmSJOnRo8eKKg0AAAAAWAZNPvTs0qVLunXrliS58cYb55vbs1AopE+fPqmtrU3Hjh1z0EEHlaJMAAAAAGAJNfnQM0kuuOCCVFZWZtiwYTnqqKPy3HPPZezYsfnXv/6VM888M4899liS5Mwzz8xKK61U4moBAAAAgEVpVuoCGoItttgiP/3pT3PRRRfl/fffz8knnzxfmxNPPDFHH310CaoDAAAAAJaG0PO/vv3tb2ezzTbLbbfdloEDB+aLL77ISiutlM033zxHHXVU9txzz1KXCAAAAAAsAaHnXDbaaKNcffXVpS4DAAAAAKgDc3oCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeC/Hkk09mo402yvnnn1/qUgAAAACApSD0XIBPPvkkF198canLAAAAAACWgdDzSz7++OMcf/zx+eKLL0pdCgAAAACwDISec3niiSdy6KGH5tNPPy11KQAAAADAMmpW6gIago8++ijXXHNN+vfvnyTp0qVLJkyYkIkTJ5a4MgAAAABgaRnpmeSSSy4pBp777LNP7rvvvqy88solrgoAAAAAWBZGev7XZpttlh/84Afp3r17qUsBAAAAAOpA6Jnk8ssvT9euXUtdBgAAAABQD4SeyQoPPJs1q59ZBaqqzE5Aw9WQz8+GXBtNW0M/Nxt6fTRdDfncbMi1QUM+PxtybTRtDfncbMi1QSnOz0Yfet5888254YYblmqbQw45JH369FlOFS1aZWVFOnZsU5Jjw4rUrl3rUpcAjY5+A8tG34Flo+/A0tNvYNmUou80+tCzsamtLWTixKn1sq+qqko/cGmwJk6clpqa2lKXsUD6Dg1VQ+43ib5Dw9WQ+45+Q0Om78DS029g2dRn32nXrvUSjRxt9KFnr1690rNnz6XaptR3Zq+ubpg/IKE+1dTUOtdhKek3sGz0HVg2+g4sPf0Glk0p+k6jDz07duyYjh07lroMAAAAAKCBMMstAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZaVZqQtoqPr371/qEgAAAACAZWCkJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZaVbqAqAhmDT8pUwdPSQrrb5JVu6yQ6nLAQAAAKAOjPSkySvUVmfq6CFJCpk6ekgKtdWlLgkAAACAOjDSswx0Xr19qUto1KpnTc/oFP67VEiXr6ycZs1blbSmxsz5CAAAAJSa0LMRq60tpKamNmf02qnUpTRqkydPzkGP/qq4fPFpe6dt27YlrKjxq6mpTW1tYfENAQAAAJYDoWcjVltbyPjxU1NZWVHqUhq1KVOmzLM8fvyUzJrlNa2L2tqC0BMAAAAoGaFnIydcqg9VqaioTKFQm8rKyiRVqa6uLXVRAAAAACwjNzKiyWvZsmX22We/VFZWpmfP/dKyZctSlwQAAABAHRjpCUmOP/6UHH/8KaUuAwAAAIB6YKQnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFlpVuoCAGi8Jg1/KVNHD8lKq2+SlbvsUOpyAAAAIImRngAso0JtdaaOHpKkkKmjh6RQW13qkgAAACCJ0BOAZVSorUlSmLP032UAAAAoPZe3/9fQoUPTt2/fDBw4MP/5z3+SJGussUa23377HHfccdlggw1KXCEAAAAAsCSEnkn69u2bPn36pLp63kszP/7443z88cd54IEHcuGFF6ZXr14lqhAAAAAAWFJNPvTs379/rrjiiiTJhhtumLPOOitbbbVVpk2bljfeeCPXXXddRo4cmUsvvTRrrrlmdtlllxJXDNSXzqu3L3UJjVr1rOkZ88b/LX9tzQ5p1rxV6QpqxJyLAAAA9avJh57XXnttkmSdddbJvffemzZt2hTXdenSJT169Mi3v/3tjBgxItdcc43QE8pAbW0hNTW1OaPXTqUupVGbPHlyDnr0V8Xli0/bO23bti1hRY1bTU1tamsLi28IAADAYjXp0PODDz7IBx98kCQ59dRT5wk852jfvn1OOumkXHbZZRk6dGhGjhyZzp07r+hSgXpUW1vI+PFTU1lZUepSGrUpU6bMszx+/JTMmuU1XVa1tQWhJwAAQD1p0qHniBEj0rZt20yePDlbbrnlQtutvfbaxcejR48WekIZEDDVXXV17XzLX34OAAAASqFJh5677rprBg8enClTpqRVq4XPQ/fxxx8XH7dr125FlAYAAAAALKMmHXrOsaDL2ueora3Nn//85yTJqquumnXWWWdFlQUAAAAALAOh52Lcdttteffdd5MkRx55ZCorK+u8z2bN6r4PgFL78s+yZs0q/Xwrc1VVvr80TA353GzItUFDPj8bcm00bQ353GzItUEpzs9GH3refPPNueGGG5Zqm0MOOSR9+vRZbLvHH388v/jFL5IkXbt2zcknn7xMNc6tsrIiHTsufGQpQGPRunVVKisrU1tbm8rKyqy2WvtFThUCsLy0a9e61CVAo6TvwNLTb2DZlKLvNPrQc3l59NFHc+6556ampiZt27bNjTfeuMjL4JdUbW0hEydOrYcKAUpv3333z6OPPpx9990/06bVZNq0KYvfiEarqqrSL/o0SBMnTktNTcO8kZp+Q0Om78DS029g2dRn32nXrvUSjRxt9KFnr1690rNnz6XaZuWVV17k+rvuuis//elPU1tbmzZt2uQ3v/lNNtxww7qUOQ93NwbKxbHHnpxjj509Ct7PNqBUampq/QyCZaDvwNLTb2DZlKLvNPrQs2PHjunYsWO97Ku2tjZXXnll+vbtmyTp0KFDfvvb32bLLbesl/0DAAAAAMtfow8968u0adPygx/8IP3790+SdOnSJb/97W/drR0AAAAAGhmhZ5LJkyfnpJNOyhtvvJEk+frXv55bbrklq666aokrAwAAAACW1oq/X3wDM3PmzPTu3bsYeO6222658847BZ4AAAAA0Eg1+dDz6quvzuDBg5MkPXv2zE033ZRWrVqVuCoAAAAAYFk16cvb33vvvdx1111JkrXXXjsXX3xxZsyYkRkzZix0m1atWqWqqmpFlQgAAAAALKUmHXreeeedKRQKSZKPP/44O+200xJts/322y/v0gAAAACAZdSkL2+fM48nAAAAAFA+mvRIz4ceeqjUJQAAAAAA9axJj/QEAAAAAMqP0BMAAAAAKCtCTwAAAACgrAg9AQAAAICyIvQEAAAAAMqK0BMAAAAAKCtCTwAAAACgrAg9AQAAAICyIvQEAAAAAMqK0BMAAAAAKCtCTwAAAACgrAg9AQAAAICyIvQEAAAAAMpKs1IXAADQlEwa/lKmjh6SlVbfJCt32aHU5QAAQFky0hMAYAUp1FZn6ughSQqZOnpICrXVpS4JAADKktATAGAFKdTWJCnMWfrvMgAAUN+EngAAAABAWRF6AgAAAABlRegJAAAAAJQVoScAAAAAUFaEngAAAABAWRF6AgAAAABlRegJAAAAAJQVoScAAAAAUFaEngAAAABAWRF6AgAAAABlRegJAAAAAJQVoScAAAAAUFaEngAAAABAWRF6AgAAAABlRegJAAAAAJQVoScAAAAAUFaalboAAKBx6bx6+1KX0GhVz5qeMW/83/LX1uyQZs1bla6gRs65CADAwgg9AYAlUltbSE1Nbc7otVOpS2m0Jk+enIMe/VVx+eLT9k7btm1LWFHjV1NTm9raQqnLAACggRF6AgBLpLa2kPHjp6aysqLUpTRaU6ZMmWd5/PgpmTXL61kXtbUFoScAAPMRegIAS0zAVDfV1bXzLX/5OQAAoO7cyAgAAAAAKCtCTwAAAACgrAg9AQAAAICyIvQEAAAAAMqK0BMAAAAAKCtCTwAAAACgrAg9AQAAAICyIvQEAAAAAMqK0BMAAAAAKCtCTwAAAACgrAg9AQAAAICyIvQEAAAAAMpKs1IXAAAAAAANxaThL2Xq6CFZafVNsnKXHUpdDsvISE8AAAAASFKorc7U0UOSFDJ19JAUaqtLXRLLSOgJAAAAAEkKtTVJCnOW/rtMYyT0BAAAAADKitATAGAFadaseSoqZv/6VVlZmWbNmpe4IgAAKE9CTwCAFaRly5bZZ5/9UllZmZ4990vLli1LXRIAAJQld28HAFiBjj/+lBx//CmlLgMAAMqakZ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWmpW6gIbi7bffzh133JGXX345X3zxRdq1a5cNN9wwBx54YA4++OBUVsqHAQAAAKAxEHomuf3223PNNdekpqam+NwXX3yRF198MS+++GLuvffe3HrrrenQoUPpigQAAAAAlkiTH77Yv3//9OnTJzU1Ndlss81y66235rnnnsvDDz+c008/Pc2bN88bb7yRH/zgB6UuFQAAAABYAk1+pOe1116bJOnatWvuvPPOtG3bNknSqVOnnH322Wnfvn369OmT559/Pq+//nq22mqrElYLAAAAACxOkx7p+dFHH+WDDz5Ikhx//PHFwHNuBx10UPHxG2+8scJqAwAAAACWTZMe6bnuuuvm5ZdfztChQ7PBBhsstn2zZk365QIAAACARqHJp3jt27fPN77xjYWuv+OOO5IklZWV2XHHHVdUWQAAAADAMmryoeeXzZw5M1988UXef//93HPPPXnqqaeSJKeddlrWWWedElcHAAAAACyO0PNLbrnlltx8883F5ebNm+fSSy/NoYceWm/HaNasSU+lCgDQZFRV+b2Phqshn58NuTaatoZ8bjbk2qAU52ejDz1vvvnm3HDDDUu1zSGHHJI+ffoscN2nn346z/KsWbNy/fXXp7q6OkccccQy1zlHZWVFOnZsU+f9AAAA1EW7dq1LXQI0OvoNLJtS9J1GH3rWt+9+97u55JJLUigUMmjQoFx77bV57733cvHFF2fatGk54YQT6rT/2tpCJk6cWj/FAgDQoFVVVfqATIM1ceK01NTUlrqMBdJ3aKj0G1g29dl32rVrvUQjRxt96NmrV6/07NlzqbZZeeWVF7quS5cuxce77LJLvvGNb+R//ud/8tFHH+WXv/xlDjrooHTs2HGZ602S6uqG+QMSAABoOmpqan02gaWk38CyKUXfafShZ8eOHescQi5KmzZtcvrpp+fcc8/NlClTMnDgwOyzzz7L7XgAAAAAQN2Y5XYJbLbZZsXHI0aMKGElAAAAAMDiNOnQs3///jnxxBPTs2fPTJ8+faHtZsyYUXzcqlWrFVEaAAAAALCMmnToWVNTkxdeeCHDhg1L//79F9ru2WefLT6ee9QnAAAAANDwNOnQs0ePHunQoUOS5KabbsrUqfPfVf2jjz7K7373uyTJRhttlK9//esrskQAAAAAYCk16dCzVatW+dGPfpQk+fDDD3P44YfnySefzOjRo/Ppp5/m7rvvTq9evTJx4sS0bNkyV1xxRSorm/RLBgAAAAANXqO/e3tdHXroofniiy/yi1/8IkOHDs0ZZ5wxX5sOHTrk+uuvz5ZbblmCCgEAAACApdHkQ88k6d27d7p3754777wzL7/8ckaPHp2WLVtm7bXXzu67756jjz46HTt2LHWZAAAAAMASEHr+16abbpo+ffqUugwAAAAAoI5MUAkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCAAAAAGWl2fI+wPTp01NVVZXmzZsv70MBAAAANGmdV29f6hIatepZ0zPmjf9b/tqaHdKseavSFdTIlfJ8rPfQ86WXXso//vGPDB48OJ999llmzZqVH/3oRznxxBOTJKeddlo22GCDnHjiiVlllVXq+/AAAAAATU5tbSE1NbU5o9dOpS6lUZs8eXIOevRXxeWLT9s7bdu2LWFFjV9NTW1qawsr/Lj1FnqOHj0655xzTgYNGlR8rlAopKKiYp52gwcPzoABA3LPPffkyiuvzN57711fJQAAAAA0SbW1hYwfPzWVlRWLb8xCTZkyZZ7l8eOnZNYsr2ld1NYWGm/o+dlnn+WII47ImDFjUigs/IuYOHFiJk2alIqKikyePDnf//73c/3112evvfaqjzIAAAAAmqxShUvlpLq6dr7lLz9H41AvNzL63ve+l9GjR6dQKGSjjTbKddddl3/+85/ztWvbtm2uv/76rLfeekmSmpqaXHjhhRk/fnx9lAEAAAAAUPfQ87HHHstbb72VioqK7LvvvvnrX/+a/fbbL507d57/YJWV2WefffLAAw9kjz32SDJ79Odf/vKXupYBAAAAAJCkHkLPRx99NEnSvn37XH755amsXPwuW7RokSuvvDIrr7xykmTAgAF1LQMAAAAAIEk9hJ5vvvlmKioqsttuuy3V3azat2+fPffcM4VCIR988EFdywAAAAAASFIPoecXX3yRJFl77bWXetsuXbokSSZNmlTXMgAAAAAAktRD6NmqVaskycyZM5d62ylTpiRJ2rRpU9cyAAAAAACS1EPo+ZWvfCVJ8sYbbyz1ti+88EKS5Ktf/WpdywAAAAAASFIPoeeOO+6YQqGQF198Me++++4Sb/fQQw9lyJAhqaioyPbbb1/XMgAAAAAAktRD6HnYYYelqqoqhUIhZ555Zj755JPFbvPwww/nwgsvTJJUVFTk0EMPrWsZAAAAAABJkmZ13cF6662X4447LrfffntGjBiRb33rW+nZs2c23XTTYpthw4blySefzAcffJAnnngi77zzTgqFQjHw3HDDDetaBgAAAABAknoIPZPkRz/6Uf7zn//k0UcfzYwZM/Lggw/mwQcfTEVFRZLkz3/+c/785z8X2xcKhSTJ9ttvn4svvrg+SgAAAAAASFIPl7cnsy9R/8UvfpH//d//TceOHVMoFIr/ksyzXCgU0rp165x66qm57bbb0rx58/ooAQAAAAAgST2N9JzjuOOOyxFHHJEnnngiL7/8cj788MNMmDAh1dXVad++fdZaa61su+222WeffdKhQ4f6PDQAAAAAQJJ6CD0/++yztG3bNiuvvHKSpGXLljnggANywAEH1Lk4AAAAAIClVefL26+//vrsuOOOOfXUU/PSSy/VR00AAAAAAMuszqHnoEGDMmvWrDzzzDOZNWtWfdQEAAAAALDM6hx6fv7558XH3bp1q+vuAAAAAADqpM6h51e+8pXi4/Hjx9d1dwAAAAAAdVLn0POEE04oPr755pvrujsAAAAAgDqp893be/XqlRkzZuTaa6/N/fffn9GjR6dXr17Zaqut0rFjx/qoEQAAAABgidU59PzJT36SZPZ8ni+99FKeffbZPPvss0mS1q1bp127dqmqqlrkPioqKvLkk0/WtRQAAAAAgLqHnvfee28qKiqSpPh/khQKhUydOjXTpk1b5PaFQmGe7QAAAAAA6qLOoWcyO7hclnUAAAAAAPWtzqHnu+++Wx91AAAAAADUizrfvR0AAAAAoCGpl8vbAQAAgIZn0vCXMnX0kKy0+iZZucsOpS4HYIVZLqHnsGHD8sorr2TEiBEZP358Kioq0q5du3Tp0iVbbbVVNthgg+VxWAAAAOC/CrXVmTp6SJJCpo4ekradv5GKSmOfgKahXn/avfLKK7n++uvz6quvLrLdBhtskP/93//NDjv4KxMAAAAsD4XamiRzbi5cSKG2RugJNBn1Nqfnb3/725xwwgl59dVXUygUFvnv/fffz0knnZSbbrqpvg4PAAAAAJCknkZ63n///bn22mtTUVGRQqGQ1q1bp0ePHtl4443ToUOH1NbWZty4cRkyZEhefPHFTJs2LbW1tfnVr36Vrl275oADDqiPMgAAAAAA6h56jhs3LldeeWWSpFAo5JhjjsnZZ5+dtm3bLrD95MmTc/311+euu+5KoVDIJZdckp122ikdO3asaykAAAAAAHW/vP3ee+/NlClTUlFRkVNPPTUXXnjhQgPPJGnbtm0uvPDC/L//9/+SJFOnTs19991X1zIAAAAAAJLUQ+j57LPPJkk6d+6c733ve0u83RlnnJG11lorSfL000/XtQwAAAAAgCT1EHp+/PHHqaioyK677pqqqqol3q6qqiq77bZbCoVCPvzww7qWAQAAAACQpB5CzwkTJiRJVl999aXedrXVVkuSTJkypa5lAAAAAAAkqYfQc+WVV06SjBkzZqm3nbNN+/bt61oGAAAAAECSegg911133RQKhTz99NOpra1d4u1qamry9NNPp6KiIl/72tfqWgYAAAAAQJJ6CD179OiRJBkxYkR+/etfL/F2v/71rzNixIh59gEAAAAAUFd1Dj0PP/zwtG7dOkly44035uqrr87UqVMX2n7q1Km56qqrctNNNyVJWrdunSOPPLKuZQAAAAAAJEma1XUHq6yySs4///xccsklqaioyO23354//elP2WmnnbLJJpsU5+scP3583n333Tz//POZOnVqCoVCKioqcu6552aVVVap8xcCAAAAAJDUQ+iZJEcccUQmTJiQ6667Lsnsu7E/8cQTeeKJJ+ZrWygUkiQVFRU544wz0qtXr/ooAQAAAAAgST1c3j5H796984c//CFbbbVVktnh5oL+JcnWW2+d3//+9/nud79bX4cHAAAAgDpp1qx5Kipmx2WVlZVp1qx5iStiWdXLSM85dthhh9x7770ZOXJkXnrppYwYMSLjx49PoVBI+/bts/baa+cb3/iGu7UDAAAA0OC0bNky++yzXx5//JH07LlfWrZsWeqSWEb1GnrO0blz5xx66KHLY9cAAAAAsNwcf/wpOf74U0pdBnVUb5e3J7Pn8rzvvvsWOJdnkvztb3/LsccemzvuuCOTJ0+uz0MDAAAAACSpx9Dzb3/7W3bbbbdcfPHFefTRRxfY5oMPPsgrr7ySPn36pGfPnnnqqafq6/AAAAAAAEnqKfS8++67c8EFF2TSpEkpFAoZNmzYAtuNGDEiyeybHH3xxRc588wz8+STT9ZHCQAAAAAASeoh9Pzkk09y1VVXFe/O/s1vfjNnnHHGAttee+21ueeee7L//vsnSaqrq/O///u/GTt2bF3LAAAAAABIUg+h5x//+MfMnDkzFRUVOe2003L77bdnjz32WGDbqqqqbL311rn22mtz3nnnJUkmTZqUP/7xj3UtAwAAAAAgST2Eni+88EKSZIMNNsjZZ5+9xNudeOKJ2XjjjVMoFPL000/XtQwAAAAAgCT1EHqOHDkyFRUV2WmnnZZ625133jlJFjoHKAAAAADA0qpz6Dljxowkycorr7zU27Zp0yZJMnPmzLqWsVycc8452WijjXLssceWuhQAAAAAYAnVOfRcZZVVkiQffvjhUm/78ccfz7OPhuThhx/OQw89VOoyAAAAAIClVOfQc4sttkihUMhTTz2VMWPGLPF2EydOzD//+c9UVFRk0003rWsZ9eo///lPLr300lKXAQAAAAAsgzqHnvvss0+SZNq0aTn77LMzefLkxW4zc+bMnHvuuZkwYUKSZO+9965rGfWmUCjk/PPPL9YGAAAAADQudQ4999tvv6y77rpJkldffTUHHHBA7rjjjuKl63MbMWJE7rnnnnzrW9/KM888k4qKiqy77ro58MAD61pGvbnjjjvy4osvZr311svXv/71UpcDAAAAACylZnXdQVVVVa699toce+yxmTJlSkaNGpU+ffqkT58+ad68efEGR5MnT57nhkWFQiHt27fPjTfemMrKOmev9WLo0KG57rrr0qxZs1x99dW56qqrSl0SAAAAALCU6iVt3GSTTXL33Xdngw02SKFQKP6bOXNmxo4dm7Fjx2bGjBnzrNtkk01y7733FkeJltqcS+5nzJiR008/PZtvvnmpSwIAAAAAlkGdR3rOsdFGG+Xvf/97nnnmmTz55JN5/vnnM3r06FRXVxfbdOrUKdtss02+9a1vZY899khFRUV9Hb7ObrjhhgwZMiRbbLFFTjvttFKXAwAAAAAso3oLPZOkoqIiu+yyS3bZZZfic+PHj091dXXatWuXFi1a1Ofh6s0rr7yS3//+92nVqlWuuuqqNGtWry/LfJo1axiX8wMAsHxVVfm9j4arIZ+fDbk2mjbnJjQeyzfdS9KhQ4cks+fwHDRoUEaNGpU11lgjX//619O8efM67//mm2/ODTfcsFTbHHLIIenTp0+S2XONnnfeeamtrc0PfvCDrLfeenWuaVEqKyvSsWOb5XoMAACAxWnXrnWpS4BGR7+BxqPeQs/q6uo8/PDDeeutt3LhhRfOs+6dd97JWWedlREjRhSfW3311XP++edn3333ra8Slsnll1+ekSNHZocddshxxx233I9XW1vIxIlTl/txAAAovaqqSh+QabAmTpyWmpraUpexQPoODVVD7jfQVLRr13qJRl3XS+g5fPjwnHzyyRk+fHgqKiryox/9qHgp+7hx43LiiSdmwoQJ82wzatSonHPOOZk2bVq+/e1vL/Oxe/XqlZ49ey7VNnPuKP/YY4/lb3/7W1ZeeeX87Gc/W2FzjFZX+wEJAACUVk1Nrc8msJT0G2g86hx61tbWpnfv3vnkk0+Kzw0fPrx4mfjvf//7TJgwIRUVFamqqsqOO+6YsWPH5u23305tbW2uvPLK7LzzzllttdWW6fgdO3ZMx44dl3q70aNH55JLLkmS/PjHP86aa665TMcHAAAAABqWOs/A+/DDD+ff//53Kioq0qlTp1x55ZVZa621iuv/8Y9/FB9fd911ufXWW/OXv/wl559/fpJkypQpeeCBB+paxlJ77rnnMn78+CTJ+eefn4022mi+fy+//HKS5OWXXy4+V4paAQAAAIAlV+fQ86mnnkqSNG/ePH/84x9zyCGHpGXLlkmSN998M6NGjUpFRUXWWWed7L333sXtTjjhhGy55ZYpFAoZMGBAXcsAAAAAAEhSD5e3v/nmm6moqMhee+2VLl26zLPumWeeKT7ebbfd5tt22223zZtvvjnPpfEryoEHHrjYuUC/853vZPDgwenWrVt++9vfJkkx0AUAAAAAGqY6h55jx45NkqyzzjrzrXvuueeKj3fcccf51rdv3z7J7JsdrWjNmjVLs2aL/vKrqqqK/7dp02ZFlAUAAAAA1FGdL2+vrq5OMvvy9rlNmjQpb731VpLZAWO3bt3m23bMmDFJjJ4EAAAAAOpPnUPPOXddHz58+DzPP//886mpqUlFRUW22WabtGrVar5t54Sia6yxRl3LAAAAAABIUg+h5xZbbJFCoZD+/ftn0qRJxefvu+++4uPdd999vu2eeeaZvP7666moqMgWW2xR1zIAAAAAAJLUw5ye++67bx5//PGMGzcuvXr1yuGHH57XX389zz//fJLZ82Hut99+xfajR4/OQw89lBtuuKH43P7771/XMpaLvn37lroEAAAAAGAp1Tn07NmzZ7baaqu8/vrr+fDDD/Ozn/0sSVJRUZEkOe6449KpU6di+wMOOCCTJk1KoVBIknTv3j0777xzXcsAAAAAAEhSD5e3V1RU5JZbbskOO+yQQqEwz78DDzww3//+9+dpv+666xYDzx49euT666+vawkAAAAAAEV1HumZJB07dswf/vCHvPbaa3njjTdSVVWVbbfdNhtvvPF8bbfaaqusuuqqOfTQQxc41ycAAAAAQF3US+g5x9Zbb52tt956kW3OP//8+jwkAAAAAMA86nx5OwAAAABAQyL0BAAAAADKitATAAAAACgrQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKw0K3UBAAAAsCCdV29f6hIatepZ0zPmjf9b/tqaHdKseavSFdSIOReh8RF6AgAA0KDU1hZSU1ObM3rtVOpSGrXJkyfnoEd/VVy++LS907Zt2xJW1LjV1NSmtrZQ6jKAJST0BAAAoEGprS1k/PipqaysKHUpjdqUKVPmWR4/fkpmzfKaLqva2oLQExoRoScAAAANjoCp7qqra+db/vJzAOXKjYwAAAAAgLIi9AQAAAAAyorQEwAAAAAoK0JPAAAAAKCsCD0BAAAAgLIi9AQAAAAAyorQEwAAAAAoK0JPAAAAAKCsCD0BAAAAgLIi9AQAAAAAyorQEwAAAAAoK0JPAAAAAKCsCD0BAAAAgLIi9AQAAAAAyorQEwAAAAAoK0JPAAAAAKCsCD0BAAAAgLIi9AQAAAAAyorQEwAAAAAoK0JPAAAAAKCsCD0BAAAAgLIi9AQAAAAAyorQEwAAAAAoK0JPAAAAAKCsCD0BAAAAgLIi9AQAAAAAyorQEwAAAAAoK0JPAAAAAKCsCD0BAAAAgLIi9AQAAAAAyorQEwAAAAAoK0JPAAAAAKCsCD0BAAAAgLIi9AQAAAAAyorQEwAAAAAoK0JPAAAAAKCsCD0BAAAAgLIi9AQAAAAAyorQEwAAAAAoK81KXUBD8MQTT+S73/3uYtv17Nkzv/zlL1dARQAAAADAsjLSM8nbb79d6hIAAAAAgHpipGeSd955J0lywAEH5LLLLltou2bNvFwAAAAA0NBJ8fJ/oedWW22VNm3alLgaAAAAAKAumvzl7aNGjcrnn3+eJNliiy1KXA0AAAAAUFdNPvT817/+lSRp3rx5Nt100xJXAwAAAADUVZO/vH1O6Lnhhhtm4MCB+dOf/pRXX301EydOzKqrrppvfvObOfnkk7PBBhuUuFIAAAAAYEkY6fnf0PP999/PKaeckieeeCJffPFFZs2alf/85z/561//moMPPjj33ntviSsFAAAAAJaEkZ7/DT1nzZqVb37zm/nOd76TjTfeONOmTcszzzyTG2+8MWPHjs0ll1ySVVddNXvttVedj9msWZPPmgEAmoSqKr/30XA5P8vflz97NmtW6fMo0GQ0+tDz5ptvzg033LBU2xxyyCHp06dPJk+enJVWWinNmzfPQQcdlCuuuCIVFRXFdkcddVS6d++e//mf/8mECRNy+eWXZ5dddkmLFi2Wud7Kyop07OgO8QAAQGm1a9e61CWwnDVvXphnuUOHNmnb1udRoGlo9KFnXbRt2zaPP/54ampqkmSewHOOr33taznttNNy1VVXZdSoUXn22Wezxx57LPMxa2sLmThx6jJvDwBA41FVVSlYosGaOHFaampqS10Gy9GUKVPmWR4/fkpmzZr/cy9AY9KuXeslulqh0YeevXr1Ss+ePZdqm5VXXnme5aqqqkW232OPPXLVVVclSd588806hZ5JUl3tFwsAAKC0ampqfTYpc1/+/lZX+54DTUejDz07duyYjh07LtdjfPWrXy0+Hjt27HI9FgAAAABQN2YwTlIoFBa5ftasWcXHrVu7PAkAAAAAGrImHXr27ds33bt3z+abb54RI0YstN2HH35YfNy1a9cVUBkAAAAAsKyadOi52mqrZcyYMamurs6AAQMW2u4f//hHktk3OurRo8eKKg8AAAAAWAZNOvTcZZdd0r59+yTJzTffvMD5OgcNGpR77rknSbL33nunS5cuK7RGAAAAAGDpNOnQc6WVVso555yTJPn8889z2GGH5bHHHsuoUaMyfPjw3HrrrTnllFNSXV2dTp065cc//nGJKwYAAAAAFqfR3729ro444oh8/vnnufHGGzNixIicddZZ87VZa6218pvf/CZrrLFGCSoEAAAAAJZGkw89k+SMM87IzjvvnL59+2bQoEEZPXp0Wrduna5du2bvvffOMccc467tAAAAANBICD3/a4sttsjVV19d6jIAAAAAgDpq0nN6AgAAAADlR+gJAAAAAJQVoScAAAAAUFaEngAAAABAWRF6AgAAQBlq1qx5Kipmf+yvrKxMs2bNS1wRwIoj9AQAAIAy1LJly+yzz36prKxMz577pWXLlqUuCWCFaVbqAgAAAIDl4/jjT8nxx59S6jIAVjgjPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKwIPQEAAACAsiL0BAAAAADKitATAAAAACgrQk8AAAAAoKw0K3UBDUVtbW3+9re/5R//+Efee++9TJo0KR07dsx2222XE088MZtvvnmpSwQAAAAAloDQM8mECRNy2mmn5dVXX53n+dGjR+ehhx7Ko48+mosvvjhHHnlkiSoEAAAAAJZUk7+8vVAo5PTTT8+rr76aioqKnHDCCXnkkUfyzDPP5IYbbkjnzp1TU1OTSy+9NG+++WapywUAAAAAFqPJh55//vOfM3jw4CTJT37yk1xwwQVZb731ssYaa2SfffbJPffck7Zt26a2tja/+93vSlwtAAAAALA4TT707Nu3b5Kke/fuC7x8fY011sj++++fysrKvPfeeyu6PAAAAABgKTXp0HPo0KEZOnRokuQ73/nOQttdeOGFefvtt/P444+vqNIAAAAAgGXUpEPPOXN0Nm/ePNtss80862bNmlV83KJFi1RVVa3Q2gAAAACAZdOk794+Z5Rn586d06JFi7z77rv53e9+l+eeey7jxo1L27Zts8MOO+TUU0/NlltuWeJqAQAAAIAl0aRDzzFjxiRJOnTokAceeCAXX3zxPCM8J0+enCeffDJPPfVULrzwwhx11FH1ctxmzZr0AFsAgCajqsrvfTRczk8AylmjDz1vvvnm3HDDDUu1zSGHHJI+ffpkypQpSZJPPvkkF110UVZfffWce+656dGjR6qqqvLiiy/mqquuyscff5zLLrssX/va19K9e/c61VtZWZGOHdvUaR8AAAB11a5d61KXAADLTaMPPeti2rRpSZKxY8dmtdVWy7333ps11lijuH6PPfbIVlttlYMPPjijR4/O1VdfXefQs7a2kIkTp9ZpHwAANA5VVZWCJRqsiROnpaamttRlAMBSadeu9RJdrdDoQ89evXqlZ8+eS7XNyiuvnCRp3fr/fgH9zne+M0/gOceqq66ak046KX369Ml7772Xjz/+OGuvvXadaq6u9osFAABQWjU1tT6bAFC2Gn3o2bFjx3Ts2HGZtm3T5v8uM99+++0X2m7bbbctPv7ggw/qHHoCAAAAAMtPk565eq211io+btGixULbtW3btvh4xowZy7UmAAAAAKBumnToufHGGxcfjxgxYqHtPv/88+Lj1VdffbnWBAAAAADUTZMOPXfcccc0b948SfLYY48ttN3zzz+fJGnVqtU8QSkAAAAA0PA06dCzffv22WeffZIkf//73/PKK6/M1+aTTz5J3759kyR77733PJe6AwAAAAANT5MOPZPkvPPOS8eOHVNTU5NTTjklv/nNb/Lxxx/niy++yIMPPpijjz46kyZNSrt27fLDH/6w1OUCAAAAAIvR6O/eXledOnXKHXfckVNPPTWfffZZrrvuulx33XXztOnYsWNuvPHGrLHGGiWqEgAAAABYUk0+9EySjTbaKI888kjuuuuuPP744xk2bFhqa2uz5pprZo899sjRRx8t8AQAAACARkLo+V8rrbRSevfund69e5e6FAAAAACgDpr8nJ4AAAAAQHkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUlWalLqCUHnjggVxwwQVLtc13v/vdnHnmmcupIgAAAACgroz0XEpt27YtdQkAAAAAwCI06ZGeBx54YHr27LnINmPGjMmRRx6ZcePGZdttt83RRx+9gqoDAAAAAJZFkw49mzVrlmbNFv4S1NbW5sc//nHGjRuXVVddNb/4xS/SokWLFVghAAAAALC0XN6+CL///e8zaNCgJMlll12WTp06lbgiAAAAAGBxhJ4LMWLEiNx0001Jkp49e2bPPfcscUUAAAAAwJIQei7ENddck2nTpqVVq1Y5//zzS10OAAAAALCEmvScngvz9ttv57HHHkuSHH300VlzzTVLXBEAAI1Z59Xbl7oEKHI+AtAUCD0X4LbbbkuStGzZMieddFK9779ZMwNsAQCagoqKitTU1OaMXjuVuhSYR01NbSoqKnw2AaBsNfrQ8+abb84NN9ywVNsccsgh6dOnzwLXjRw5Mo8//niS5NBDD81qq61W5xrnVllZkY4d29TrPgEAAJZGVVVlOnRYqdRlAMBy0+hDz/p21113paamJlVVVTnllFPqff+1tYVMnDi13vcLAAAAAOWuXbvWqapa/JUKjT707NWrV3r27LlU26y88soLfL5QKOShhx5Kkmy//fbp3LlznetbkOrq2uWyXwAAAACgDELPjh07pmPHjvWyr9dffz2jR49Okuy///71sk8AAAAAYMUya/Vc+vXrlyRp3rx59t577xJXAwAAAAAsC6HnXJ577rkksy9tb9euXYmrAQAAAACWhdDzvyZMmJChQ4cmSbbccssSVwMAAAAALCuh53+98847KRQKSYSeAAAAANCYCT3/68MPPyw+/trXvlbCSgAAAACAuhB6/tfIkSOLj83nCQAAAACNl9DzvyZNmlR8LPQEAAAAgMarojBnIktWiJqa2owdO6XUZQAAAABAo7PKKm1SVbX4cZxGegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWhJ4AAAAAQFkRegIAAAAAZUXoCQAAAACUFaEnAAAAAFBWKgqFQqHURTQlhUIhtbVecgAAAABYWpWVFamoqFhsO6EnAAAAAFBWXN4OAAAAAJQVoScAAAAAUFaEngAAAABAWRF6AgAAAABlRegJAAAAAJQVoScAAAAAUFaEngAAAABAWRF6AgAAAABlRegJAAAAAJQVoScAAAAAUFaEngAAAABAWRF6AgAAAABlRegJAAAAAJSVZqUuAEqlX79++fOf/5y33norU6ZMyWqrrZatt946hx9+eL75zW+WujxokK644or07dt3se0uuuiiHHPMMSugImjYzj///Pz1r39dqm3uvPPObL/99supIqhfU6ZMyUEHHZRCoZBHH300LVq0KK77wx/+kJ/97GeL3cdJJ52U8847r95re+mll3LXXXfl9ddfz/jx49OxY8dsttlmOfTQQ7PXXnstcJv77rsvF154YS688MIce+yx9V4TzLGgvnPjjTfmpptuWqr9/OxnP8u3v/3teqtrWfutvsOSKrdzv754z1o+hJ40ObNmzcq5556bRx99dJ7nP/vss3z22Wd55JFHcsQRR+TSSy9NRUVFiaqEhulf//pXqUuAstemTZtSlwBL7Morr8zw4cNzww03zBN4Jsnbb79doqpmfxj+wx/+MM9zo0ePzujRo/PUU09lt912yy9/+cv5aj700ENz99135+c//3l23HHHrLfeeiuwapqSRfWdpdG2bdt6rGrZ+62+w5Iqt3O/PnjPWn4qCoVCodRFwIrUp0+f3H777UmSffbZJyeddFLWWmutjBw5Mrfddlsee+yxJMnZZ5+d008/vZSlQoNSW1ubbt26ZerUqbnkkkty0EEHLbRtixYt0rx58xVYHTRMM2fOzKxZsxbZ5sUXX8x3v/vdFAqF9O7dO+ecc84Kqg7qZtCgQTn66KOz9dZb5957751v/X777ZcPP/wwvXv3zmmnnbbQ/TRv3rxOH3y/rG/fvrniiiuSJN/85jfz//7f/8t6662XMWPG5E9/+lP++Mc/JkkOO+ywYru5Pf/88znppJOy/fbb584776y3umCOhfWdJXnPGDp0aI477rjMmDEjBxxwQK699tp6ra0u/VbfYXHK9dyvC+9Zy5fQkyZl1KhR2WOPPTJr1qzsv//+ue666+Zrc/rpp6d///5p165dnnvuubRs2bIElULD8+GHH2a//fZLkvzjH//IRhttVOKKoPEbPXp0DjzwwIwbNy7bbbdd7rjjjlRWmnKdhq9QKOTggw/Ou+++mz/84Q/zTQ00derUdOvWLbW1tbnllluy++67r5C6pk+fnl122SXjx49Pt27d0rdv31RVVc3TZs5ULVVVVenfv3++8pWvzLefo446KoMHD87111+ffffdd4XUTtOwuL6zKFOnTs0hhxySYcOGZd11183999+flVZaqd5qq49+q++wMOV+7i8L71nLn9+qaVKeeuqp4l+QzjjjjAW2OfDAA5MkEydOzL///e8VVhs0dHMubV9ppZWy/vrrl7gaKA8XXnhhxo0blzZt2uTqq68WeNJoPPbYY3n33Xez4YYbLvCD65AhQ1JbW5sk2WKLLVZYXa+88krGjx+fJDn11FPn+/CY/N/vejU1NQu9nPG4445Lktx0003FrwPqw+L6zqJcc801GTZsWKqqqnLNNdfUa+iT1E+/1XdYmHI/95eF96zlz2/WNClHHnlkBgwYkD/84Q9LNN9Fs2amvYU53nnnnSTJpptuusA3ZGDpPPLIIxkwYECS5JxzzslXv/rVElcES+53v/tdktnziS3InPeMr371q+nUqdMKq6tHjx55/vnnc8cddyzRh+qFTcWy++67p2PHjvnggw/y1FNP1XeZNGGL6zsL8/rrr+eee+5Jkhx//PHZfPPN6722+ui3+g4LU+7n/rLwnrX8CT1pcr7yla8s9AfKrFmzinNmdO7cOV27dl2BlUHDNmek5yabbJI///nPOeaYY9KtW7dsueWW2XffffPzn/8848aNK3GV0DjMmDEj11xzTZJkww03zJFHHlniimDJvf3228XRJj179lxgmznvGZtvvnkeeeSRnHzyydluu+2y+eabZ88998xll12WTz/9dLnUt9pqq2WHHXZY4JxrhUIhffv2TTL7pmFbbbXVAvfRokWL4uWNC5qvFJbFkvSdhfnpT3+aQqGQTp06LfSKtbqqj36r77AgTeHcX1bes5Yvw9ho8qZOnZrRo0fn1VdfzR/+8Ie89957ad68eX7yk58Y6Qn/VSgUin8Bvffee+ebaPyjjz7KRx99lPvvvz+33HLLQt+Qgdn++Mc/Fn95/uEPf2j0NI3KI488kiRZf/31FzpCec4HyKeffjpPPPHEPOuGDx+eu+++Ow888ECuvfba7LHHHsu13hkzZmT06NF5++2307dv3wwePDhJcsEFF6R9+/YL3W7nnXfO/fffnxdeeCETJ05Mu3btlmudlL8l6TsL0q9fv7z55ptJZt9/oL7vWj1HffVbfYcvayrnfn3wnlW/JDo0ed/5zncyaNCg4vJXv/rVXH/99UIbmMvHH3+cyZMnJ0mqq6tzxBFH5PDDD0/nzp0zZsyYPPjgg/n973+fsWPHpnfv3rn//vvTpUuXElcNDVN1dXX+8Ic/JJk9XcQuu+xS2oJgKT377LNJstDflWbMmJGPPvooyeyraPbZZ58cd9xxWWeddTJx4sT069cvt9xyS6ZOnZqzzjord999d77+9a8vt3ovuuii/P3vfy8ut2vXLtdcc0123XXXRW435+urrq7OCy+8kH322We51UjTsLi+szBzLgvu1KlTDjvssPouK0n99lt9hy9rKud+ffCeVb9c3k6T9+Vh6p999ll+8pOfzBOEQlM3atSofOUrX0llZWX69OmTyy67LJtvvnk6duyYDTfcMOecc05+8YtfJEkmTJhQvGwXmN8jjzyS//znP0mS3r17l7gaWDqTJ0/OBx98kGT21AwL8umnn2aNNdZIVVVVzjzzzNxwww3p1q1bVllllXTt2jW9e/fO7bffnubNm2fWrFm57LLLlmvNX/5db+LEifnZz36WJ598cpHbfeUrXymOlHnjjTeWW300DUvSdxZk8ODBxfPvhBNOWOAlsPWhPvutvsPcmtK5X1/1zM17Vt0IPWnybrvttrz11lt58cUXc8UVV6RDhw4ZMmRITj755Lz66qulLg8ahO233z4DBgzIG2+8kYMPPniBbfbee+/stttuSZInnngiEyZMWIEVQuMxZ5Rn165dl3peKyi1YcOGFe8Mu+666y6wzTrrrJP+/fvnjTfeyHe/+90Fttlqq61yxBFHJJk919u77767fApOcsUVV+TNN9/MK6+8kl/84hfp3Llzhg0bljPPPDOPPfbYIrddZ511kiT//ve/l1t9NA1L0ncW5I477kgye7TX8pz/ub77rb7DHE3t3K8r71n1S+hJk7fuuuumRYsWWWWVVXLYYYelb9++admyZaZPn56rr7661OVBg7K4v7DOmeOmtra2OFk58H/+/e9/F+eNOvjgg1NZ6VcxGpc5o5STLHJusWThd5mdY+550ebM2bY8dO3aNS1btky7du2y33775Z577smqq66a2traXH311fPNUz23OV/jqFGjllt9NA1L03fmmDx5cvFOzD179lxu8xnOrb76rb7DHE3t3K8r71n1y2/a8CUbbrhhDjzwwCTJa6+9lrFjx5a4Img85p6YXN+B+fXr16/4eP/99y9hJbBspk6dWnxc1w+hpXrPWGONNXLssccmSUaOHLnIETsrr7xyknm/blgWy9J3nn766cycOTNJw3nPWNJ+q+8wR1M79+ub96y6EXrCAmy22WbFxyNGjChhJdCwFAqFRa6f+y+PrVu3Xt7lQKMzJ/TcYost8rWvfa3E1cDSq6ioKD6uqqpaZNuG/J6xpL/r1dTUrIhyaAKWpu/MMec9o1OnTtl+++2XS11fVl/9Vt9hjqZ27i8P3rOWndCTJuXWW2/NUUcdtdC5OuaYMWNG8XGrVq2Wd1nQ4J1zzjnZfvvts+eeey6y3ZxJypP/m1MGmG3s2LHFS9v32muvElcDy6ZNmzbFx9OmTVtgm2uuuSbf/OY3s80228zzO9WXzf2e0bVr13qp7y9/+UuOPfbYxd7ld0l/1xs3blySeb9uWBZL0nfmVltbmxdeeCFJsvvuuy/36VDqu9/qO8zR1M79peE9a/kTetKkjB49OoMHD85TTz21yHkunn322SSzf1jU1w80aMzatWuX8ePHZ8SIEfO84c+tUCjk4YcfTpJ07tx5qSYqh6bg1VdfLY4i2HLLLUtcDSybuS/vW9jvUh07dszYsWMzderUvPTSSwvd14MPPpgkWWmlldKtW7d6qW/y5Ml5+eWX8+abby5yzrU5v+tVVFRk0003XWi7OR8g11xzzXqpj6ZrSfrO3N5///1MmjQpyYp5z6jvfqvvMEdTO/eXhves5U/oSZMyZ67O6urqXHvttQts8/DDD+e5555LkhxyyCGLvXELNAXf+ta3io9/+tOfLvDyj9/+9rcZMmRIkuTkk0+e51IWIMVRnhUVFdliiy1KXA0sm65duxZH3XzyyScLbLPvvvsWbwhx9dVXF+dlm9tDDz2U/v37J0mOPPLIertJxT777FM89s9//vMFXuo3aNCgPPDAA0mSXXfdNWusscYC91UoFIo34PCHPOpqSfrO3Oa+IeSKCH7qs9/qO8ytKZ37S8t71vIn9KRJ2XLLLXPwwQcnSf7+97/ntNNOy+DBgzN27NgMHTo0V199dc4999wkydprr50zzzyzhNVCw7HNNtvkgAMOSJK88MILOf744/Pyyy9n7Nixeffdd3PRRRcV/5Cw3XbbpVevXqUsFxqkDz/8MEmy6qqrrpC7kMLy0Lp162yyySZJknfeeWeBbTp37pyTTjopyezLAQ8//PAMGDAgn3/+eT788MP8/Oc/z3nnnZckWW+99Rb4+9bxxx+fffbZJ8cff/xS1feVr3wlvXv3TpIMHDgwxxxzTF544YV88cUX+fjjj/PrX/86J598cmbNmpWOHTvmxz/+8UL39cEHH2TixIlJUm+jemi6lqTvzG3Oe0Yy+3PJklrWvlMf/XYOfYe5NYVz33tWw9Ws1AXAinb55Zdn6tSp6devX5566qk89dRT87XZZJNNctNNN6VDhw4rvkBooH76059mypQpeeqppzJw4MAMHDhwvjY77rhjbrzxxuU+9w40RiNHjkzyf3fWhMZqp512yr/+9a+88sorC21z9tlnZ/z48fnTn/6UIUOGFD/UzW2TTTbJb37zm6y00krzrRs+fHhGjhy5wBE3i3PmmWdmwoQJueuuu/Lqq6/mxBNPnK9N586d86tf/SpdunRZ6H4GDx6cZPb8ad/4xjeWug74siXpO3PMec9o0aJFWrZsucTHqEvfqWu/nUPf4cvK/dz3ntVwCT1pclq0aJEbb7wxTz75ZO677768+eabmThxYtq2bZtNNtkk+++/fw4++ODiMHNgtlatWuWWW25Jv379cv/99+ett97KpEmT0r59+2y88cY55JBDsv/++7usHRZizvxU7dq1K3ElUDf7779/br311gwfPjzDhg1b4PznlZWVueyyy7LvvvvmnnvuyWuvvZZx48alTZs22WCDDbL//vvnsMMOS7Nm9f9xpKKiIhdddFF69uyZu+++O6+++mrGjRuX1q1bZ/3118/ee++dI444YpGhTZK8/PLLSZLddtvNTSGoF0vSd+YoxXtGffVbfYcvayrn/rLwnrV8VRQWNDEbAADAQhx11FEZPHhwvve97+WMM85YLse4/PLL8/LLLxdvHrEiTZo0Kd27d8/06dPTt2/fbLfddiu8BsqTvkNTVe7nvn7XMLn+EAAAWCr/7//9vyTJ3/72t9TW1i6XYwwZMmSp5nOrT//4xz8yffr0bLPNNj48Uq/0HZqqcj/39buGSegJAAAsle7du2fLLbfMJ598kgEDBtT7/m+//fYMHjw4hx12WL3ve0n85S9/SZKcfvrpJTk+5Uvfoakq53Nfv2u4hJ4AAMBS++EPf5iKiorccsst9b7vIUOG5MILL8wuu+xS7/tenCeffDLvvPNOtt9+++y8884r/PiUP32Hpqpcz339ruEypycAALBMLr/88tx111351a9+lT333LPU5dRZTU1NDjjggPznP//Jgw8+mLXWWqvUJVGm9B2aqnI790tJv1s8Iz0BAIBl8sMf/jBrr712rrrqqsycObPU5dTZX/7yl3z00Uc599xzfXhkudJ3aKrK7dwvJf1u8Yz0BAAAAADKipGeAAAAAEBZEXoCAAAAAGVF6AkAAAAAlBWhJwAAAABQVoSeAAAAAEBZEXoCADRSN954YzbaaKNstNFGeeCBB+q0r9133724r4ZS05z97L777nXaT2NUX98Plr8RI0YUv1fHHntsqcsBAP5L6AkAAAAAlBWhJwAAAABQVpqVugAAAEqvf//+pS4BGqW11lor7733XqnLAAC+xEhPAAAAAKCsCD0BAAAAgLLi8nYAaMKOPfbYvPzyy+ncuXP69++fyZMn54477shjjz2WESNGpFAoZO21186uu+6aY489Nqutttoi9zd+/Pj87W9/y0svvZT3338/48ePz8yZM9OuXbt07tw522+/fY444oh06dJlgduff/75+etf/5oWLVrkrbfeyrvvvpurrroqr732Wlq3bp0NNtggxxxzTPbee+95tnvrrbfyyCOPZNCgQfnss88yfvz4NG/ePO3bt8/GG2+c3XbbLYccckhatGixwOPuvvvuGTlyZHbdddf85je/ydixY3PPPfekX79+GTFiRJJkzTXXTM+ePXPMMcekQ4cOxW0feeSR3HfffXnvvfcyadKkrL766unevXtOPfXUrLnmmkvx3agfzzzzTO6///689tprGTt2bDp06JB111033/rWt3LwwQenefPmC9xuzmuQZJGX6g4ePDj33HNPBg0alM8//zzt27fPZpttlqOPPjq77LLLEtc5efLk3HvvvenXr18++OCD1NTUZM0118zee++d448/PqusssoS72vatGm577770r9//3zwwQcZP3582rZtm65du2aXXXZJr1695vmeLexr7969e2677bZMnjy5+P3/5JNPMm3atKy++urZYYcd0qtXr2y22WZLXNvy9tFHH+Uf//hHXnnllXzyySeZMGFCKioq0q5du2ywwQbp0aNHDjvssLRt23ae7QYMGJDevXsnSbH/L853vvOdPPPMM0mS++67L1tuueV8bd5444088MADGThwYEaPHp2ampqsttpq6datWw488MB07959ofu/8cYbc9NNNyVJnnvuucyYMSN9+vTJCy+8kObNm6dr16759re/nSOOOGKJX58lVVtbm379+uWRRx7JW2+9lc8//zzNmjXLKquski233DK77bZb9t9//1RVVc237YgRI7LHHnskSbbbbrv07du3uG7Oz9il9bOf/Szf/va3F7iuLq/xHEOHDs19992XgQMHZvjw4Zk5c2Y6dOiQrl275pvf/GYOO+ywrL766ktdNwA0JEJPACBJMnz48JxyyikZNmzYPM+/++67effdd3PXXXflxhtvzI477rjA7e+5555cc801mTJlynzrvvjii3zxxRd58803c/vtt+fHP/5xjjrqqEXW88knn+TYY4/NxIkTk8wOtgYOHDhP4Dl58uScf/75eeKJJ+bbftasWZk6dWo+++yzPPXUU/ntb3+b3/72t1lnnXUWedxBgwbl7LPPzpgxY+Z5/v3338/777+fBx98MHfccUfatWuXc845Z76waMSIEbn33nvz2GOP5Y477sjGG2+8yOPVl+nTp+d73/teHn/88XmeHzNmTMaMGZOBAwfmz3/+c371q18tU5hRW1ubn/3sZ7nzzjvnef7zzz/PgAEDMmDAgBx66KFZY401Fruvd999N6eeemr+85//zPP8Rx99lF//+tf5y1/+kptvvnmJ6nrhhRfyox/9aL7v17hx4zJu3Li89tprue2223LppZdm//33X+z+3n777Zx55pn59NNP53l++PDhGT58eO6///6cddZZOe2005aovuVl1qxZufzyy3PfffeltrZ2vvXTp0/P6NGj8/zzz+fWW2/NzTffnK233rq4vnv37unUqVPGjBmTkSNH5rXXXptn/ZeNHTs2L7zwQpJk3XXXnS/wnDFjRi666KL8/e9/n2/bESNGZMSIEfn73/+eHj165Nprr0379u0X+fVNmDAhvXv3LgbxSfL6669nm222WeR2y2Ls2LH5f//v/+W1116b5/mZM2dm6tSpGTFiRB555JHcfPPNufXWW/O1r32t3mtYEvX1Gt9888258cYb5ztv5vyseOWVV3Lrrbfmxz/+cQ4//PDl8rUAwIog9AQAMn369Jx22mkZNmxYWrRokT333DMbbLBBvvjii/Tr1y+jR4/O5MmT07t37/zmN7/JTjvtNM/29957b37yk58Ul7/+9a+nW7du6dixY6ZPn56hQ4dmwIABmTFjRqqrq3P55Zdn8803X+BIsTkuvPDCYuA5R2VlZTH0rK2tzSmnnFIMKlq1apVddtkl66+/flq1apVx48bl5Zdfzttvv51kdmh11lln5W9/+1sqKxc8w8+IESNy+umnZ+LEiVljjTWy5557ZpVVVskHH3yQfv36paamJsOGDctPf/rT1NbWpn///unQoUP23nvvrLnmmsVwZOrUqRk/fnwuuOCC/PWvf13q78ey+PnPf14MnLfffvt8/etfT6tWrfLWW2/l6aefTqFQyJtvvpkLLrggt91221Lv/8c//nEeeOCB4vJ2222XbbfdNoVCIYMGDcrLL7+c+++/f5EjKpPZgecxxxyTSZMmJUlWWWWV7LXXXvnqV7+azz77LP369cvnn39eHIW4KP/85z9z1llnZdasWUmStddeOzvvvHM6deqU8ePH57nnnsv777+fSZMm5ZxzzsnUqVNz2GGHLXR/o0aNSu/evfPFF1+kU6dO2X333bPmmmvm888/z2OPPZYxY8aktrY2v/jFL7LZZpulR48eS/DKLR/nnXdeHn744SRJs2bN0r1792y88cZp06ZNJk6cmDfeeCOvvPJKCoVCxo4dmzPPPDOPPfZYccRnVVVVvvWtb+X3v/99kuThhx9eZOj58MMPp7q6Okly0EEHzbNu5syZOfHEEzN48OAkSfPmzdOjR49suummqaioyIcffpinn346U6dOzbPPPpujjz46995773yjT+fWp0+feQLPOfbZZ5+leJWWzA9+8IPiz5GOHTtm9913T5cuXTJr1qwMGzYs/fr1y6xZs/Lvf/87J510Uh555JGFjhr/sl69emXXXXddbLuHH344//rXv5IknTp1mu9nbH29xn//+99zww03JJn987R79+7ZdNNNs9JKK2XUqFF5+umnM3LkyEyfPj0XXXRR1lprrYX+oQsAGjqhJwBQHInZpUuX/OY3v8l6661XXHfOOefk/PPPz+OPP55Zs2blkksumedD/4QJE/Lzn/+82H5hl2V++umnOfnkk/PRRx+ltrY299xzz0JDz5kzZ2bgwIFZZ511cumll2bLLbfMyJEjM3DgwOIoxb/+9a/FoKJz58658847s9Zaa823r4cffjg//OEPU1tbm/feey+DBw/Otttuu8DjfvDBB0mSI444IhdddNE8l4L3798/p59+epKkX79+SZJtt902N9100zxB3wknnJDDDz88U6dOzTvvvJMhQ4Zkk002WeDx6tOUKVPSqVOn/PKXv5xvNNyzzz6bU089NTU1NXnuuefy1ltvZYsttljifT///PPFwLNly5a57rrrsueee87T5sknn8w555yT8ePHL3JfP/nJT4qBZ48ePXLdddelXbt2xfU//OEP88Mf/jADBgxY5H4+/fTTnH/++Zk1a1YqKytz3nnn5bjjjpsn0D7vvPPywAMP5OKLL86sWbNy2WWXZZtttpnn/J7b0KFDk8z+/v/4xz9Oy5Yti+vOOeecfPe7381zzz2XJLn99ttLFnq+9NJLxcCzXbt2ufPOOxd4jg0cODCnnnpqpk2bljFjxuTJJ5/MwQcfXFx/0EEHFUPPRx99NBdccMECL99OkgcffDBJUlFRkW9961vzrLv22muLYdymm26aG264Yb7RkKNHj84555yTl19+OUOHDs3ll1+eq666aqFf47PPPptOnTrl0ksvzQ477JCxY8emX79++frXv76YV2fpvPrqq3nxxReTJOutt17++Mc/zhfcf/LJJznqqKMyZsyYDB8+PI888sg8r+Oi7LfffottM2DAgAwZMiTJ7DDzxhtvnG/EdH29xnNGUFdWVuaWW26ZL5C94IIL8r//+7/5xz/+kST59a9/LfQEoNFyIyMAIEnSunXr3HbbbfMFQiuttFKuu+66bLrppklmj5i87777iuuffPLJYoi11157LXQeujXXXDPf+973istzRjUtTPPmzXPbbbdl++23T+vWrbP++uvn6KOPLq6fewTlj3/84wUGnkmy//77zxNOLe64m222WS699NL55r7cfffd5wkKV1pppfzyl7+cLyDZYIMN5gmF5ow0Xd4qKipy0003LfDy3x49euTAAw8sLs8JT5bUddddV3x8wQUXzBd4Jsmee+6ZSy+9dJH7efrpp4tB9VprrZUbb7xxnsAzmR3i3XTTTQsNJue49dZbiyOBzzjjjJxwwgkLHMH77W9/O9///veTzA7Tf/3rXy9yv9ttt10uvfTSeQLPZHb/uOyyy4rLL7/8cmpqaha5r+Vl7nP/zDPPXGiovv322+eQQw4pLn/5XNx4442L0y98/vnneemllxa4n08++SRvvPFGktlBf+fOnYvrRo0albvvvjvJ7FG7t9122wIv/1599dVzyy23pFOnTkmSf/zjH/NNpfFlN954Y/bYY4+0adMmXbp0ycknn7zI9stizteVJIcffvgCRyp/7Wtfyw9+8IMks/vZW2+9VW/H//DDD/ODH/ygeKn5T37yk/lG3NbXazx+/Pji8oYbbrjAEajNmzfPZZddltatWyeZPa3HzJkz6/plAkBJCD0BgCTJUUcdlbXXXnuB65o1a5YzzjijuDxnpGMyOzg5//zzc8wxx+SEE05Y5DE22mij4uMFzf05t1133XWecOXLjjzyyJx55pk54ogjFnv56NzHnTx58iLbHn/88amoqFjgurnDpT322GOhN9tZf/31i4/Hjh27yOPVl2233TZbbbXVQtd/85vfLD5e0GXDCzNq1KhiWLbaaqstco6/gw8+OF27dl3o+n/+85/FxyeeeGIxWPmyFi1aFEfVLsjMmTOL8xq2aNEiJ5544qK+hBx33HFZaaWVkiSPPfbYIkOcI488cqHf/86dOxfPyVmzZmXChAmLPO7yss8+++T73/9+DjvssHnC7AVZXJ+bOxR96KGHFriPOaP+ksx3vL/+9a/F6QUOP/zwRd6Aqm3btjnuuOOSzJ6eYmHHS2aPZlzU5fb1Ze6Rra+//vpC2+277755+OGH88Ybb+Siiy6ql2OPHz8+p512WvFn0jHHHJP/+Z//ma9dfb3GzZr930V+I0eOnG8e3Dlat26d+++/Py+++GJeeumlJb6UHwAaGpe3AwBJstibvOy8885p1qxZqqurM2jQoEyfPj2tWrXKZptttkR3s66pqclHH31UXJ4zP+DCLCrAS5IDDjhgscdMZl9+P2rUqCU+7qLmGZ377vWLumR9TsCWZIWNkurWrdsi188Z/ZUsPnCe25yb1yTJjjvuuNDLn+fYfffdi5dMf9nzzz9ffLzzzjsvcj+77bZbKioqUigU5lv3r3/9K1OnTk2SdO3aNW3atFnkvpo3b57NN988L7/8cmbOnJm33nproa/Xor7/yeyRdnNC4xkzZiyy7fKy2267Zbfddltsuzk34ZljQef+AQcckGuuuSbV1dV54okncumll84Xcs25tL1ly5bzzan5yiuvFB/PGQ2+KHP360WNOF5c/68v2223XfHxo48+mokTJ+awww7LTjvtNM8o5DmjzetLdXV1vve97+WTTz4p1nHBBRcssG19vcZt27bNJptskiFDhmTSpEk59NBDc/zxx2fXXXedb2T14kZaA0BjIPQEANK8efN5RoQtSIsWLfK1r30tH330UaqrqzN69OgFXmI5a9asfPzxx/nkk0/yySefZNiwYRk6dGjeeeedYlCVZIFh1twWdrn6wkyYMCHDhg0rHvejjz7Ku+++mw8//HCeYy3uuIu6+/jcl09/+bLshbVbUVZdddVFrp87rFzQ3b4XZu5RoUsShCzsPKqtrS3erb158+bp0qXLIvfTtm3bdO7ceZ7Qbo45c68msy+/Xdy5+2WfffbZQtfNHWwvyNyjU5fmdVyepkyZkn//+9/55JNPMnz48Pz73//Ou+++m6FDh84TdC7o3F9ttdWy0047ZcCAAZk0aVKeeeaZeaYvePPNN4uXRO+xxx5ZeeWV59l+7u/F3NNXLIlPP/10oeuWtv8vq4033jgHHXRQceTw888/n+effz5VVVXZYost0qNHj+y8887ZYostFjoCeFlcccUVGThwYJLZI4hvuOGGeUZizq0+X+Mf/vCH6d27d2pqajJq1KhcffXVufrqq7Pmmmume/fu6dGjR3bcccdF3mQKABoLoScAkHbt2i30A/fc2rdvX3z8+eefzxN6vvLKK7ntttvy/PPPL3R0Y1VV1RLPg7ioUHGOmTNn5t577819992X999/f6Htlua4C7vkekH7bEgWN9pxWX3xxRfFx18OvBakY8eOC3x+/Pjxxe/ByiuvvEQBUseOHRcYetb1svJFbb+k3/9k8QH68lRbW5u///3v+eMf/5i33357oQHskpz7Bx98cPHGUQ899NA8oefcl7Z/+a7tSd2+F4vadkn6f3254oorsuqqq+bOO+8shsQ1NTV5/fXX8/rrrxdvLHTggQfmpJNOWuTl5Uvi7rvvzj333JNk9vl28803L3Kf9fkad+/ePTfffHMuueSS4h8hktnh6J///Of8+c9/TosWLbLrrrvmxBNPXOAcwQDQWAg9AYAlCjyTzBOezH2jn2uuuSa/+93v5mvfoUOHrL/++tl0002zzTbbZJ111llgcLIgiwsVx4wZk1NOOSXvvvvuPM9XVlamc+fO2WCDDbLFFltk++23z3PPPVe8a/Hi1OdornKwtK/Hl28AVRcL29fc5+Fmm2222KkZvmxFXTq9vEyZMiXf/e5355l6IJn9vfrKV76S9ddfP5tvvnm22267jBgxYrFzUO6xxx5p165dJk6cmKeeeipTpkxJmzZtUlNTk0cffTTJ7Mv6u3fvPt+2c48k7d279wJvBLQwX75Z1NxW5B8VWrRokfPOOy8nnHBCHn300fzzn//Ma6+9VpxHM5k9t+1vf/vb3Hfffbntttuy+eabL9OxXnjhhVx55ZXF5SuvvLJ4M6mFqe/XeNddd80TTzyRAQMGpF+/fnnuuefmmXt45syZ6devX/r165czzjhjqUeXAkBDIfQEAIp3X1+cuUcNzZkj8m9/+1sx8KysrMzBBx+cffbZJ5tvvvl8l1zPfZlmXf3whz8sBp6rrrpqTjjhhOy4447ZYIMN5vugP/cNdFg6c1/uvSQjzhZ2LnXs2DHNmzfPrFmzMmnSpNTW1i52GoCF3XRq7lGAa6yxxnK5q3dD9tOf/rQYeLZp0ybHHXdcevTokY033ni+Eb9z7vq9KC1btsy+++6bP/3pT5k+fXr69++fb33rWxk4cGA+//zzJLPn/F3QH0fat29fbLPvvvsu0ZyTDdUaa6yRE044ISeccEKmTp2awYMH54UXXshTTz2Vf//730lmj1g+66yz0q9fv6UOZocNG5azzz67GGKedtpp2W+//Ra73fJ4jVu0aJG99tore+21VwqFQt5777289NJLefbZZ/PSSy8Va/zVr36V7bbbLjvssEOdjwkAK5q7twMAmTp16jyXOi7ItGnTMnz48CSzb9QzJwz7zW9+U2xzzjnn5Gc/+1l22WWXBc4xOfdoorpcGvzGG2/kpZdeKtbypz/9Kb17987mm2++wJFN48aNW+ZjNXVz7laeJO+9995i23/44YcLfL6ioiJf/epXk8ye93Xum1otSHV1dT7++OMFrpt7PtAlDdInTJjQYObgrItRo0blb3/7W5LZr+ntt9+es88+O926dVvgFAdzn/uL6nNzj8Ce80eC/v37L3D93Ob+XgwdOnSx9c+cOXOhYXZDstJKK6VHjx4577zz8thjj+WXv/xlceTxiBEj8uqrry7V/iZNmpTTTjut+IeD3XbbLWedddYSbbu8X+OKiopsvPHGOeGEE3Lbbbelf//+88yTO2e+UwBobISeAECS5Jlnnlnk+qeeeqoYGvXo0SPNmjXLpEmT5gmvjjzyyEXuY86NO5K6hZ6vv/568fFOO+20yJviFAqFvPzyy8Xlcgi+VqQePXoUR7Q9//zzmTZt2iLbL+o82mWXXYqPn3jiiUXuZ+DAgQu9O/rWW29dHHX4ySefLDaMnTFjRnr27Jktt9wye++993xTIjQmb731VvHy/k022SRf//rXF9l+Sftct27dinP0Pvvss5k5c2aefvrpJMm6666bLbbYYoHbfeMb3yg+fvLJJxdbf9++fdOtW7dsv/32ufjiixfbfnn72c9+liOOOCLbbrttRo0atdB2PXv2zDe/+c3i8uL+SDS3mpqanH322cXRouuuu25+/vOfL/ENz+rrNf7nP/+Zk08+Obvttts8f6z6sjXWWCOnnXZacXlRrwsANGRCTwAgSXLbbbdl+vTpC1w3c+bM3HLLLcXlffbZp/j83BY1onLkyJG54447istzz5e3tOY+7uJGcd55553z3Axn7vnxWLxVVlmlGPZMmjRpkWHJc889l9dee22h6+eee/OOO+4oXrL7ZbW1tfnVr3610P20adMme+21V3H56quvXmSg97vf/S7jxo3LrFmzMnXq1Ky//voLbdvQzX3ujx8/fpFtn3zyyXkC/8Wd+3NGc06ePDn33HNPcWT3oubhPfjgg4vzvj755JMZNGjQQtuOGzcut912W7H2uUcTlsrw4cPz+uuvZ+LEiXnwwQcX2XbukeprrLHGEh+jT58+ee6555LMnprh5ptvXqq7o9fXa1woFPLcc8/l008/zcMPP7zI82Hun6tL87UCQEMi9AQAksyeb+573/teJk6cOM/zkyZNyve+973i3dG32Wab7LvvvklmB2Jz5vZMkp///OcLDDMHDRqUY445Zp75HhcWsC6JuW/8MXjw4AWOGpw5c2Z+/etf56qrrprn+cWNVGR+5557bnFk5a9//evceeed87UZNGhQzjnnnEXuZ+utt07Pnj2TzA5VTjnllHz66afztJk+fXr+93//N4MHD17kvk4//fS0aNEiyeyw9dxzz53vkt5CoZD77rtvnptYnX766Ut8466GaO5z/9NPP53nDwlz1NbW5r777pvv+7G4c/+ggw4qhmu//OUvk8y+9PnAAw9c6Dbrr79+Mcyura3NGWeckeeff36+dqNGjcrpp5+eL774Ikmy5ppr5n/+538WWc+KcOihhxYf33DDDcW72H/ZH/7wh7z99ttJktVXX32Jb4Z13333FftL8+bN88tf/jLrrLPOUtVYX6/xzjvvXPx5/d577+Wyyy5b4M/hf//737npppuKy3vvvfdS1QsADUXj/Y0PAKhXzZs3z4ABA7L33nunZ8+e+epXv5rPPvssjz/+eHHUzyqrrJIrrriiGIxUVFTkuOOOy7XXXpskeeyxx/L2229n1113zWqrrZYvvvgir776av71r38Vj9OsWbNUV1dn+vTpmT59elq1arXUtc65YdHQoUNTKBTy3e9+N927d8+mm26ali1bZuTIkXnqqaeKdc+5gU6y+NFxzG/jjTfO9773vVx33XUpFAr56U9/mgceeCA777xzWrZsmTfffDMDBgxIoVBI165dM2zYsIXu66KLLsrbb7+dkSNHZsiQIdl///2z9957p2vXrvniiy/yxBNP5D//+U/atm2bVq1aLXQ06EYbbZSLL744F110UQqFQh588ME8++yz2WOPPdKlS5eMHTs2AwcOnOfS99122y1HHXVUfb88K9S6666b7t27F0cOXnnllXn00Uez9dZbp23bthk1alSeeeaZfPbZZ0mW7tzv0qVLunXrlkGDBhUD5G233TZrrrnmIre79NJL8+677+aDDz7I+PHjc9JJJ6Vbt27Zdttt07x583z00Ud58skni9MVtGzZMj//+c8Xeff2FWWPPfZIjx49ipf09+7dO1tvvXU233zzdOrUKRMmTMgrr7ySN998M8nsn3nnn39+MXBflLfffjuXXnppcXnXXXfNp59+mrvuuivV1dXFaQoWZu4bdNXHa9yiRYtccMEF+cEPfpAk+dOf/pT+/ftn5513Ln6P33///Tz99NPF/eyyyy7ZbbfdluSlBIAGR+gJACSZPbfdFVdckXHjxuXee++db/3666+fX//61/PNn3nyySfnvffey0MPPZRk9k0+7rrrrvm279ChQy699NLcc889xZsQvf322/PMV7ekqqqqcuONN+akk04qjhR87rnnikHQ3L7xjW/k+9//fo4++ugkmSeAZcmdeuqpadu2ba688spUV1dnyJAhGTJkyDxtdtlllxx88MH5/ve/v9D9dOrUKffee29OO+20/Otf/8rUqVOLN+aZY6WVVsovfvGLXHvttQsNPZPksMMOy8orr5xLLrkk48ePz/jx43P//fcvsO2hhx6an/zkJ8XAvjG7+uqrc+KJJxYD3ddee22B0wpsuOGG6dOnT4444ojMmjUrQ4cOzcyZMxcZ2B188MHzXD69qEvb52jbtm3uueee/OhHP8pTTz2VZPYI7AWN1v3KV76Sa665Jt26dVvsfleU66+/PmeddVbx58fCXs82bdrkggsumGeahkV5//335xn5/sQTTyx2Ltu5zR161tdrvP/++2fcuHHp06dPZs2alTFjxiy0z/Ts2XO+kfIA0JgIPQGAJLMvPX7kkUfyu9/97v+3d3+vzP5xHMdfbmRbTEtb+ZX8WOzEAZFGm5oDE2V+nAxH/on72BnF8U4c2clYyTjggEIpkRPKASH5EaUmq2WS78FdO7q/vn1tGfN8HF1dB+/evQ+uul59ruut9fV13d7eymAwyOFwqLe3V/39/X8NS3JzczU9PS2v16twOKyjoyNFo1Hl5ubKYrGorq5OTqdTQ0NDMpvNury8TIaeS0tLHwo9Jam6ulpLS0sKBoPa2NjQ+fm54vG4jEajSktL5XA41NPTo87OTuXk5KimpkZnZ2e6vLzUwcGBmpqaUprXTzQyMqK2tjbNzc1pZ2dHNzc3MplMqq2t1cDAgIaGhpKbv99js9k0Pz+vxcVFLS8v6/j4WPF4XDabTR0dHRofH1dVVVXyBPF7uru71dHRoYWFBW1tbenk5ETRaFT5+fkqLS1Vc3OzhoeH1djYmI4RfAklJSVaWFhQKBTS6uqqTk9PFYvFZDAYZLVa1dDQoK6uLnm9XuXl5amtrU3b29uKx+NaW1tTX1/fv9b2er2amJhQIpFQQUFB8v+9/8VsNisQCGh/f1+RSER7e3u6v7/X8/OzzGaz6uvr5fF45PP5/rplPpMKCws1Ozurzc1Nrays6PDwUHd3d0okErJYLKqsrJTb7dbAwIBsNlvG+kzXjEdHR+VyuRQOh7W7u6uLiwvFYjEZjUZZrVa1traqr6/vw89mAAC+ipy3VFanAgCAb21sbCy56GR9fV0VFRUZ7ghAJl1dXcnj8Uj6cypwZmYmwx0BAAB8DIuMAAAAAEiSIpFI8trn82WwEwAAgNQQegIAAADQy8uLwuGwpD+bv9vb2zPcEQAAwMcRegIAAAA/UCKRSC7aeXx81O/fv3V9fS1J8vv9+vWLVwUAAPB9scgIAADgE8zPz+vp6Skttex2u1wuV1pqITWxWEyhUCht9Vwul+x2e9rqvef8/FyDg4Mym82KRqN6fX2VJJWXl8vv939KD//Hd541AAD4fISeAAAAnyAQCCRP0aXK5/MRen4R0WhUU1NTaatnsVg+LYgrKyvTy8uLHh4ekveMRqMmJye/3IZ16XvPGgAAfD6+WQEAAAB+oKKiIjmdTplMJhUXF8vtdisYDKqlpSXTrQEAAKQs5+3t7S3TTQAAAAAAAABAunDSEwAAAAAAAEBWIfQEAAAAAAAAkFUIPQEAAAAAAABkFUJPAAAAAAAAAFmF0BMAAAAAAABAViH0BAAAAAAAAJBVCD0BAAAAAAAAZBVCTwAAAAAAAABZ5R+J6M+bifZmnQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "image/png": { - "height": 684, - "width": 1331 - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -410,9 +326,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWQAAALRCAYAAADcLar5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdbklEQVR4nOzdeZzVdb0/8NcsLLLpkOZKoSWuoSBqlkvaAplSpjcvaojLtbyuaXLVzBYzqTSRyku5ZBGZa4u5haGWmV4VxRKUnzubqMCwCwNzfn9wZ67EwAzMzHcYeD4fDx6eOd/P5/t9H86bc868/J7Pt6xUKpUCAAAAAECrK2/rAgAAAAAANhUCWQAAAACAgghkAQAAAAAKIpAFAAAAACiIQBYAAAAAoCACWQAAAACAgghkAQAAAAAKIpAFAAAAACiIQBYAAAAAoCCVbV3AhuSFF17I9ddfn8cffzxz5szJFltskT333DPHHXdcDj744PXe77Rp03LdddflkUceyaxZs9KtW7fssssu+bd/+7ccccQRa51bKpXy+9//PrfffnsmT56cmpqabLPNNjnkkENy8sknZ9ttt13vugAAAACAYpWVSqVSWxexIfjzn/+cc845JzU1NQ1u/+IXv5hLLrlknff77LPPZtiwYVm0aFGD2z/1qU/l6quvTmXl6tl4bW1tvvrVr+buu+9ucG737t3z4x//OB/+8IfXuS4AAAAAoHiWLEgyadKknHfeeampqcmHPvShjBkzJo899lhuv/32fOITn0iSjBkzJmPHjl2n/b7xxhs57bTTsmjRovTu3Ts//elP8/e//z1//OMf84UvfCFJ8qc//SlXXXVVg/Ovvvrq+jD2pJNOyn333ZdHH300I0eOzLbbbpsFCxbkrLPOyhtvvNGMRw8AAAAAFMUZskm+9KUv5aGHHsr73//+/Pa3v03Xrl3rt5VKpZx77rm57777ssUWW+TPf/5zunXr1qT9fvvb387YsWPTo0eP3H333Xnve9+7yvbvfe97ufHGG9OhQ4fcd9992WGHHeq3zZo1Kx//+MdTU1OT//iP/8hXv/rVVeZOnz49n//851NdXZ0vfOELueyyy5rxNwAAAAAAFGGTP0P2pZdeykMPPZRkZTD77jA2ScrKynLhhRemvLw81dXVGTduXJP2O3/+/Nx+++1JVi538K9hbJKceeaZ6dGjR2pqavK73/1ulW2/+tWvUlNTky5duuTLX/7yanO33377DBs2LEly1113ZcmSJU2qCwAAAABoO5t8IPvXv/41ycrg9dBDD21wzLbbbpvddtstSfLAAw80ab+PP/54li5dmiT5+Mc/3uCYrl275oADDmhwvw8//HCSZP/991/jGbl1+12yZEn+9re/NakuAAAAAKDtbPKB7OTJk5Mk2223XXr27LnGcbvvvnuS5Lnnnlun/VZWVmbXXXdd47i6oHfKlClZtmxZkqSmpiYvvfRSkmTPPfdc49ydd945HTp0WKe6AAAAAIC2s8kHstOnT0+SVdZvbch2222XZOWFupYvX97k/W6zzTapqKhodL8rVqyovzjXu4+xtrrKysqy7bbbJkmmTZvWaE0AAAAAQNva5APZuXPnJkk233zztY7r3r17kpUX+Zo/f36L7zdJ5s2bt8rcJOnRo0eT5jelJgAAAACgbW3ygWzdOq+dOnVa67jOnTvX365bWqCl91s35937f/f2htTtv27u+iqVSoXOo20V/bzpk/apyOdNj7Rf+oTGeM+hKfQJTaFPaAqfTWgKfUJjWvt5q2zVvbcDa1tOoK32W15efE5eW1vK/PmL12lORUV5evTYLD+5+W+Z/ua8VqqMlrb9ezfPGUM+mvnzl2TFitpWP54+aZ+K7BM90n7pExrjPYem0Cc0hT6hKXw2oSn0CY1Z3x7p0WOzVFQ0LdPb5APZzTbbLEnjZ72+88479bcbO+v13ftt7MzVd++37mzYLl261N/X2Py67Y2dSdsUy5ev3wvR9Dfn5dXpcxsfyAZlxYra9X7O14c+aZ+K7BM90n7pExrjPYem0Cc0hT6hKXw2oSn0CY1pzR7Z5JcsqFuDdcGCBWsdV7dGa0VFRaPrwib/t/brwoULm7TfJKmqqlqlpnWpq24uAAAAALDh2uQD2R133DFJMmPGjLWOmzlzZpJk6623btKSAr17966ft7Z1J+r2W1lZma222ipJsu2229af8bq2ukqlUt544436OQAAAADAhm2TD2T79OmTJJk6depaz2adNGlSkmS33XZbp/0uW7YsL774YqP7/eAHP5iOHTsmWbmG7Ac+8IFVtjdkypQpqampSZLsvvvuTaoLAAAAAGg7m3wge8ghhyRJVqxYkYceeqjBMTNnzszkyZOTJAcddFCT9rvffvvVryM7fvz4BscsXrw4jz32WIP7ravrsccey+LFDV9sq26/HTt2zH777dekugAAAACAtrPJB7K9evXKPvvskyT50Y9+tNqaraVSKSNGjEhtbW2qqqry2c9+tkn77dq1az75yU8mSW688cYGlx740Y9+lPnz56dDhw454YQTVtk2ePDgVFRUZN68efnxj3+82twZM2bkpptuSpIcffTR9WvWAgAAAAAbrk0+kE2Siy66KOXl5Xn11Vdz3HHH5ZFHHsmcOXPy3HPP5ayzzsp9992XJDnrrLPSpUuXVeYOGjQogwYNyvDhw1fb73nnnZcuXbqkuro6xx9/fO6///7MmTMnL730Ui699NLceOONSZIvfvGL2WabbVaZu+OOO+a4445Lktxwww259NJL89JLL2XOnDm5//77c/zxx6e6ujpbbLFFTjvttNb4awEAAAAAWlhlWxewIfjQhz6Uyy+/PF//+tczZcqUnHLKKauNOemkk3L88cevdv8rr7ySJPUX5Hq3bbfdNqNGjcpZZ52VGTNm5Oyzz15tzKBBg3LBBRc0WNcFF1yQqVOn5qGHHsott9ySW265ZZXtXbp0yejRo7Pddts16XECAAAAAG1LIPu/Pv/5z2ePPfbIDTfckMcffzyzZ89Oly5dsueee+a4447LJz7xifXa70EHHZS77747P/vZz/LII49k1qxZ6dixY3bdddccffTR+fznP5+ysrIG53bq1CmjR4/O7373u9x55515/vnns2TJkrz3ve/NgQcemP/4j/9Ir169mvOwAQAAAIACCWTfZZdddsn3v//9dZrzwgsvNDpm++23z7e+9a31qqmsrCxHHXVUjjrqqPWaDwAAAABsOKwhCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBKtu6gA3FnDlzct111+XBBx/M9OnTs9lmm2WnnXbK4MGDc+yxx6aiomK99z19+vSMGTMmf/vb3zJt2rTU1NRkq622Sv/+/XPCCSekX79+a5x7+umnZ/z48Y0eY/To0Tn00EPXu0YAAAAAoPUJZJNMnTo1Q4YMyVtvvVV/37Jly/L000/n6aefzh/+8Idcf/316dat2zrv+/7778+FF16YxYsXr3L/jBkzMmPGjPzxj3/Ml7/85XzlK19pcP5zzz23zscEAAAAADZMm3wgu3jx4pxyyil56623stVWW+XCCy/MAQcckIULF+b222/PDTfckKeffjoXX3xxRo0atU77fu6553L++eenpqYm2223Xc4999x8+MMfTqlUynPPPZeRI0dmypQpGT16dLbZZpsMGTJklfmzZ8/OrFmzkiQ/+9nPMmDAgDUeq3Pnzuv+4AEAAACAQm3ygezNN9+c1157LZWVlbnhhhuyyy67JEne85735Pzzz88222yTb3/727n//vszYcKE9O/fv8n7HjlyZGpqatKzZ8/85je/ydZbb12/bZtttslBBx2UE044IRMnTszIkSNz9NFHp2PHjvVj/vnPfyZJysrK0r9//3Tt2rWFHjUAAAAA0BY26Yt6lUql3HTTTUmSI444oj6MfbchQ4akd+/eSZLbbrutyfteuHBhHn300STJ8ccfv0oYW6djx44544wzkiTV1dV55plnVtk+adKkJEnv3r3TvXv3Jh8bAAAAANgwbdKB7OTJk/Pmm28mST7+8Y83OKa8vDyHHXZYkmT8+PEplUpN2ve0adPq15zt27fvGse9733vq79dV0udukB2bfMBAAAAgPZjk16yYPLkyfW399hjjzWO22233ZKsPIt12rRp6dWrV6P73nXXXfP4449n6dKlKS9fc+79+uuv19/u0aPHKtvqLuj1wQ9+MDfeeGPuueeevPjii0lWnjU7aNCgDB06NF26dGm0HgAAAACg7W3Sgez06dOTJJWVldlmm23WOG677barv93UQLZOp06d1rr95ptvrq9h7733rr+/urq6vr5Ro0alpqZmlXmTJ0/O5MmTc/vtt+e6667Ljjvu2OSaAAAAAIC2sUkHsnPnzk2SdOvWLRUVFWsc9+71W+fNm9dix7/33nvz4IMPJlm5hu27z5CtOzu2zmmnnZbBgwdnyy23zPTp03PrrbfmlltuydSpU3PqqafmzjvvzOabb96seior120Fi4qKTXrFi3avqOdPn7RvRTx/eqT90yc0xnsOTaFPaAp9QlP4bEJT6BMa05rPX7sPZK+99tpcc8016zTnqKOOyogRI7J06dIkjZ/F2rlz5/rbdXOaa8KECbnooouSJFVVVTnvvPNW2T579uxsueWWmTdvXq677roccMAB9duqqqqy5557ZqeddsoVV1yRadOmZfTo0fmv//qv9a6nvLwsVVVd13s+7U+PHpu1dQm0A/qEptAnNEaP0BT6hKbQJzSFPqEp9AmNac0eafeBbHOs7azY1vTEE0/ky1/+cpYsWZIOHTrkhz/8YbbeeutVxgwePDiDBw/OsmXL0rFjxwb3M2zYsNxxxx2ZMmVK7rzzzgwfPjxlZWXrVVNtbSnz5y9epzkVFeVewNqx+fOXZMWK2lY/jj5p34roEz3S/ukTGuM9h6bQJzSFPqEpfDahKfQJjVnXHunRY7Mmn1Xb7gPZIUOGZODAges0p24Jgs02W/mPorGzXt9555362+8+W3Z9/OlPf8pXv/rVLF26NJWVlbnqqqvykY98ZI3j1xTG1jnssMMyZcqUVFdX57XXXkvv3r3Xu7bly1v/gw0bjhUraj3nNEqf0BT6hMboEZpCn9AU+oSm0Cc0hT6hMa3ZI+0+kK2qqkpVVdV6za1bs3XRokUplUprPLt0wYIFqxxvfV133XW56qqrUiqV0rlz51xzzTX52Mc+tt77S1a94NicOXOaFcgCAAAAAK2r3QeyzVEXXtbU1OTNN99cbdmAOjNmzKi/ve22267zcVasWJFvfetbueWWW5KsDHVHjx6dvffeu9G5awuKk5W11+nSpcs61wYAAAAAFGeTvtxbnz596m9Pnjx5jeMmTZqUZOUZtTvssMM6HaOmpiZnnXVWfRjbu3fv3HLLLY2GsSeccEL23XffDB06dK3jXnzxxSQr18Pt1avXOtUGAAAAABRrkw5kd95552y//fZJkvHjxzc4pra2Ng8++GCS5MADD1yni2aVSqVccMEF+fOf/5wk2WuvvXLzzTfn/e9/f6Nzu3Tpkvnz5+fpp5/O/PnzGxyzdOnSjBs3Lkmyzz77pGvXrk2uDQAAAAAo3iYdyJaVlWXw4MFJkjvvvLP+TNh3u/nmm/Pqq68mSU466aR12v8vfvGL3HvvvUmSfv365aabbkrPnj2bNLeurpqamowYMaLBMZdffnnefvvtJMkpp5yyTrUBAAAAAMXbpAPZJDn11FOz9dZbp6amJieddFJuv/32vPXWW5k6dWquvvrqXH755UmSgQMHpm/fvqvNHz58eAYNGpRBgwatcv/s2bMzcuTIJMkWW2yRESNGpFQqZdGiRWv8s3z58vr5hx9+ePr3758kueOOO3LOOedk4sSJmTNnTp555pmceeaZ9csgfO5zn2v2xcEAAAAAgNa3SV/UK0m6deuW0aNH5+STT87cuXPzta99bbUx++yzT77//e83OH/mzJl55ZVXVrv/lltuyZIlS5Ik1dXVGThwYKO1XHHFFfn85z+fJCkvL89PfvKTnH766XnmmWdy33335b777lttzpFHHlkfGgMAAAAAG7ZNPpBNkt133z333HNPrr/++owfPz4zZsxIeXl5PvCBD+TII4/M8ccfnw4dOqzTPidOnNjsunr27JmxY8fmd7/7Xf7whz/khRdeyKJFi1JVVZW99947xxxzTA455JBmHwcAAAAAKIZA9n/17Nkzw4cPz/Dhw9dp3pgxYxq8/6c//WlLlJXKysocc8wxOeaYY1pkfwAAAABA29nk15AFAAAAACiKQBYAAAAAoCACWQAAAACAgghkAQAAAAAKIpAFAAAAACiIQBYAAAAAoCACWQAAAACAgghkAQAAAAAKIpAFAAAAACiIQBYAAAAAoCACWQAAAACAgghkAQAAAAAKIpAFAAAAACiIQBYAAAAAoCACWQAAAACAgghkAQAAAAAKIpAFAAAAACiIQBYAAAAAoCACWQAAAACAgghkAQAAAAAKIpAFAAAAACiIQBYAAAAAoCACWQAAAACAgghkAQAAAAAKIpAFAAAAACiIQBYAAAAAoCACWQAAAACAgghkAQAAAAAKIpAFAAAAACiIQBYAAAAAoCACWQAAAACAgghkAQAAAAAKIpAFAAAAACiIQBYAAAAAoCACWQAAAACAgghkAQAAAAAKIpAFAAAAACiIQBYAAAAAoCACWQAAAACAgghkAQAAAAAKIpAFAAAAACiIQBYAAAAAoCACWQAAAACAgghkAQAAAAAKIpAFAAAAACiIQBYAAAAAoCACWQAAAACAgghkAQAAAAAKIpAFAAAAACiIQBYAAAAAoCACWQAAAACAgghkAQAAAAAKIpAFAAAAACiIQBYAAAAAoCACWQAAAACAgghkAQAAAAAKIpAFAAAAAChIZVsXsKGYM2dOrrvuujz44IOZPn16Nttss+y0004ZPHhwjj322FRUVKzXfidNmpSjjjqq0XF77LFH7rzzzga3Pfnkk7npppsyYcKEzJ8/Pz179sw+++yToUOHpl+/futVFwAAAABQPIFskqlTp2bIkCF566236u9btmxZnn766Tz99NP5wx/+kOuvvz7dunVb530/99xzzapt7Nixueyyy1IqlervmzVrVu65557cd999+epXv5pTTjmlWccAAAAAAIqxyQeyixcvzimnnJK33norW221VS688MIccMABWbhwYW6//fbccMMNefrpp3PxxRdn1KhR67z/ukC2f//+uf7669c4rqEzcB9++OF85zvfSalUykEHHZSzzz47vXr1yksvvZSrr746Tz75ZH7wgx9kp512yqGHHrrOtQEAAAAAxdrk15C9+eab89prr6WysjI33HBDjjjiiLznPe/J+9///px//vn52te+liS5//77M2HChHXef10gu9dee6Vr165r/NO5c+dV5pVKpVx55ZWpra1N//79M3r06PTt2zdVVVUZMGBAfv7zn6dfv34plUr53ve+l9ra2ub/ZQAAAAAArWqTDmRLpVJuuummJMkRRxyRXXbZZbUxQ4YMSe/evZMkt9122zrtf8WKFZkyZUqS5EMf+tA6zX3kkUfq555zzjmprFz1ZOaOHTvmggsuSJK88sorefLJJ9dp/wAAAABA8TbpQHby5Ml58803kyQf//jHGxxTXl6eww47LEkyfvz4VdZybcyLL76Yd955J0nSt2/fdart4YcfTpL06NEj++67b4Nj+vfvn6qqqiTJAw88sE77BwAAAACKt8kHsnX22GOPNY7bbbfdkiTV1dWZNm1ak/dft1zBFltskdmzZ+erX/1qDj744Oy555756Ec/mrPPPnuNyyA8//zzSZJdd921wfVlk6SsrKy+tuZePAwAAAAAaH2bdCA7ffr0JEllZWW22WabNY7bbrvt6m+vSyA7adKkJMmiRYty7LHH5q677sqsWbNSU1OTt99+O/fff3+GDBmSq6++eo217bDDDms9Rl1t61IXAAAAANA2KhsfsvGaO3dukqRbt25rPAs1Sbp3715/e968eU3e/z//+c8kSU1NTfbYY4/853/+Z/r27ZtSqZTHHnsso0aNyrRp0zJ69OhUVVVl2LBhq9W2+eabr/UYdbXNnz+/yXWtSWXluuXzFRWbdJ7f7hX1/OmT9q2I50+PtH/6hMZ4z6Ep9AlNoU9oCp9NaAp9QmNa8/lr94Hstddem2uuuWad5hx11FEZMWJEli5dmiTp1KnTWsd37ty5/nbdnKZYvnx5OnXqlP322y/XXnttOnbsWL/ts5/9bA466KB84QtfyNSpUzNy5MgceeSRec973rPKcRqrrW77utTVkPLyslRVdW3WPmhfevTYrK1LoB3QJzSFPqExeoSm0Cc0hT6hKfQJTaFPaExr9ki7D2SbY21nxbaE22+/PaVSKStWrEhl5ep/1T179swFF1yQs88+O0uWLMndd9+doUOH1tdWW1vbqvW9W21tKfPnL16nORUV5V7A2rH585dkxYrW7zF90r4V0Sd6pP3TJzTGew5NoU9oCn1CU/hsQlPoExqzrj3So8dmTT6rtt0HskOGDMnAgQPXaU7d1/w322zlP4rGzi5955136m+/+2zZpigrK2swjK1zyCGHpLKyMsuXL8/EiRPr799ss81SU1OTZcuWrXX/TT2TtimWLy8uAKbtrVhR6zmnUfqEptAnNEaP0BT6hKbQJzSFPqEp9AmNac0eafeBbFVVVaqqqtZrbo8ePZKsvOhWqVRKWVlZg+MWLFiwyvFaUufOnVNVVZW33nqrft3YZGVoPH/+/FWO3ZC6tWNbui4AAAAAoOVt0qsL9+7dO8nKi269+eabaxw3Y8aM+tvbbrtti9dRU1OT5P/O2E2SHXfccbVjN2TmzJlJku22267F6wIAAAAAWtYmHcj26dOn/vbkyZPXOG7SpElJVp5Ru8MOOzRp33/6059y8MEHZ88998zjjz++xnGzZ89OdXV1kv8LiN9d2/PPP59SqdTg3FKpVF/3brvt1qS6AAAAAIC2s0kHsjvvvHO23377JMn48eMbHFNbW5sHH3wwSXLggQeucVmDf7XNNttk1qxZqampycMPP7zGcXfddVf97YMPPni127Nnz84zzzzT4NwJEybUL3Nw0EEHNakuAAAAAKDtbNKBbFlZWQYPHpwkufPOO+vPhH23m2++Oa+++mqS5KSTTmryvvv27Vu/7MDYsWPzyiuvrDbmpZdeyo9//OMkyZ577pn999+/ftv+++9fHxZ///vfX+3iXsuWLcuVV16ZZGWwLJAFAAAAgA3fJh3IJsmpp56arbfeOjU1NTnppJNy++2356233srUqVNz9dVX5/LLL0+SDBw4MH379l1t/vDhwzNo0KAMGjRotW0XX3xxysvL88477+S4447L7bffnunTp+eNN97IzTffnOOPPz4LFixIly5d6o9Tp7y8PBdddFGSlWfCnnzyyXnqqacyd+7cPPXUUzn55JMzYcKElJWV5bzzzmvymbsAAAAAQNupbOsC2lq3bt0yevTonHzyyZk7d26+9rWvrTZmn332yfe///0G58+cObPBs1+TlcsOXHbZZfnmN7+ZOXPmNLjvnj17ZtSoUdl1111X2/bJT34yZ599dkaNGpUnnngixx133Crby8rKcvHFF+ewww5rykMFAAAAANrYJh/IJsnuu++ee+65J9dff33Gjx+fGTNmpLy8PB/4wAdy5JFH5vjjj0+HDh3Wa9/HHHNM+vfvn1/84hf5+9//njfeeCOVlZXp1atXDjvssAwdOjRVVVVrnH/GGWdk//33zy9/+cs89dRTqa6uTo8ePdKvX78MGzYs++233/o+bAAAAACgYALZ/9WzZ88MHz48w4cPX6d5Y8aMaXTMTjvtlG9961vrW1oGDBiQAQMGrPd8AAAAAGDDsMmvIQsAAAAAUBSBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQSrbuoANxZw5c3LdddflwQcfzPTp07PZZptlp512yuDBg3PsscemoqJinfb3+OOPZ+jQoes056ijjsqIESNWue/000/P+PHjG507evToHHrooet0PAAAAACgWALZJFOnTs2QIUPy1ltv1d+3bNmyPP3003n66afzhz/8Iddff326devWqnU0tP/nnnuuVY8JAAAAABRnkw9kFy9enFNOOSVvvfVWttpqq1x44YU54IADsnDhwtx+++254YYb8vTTT+fiiy/OqFGjmrzfAQMGZMKECY0e+4QTTsirr76anXbaKWefffYq22fPnp1Zs2YlSX72s59lwIABa9xX586dm1wbAAAAANA2NvlA9uabb85rr72WysrK3HDDDdlll12SJO95z3ty/vnnZ5tttsm3v/3t3H///ZkwYUL69+/fpP1WVFSka9euax3zjW98I6+++mo6d+6cUaNGpUePHqts/+c//5kkKSsrS//+/RvdHwAAAACwYdukL+pVKpVy0003JUmOOOKI+jD23YYMGZLevXsnSW677bYWO/a9996bu+66K0ly3nnnZeedd15tzKRJk5IkvXv3Tvfu3Vvs2AAAAABA29ikA9nJkyfnzTffTJJ8/OMfb3BMeXl5DjvssCTJ+PHjUyqVmn3cBQsW5PLLL0+S7LXXXvniF7/Y4Li6QLZv377NPiYAAAAA0PY26SULJk+eXH97jz32WOO43XbbLUlSXV2dadOmpVevXs067n//93/nrbfeSllZWS655JKUlzeci9dd0OuDH/xgbrzxxtxzzz158cUXk6w8a3bQoEEZOnRounTp0qx6AAAAAIBibNKB7PTp05MklZWV2WabbdY4brvttqu/3dxAdtasWRkzZkySZODAgWs8+7W6urq+vlGjRqWmpmaV7ZMnT87kyZNz++2357rrrsuOO+643jUBAAAAAMXYpAPZuXPnJkm6deuWioqKNY579/qt8+bNa9Yxx4wZk2XLliVJTj/99DWOqzs7ts5pp52WwYMHZ8stt8z06dNz66235pZbbsnUqVNz6qmn5s4778zmm2/erNoqK9dtBYuKik16xYt2r6jnT5+0b0U8f3qk/dMnNMZ7Dk2hT2gKfUJT+GxCU+gTGtOaz1+7D2SvvfbaXHPNNes056ijjsqIESOydOnSJEmnTp3WOr5z5871t+vmrI9FixbllltuSZIccsgh2XXXXdc4dvbs2dlyyy0zb968XHfddTnggAPqt1VVVWXPPffMTjvtlCuuuCLTpk3L6NGj81//9V/rXVt5eVmqqrqu93zanx49NmvrEmgH9AlNoU9ojB6hKfQJTaFPaAp9QlPoExrTmj3S7gPZ5ljbWbGt4be//W3mz5+fZOUZr2szePDgDB48OMuWLUvHjh0bHDNs2LDccccdmTJlSu68884MHz48ZWVl61VbbW0p8+cvXqc5FRXlXsDasfnzl2TFitpWP44+ad+K6BM90v7pExrjPYem0Cc0hT6hKXw2oSn0CY1Z1x7p0WOzJp9V2+4D2SFDhmTgwIHrNKduCYLNNlv5j6Kxs17feeed+tvvPlt2Xd11111JVl6Qa8CAAU2as6Ywts5hhx2WKVOmpLq6Oq+99lp69+693vUtX976H2zYcKxYUes5p1H6hKbQJzRGj9AU+oSm0Cc0hT6hKfQJjWnNHmn3gWxVVVWqqqrWa26PHj2SrFxKoFQqrfHs0gULFqxyvPUxa9asTJw4MUly+OGHr9c+GvLuC47NmTOnWYEsAAAAANC6NunVhevCy5qamrz55ptrHDdjxoz629tuu+16HeuBBx5IqVRKknzmM59p8ry6OWtSU1NTf7tLly7rVRsAAAAAUIxNOpDt06dP/e3JkyevcdykSZOSrDyjdocddlivY/31r39NsjIE/uAHP9jo+BNOOCH77rtvhg4dutZxL774YpKV6+H26tVrvWoDAAAAAIqxSQeyO++8c7bffvskyfjx4xscU1tbmwcffDBJcuCBB67XRbNKpVImTJiQJNlrr72aNKdLly6ZP39+nn766foLgf2rpUuXZty4cUmSffbZJ127dl3n2gAAAACA4mzSgWxZWVkGDx6cJLnzzjvrz4R9t5tvvjmvvvpqkuSkk05ar+NMmzYt8+bNS5L07du3SXPq6qqpqcmIESMaHHP55Zfn7bffTpKccsop61UbAAAAAFCcTTqQTZJTTz01W2+9dWpqanLSSSfl9ttvz1tvvZWpU6fm6quvzuWXX54kGThwYINh6vDhwzNo0KAMGjRojceoW1YgSd73vvc1qa7DDz88/fv3T5LccccdOeecczJx4sTMmTMnzzzzTM4888zccsstSZLPfe5z+djHPtbUhwwAAAAAtJHKti6grXXr1i2jR4/OySefnLlz5+ZrX/vaamP22WeffP/7329w/syZM/PKK6+s9RjvvihYjx49mlRXeXl5fvKTn+T000/PM888k/vuuy/33XffauOOPPLI+tAYAAAAANiwbfKBbJLsvvvuueeee3L99ddn/PjxmTFjRsrLy/OBD3wgRx55ZI4//vh06NBhvff/7jVgu3fv3uR5PXv2zNixY/O73/0uf/jDH/LCCy9k0aJFqaqqyt57751jjjkmhxxyyHrXBQAAAAAUSyD7v3r27Jnhw4dn+PDh6zRvzJgxjY45/fTTc/rpp69XXZWVlTnmmGNyzDHHrNd8AAAAAGDDscmvIQsAAAAAUBSBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABSk1QPZd955JzU1Na19GAAAAACADV6LB7KPPfZYLr744gwcODB9+/ZNv3798qtf/ap++5e//OVcddVVmTNnTksfGgAAAABgg1bZUjt68803c/755+fJJ5+sv69UKqWsrGyVcU899VQefvjh3Hzzzfnud7+bT33qUy1VAgAAAADABq1FzpCdOXNmjjnmmDz55JMplUr1f/7V/Pnzs2DBgiTJwoUL85WvfCXjxo1riRIAAAAAADZ4LRLInn322XnzzTdTKpWyyy675Ic//GH+/Oc/rzauW7duGTlyZD7wgQ8kSVasWJFLLrkk1dXVLVEGAAAAAMAGrdmB7H333Zd//OMfKSsry6c//en89re/zeGHH57tt99+9YOVl2fQoEG588478/GPfzzJyrNmb7/99uaWAQAAAACwwWt2IHvvvfcmSTbffPNcdtllKS9vfJcdO3bMd7/73XTv3j1J8vDDDze3DAAAAACADV6zA9lnn302ZWVlOfTQQ9OtW7cmz9t8883ziU98IqVSKS+++GJzywAAAAAA2OA1O5CdPXt2kuT973//Os/t1atXktRf6AsAAAAAYGPW7EC2c+fOSZJly5at89xFixYlSbp27drcMgAAAAAANnjNDmS32WabJMnEiRPXee6jjz6aJNl2222bWwYAAAAAwAav2YHsRz7ykZRKpfz973/P888/3+R5f/zjHzN58uSUlZVl//33b24ZAAAAAAAbvGYHsv/2b/+WioqKlEqlnHXWWXn99dcbnXP33XfnkksuSZKUlZXl6KOPbm4ZAAAAAAAbvMrm7uADH/hAhg4dmp///OeZNm1ajjzyyAwcODC77757/ZhXX301DzzwQF588cWMGzcukyZNSqlUqg9j+/Tp09wyAAAAAAA2eM0OZJNk+PDheeONN3Lvvfdm6dKlueuuu3LXXXelrKwsSXLrrbfm1ltvrR9fKpWSJPvvv38uvfTSligBAAAAAGCD1+wlC5KVyw5cffXVufjii1NVVZVSqVT/J8kqP5dKpWy22Wb50pe+lBtuuCEdOnRoiRIAAAAAADZ4LXKGbJ2hQ4fm2GOPzbhx4/I///M/eemllzJv3rwsX748m2++eXbYYYfsu+++GTRoULbYYouWPDQAAAAAwAav2YHszJkz061bt3Tv3j1J0qlTpxxxxBE54ogjml0cAAAAAMDGpNlLFowcOTIf+chH8qUvfSmPPfZYS9QEAAAAALBRanYg++STT6ampiZ/+ctfUlNT0xI1AQAAAABslJodyL799tv1t/fZZ5/m7g4AAAAAYKPV7EB2m222qb9dXV3d3N0BAAAAAGy0mh3IDhs2rP72tdde29zdAQAAAABstCqbu4MhQ4Zk6dKlueqqq3LHHXfkzTffzJAhQ7L33nunqqqqJWoEAAAAANgoNDuQ/eY3v5lk5fqxjz32WP7617/mr3/9a5Jks802S48ePVJRUbHWfZSVleWBBx5obikAAAAAABu0Zgeyv/nNb1JWVpYk9f9NklKplMWLF2fJkiVrnV8qlVaZBwAAAACwsWp2IJusDFXXZxsAAAAAwKak2YHs888/3xJ1AAAAAABs9MrbugAAAAAAgE2FQBYAAAAAoCAtsobsv3r11VfzxBNPZNq0aamurk5ZWVl69OiRXr16Ze+9987OO+/cGocFAAAAANigtWgg+8QTT2TkyJGZMGHCWsftvPPOufjii/PhD3+4JQ8PAAAAALBBa7ElC6677roMGzYsEyZMSKlUWuufKVOm5OSTT86Pf/zjljo8AAAAAMAGr0XOkL3jjjty1VVXpaysLKVSKZtttlkOOuig7Lrrrtliiy1SW1ubuXPnZvLkyfn73/+eJUuWpLa2Nj/5yU/Su3fvHHHEES1RRot64IEHcsYZZ+Soo47KiBEjmrWvxYsX5+c//3nuu+++vP7666moqMj73//+fPrTn87QoUPTuXPntc5/8sknc9NNN2XChAmZP39+evbsmX322SdDhw5Nv379mlUbAAAAAFCcZgeyc+fOzXe/+90kSalUygknnJBzzz033bp1a3D8woULM3LkyPzqV79KqVTKN77xjXz0ox9NVVVVc0tpMa+//nouvfTSFtnX3Llzc/zxx+ell15a5f5JkyZl0qRJ+e1vf5ubbropW2+9dYPzx44dm8suuyylUqn+vlmzZuWee+7Jfffdl69+9as55ZRTWqRWAAAAAKB1NXvJgt/85jdZtGhRysrK8qUvfSmXXHLJGsPYJOnWrVsuueSS/Od//meSlWeP3nbbbc0to8W89tprOfHEEzN79uxm76u2tjann356XnrppXTt2jXf+MY38pe//CUPPvhgLrjggnTq1Ckvv/xyzjzzzNTW1q42/+GHH853vvOdlEqlHHTQQbntttvy2GOPZezYsRkwYEBqa2vzgx/8IA8++GCzawUAAAAAWl+zA9m//vWvSZLtt98+Z599dpPnnXHGGdlhhx2SJA899FBzy2gR48aNy9FHH50ZM2a0yP7+9Kc/5emnn06SjBw5Mscdd1y23nrrbLfddjn11FMzatSoJMmzzz6bu+++e5W5pVIpV155ZWpra9O/f/+MHj06ffv2TVVVVQYMGJCf//zn6devX0qlUr73ve81GOgCAAAAABuWZgeyr732WsrKyvKxj30sFRUVTZ5XUVGRQw89NKVSabWv8xft5Zdfzumnn54zzzwzCxYsSK9evdKjR49m7/fnP/95kmTffffNwQcfvNr2j33sY/nIRz6SJLn11ltX2fbII49kypQpSZJzzjknlZWrri7RsWPHXHDBBUmSV155JU8++WSz6wUAAAAAWlezA9l58+YlSd773veu89wtt9wySbJo0aLmltEs3/jGNzJ+/PgkyaBBg3Lbbbele/fuzdpndXV1Jk6cmCT5+Mc/vsZxdduefPLJ+r/LZOVyBUnSo0eP7Lvvvg3O7d+/f/3auw888ECz6gUAAAAAWl+zA9m64PKtt95a57l1czbffPPmltFse+yxR2644YZcc801LXKBseeff77+Qlx77LHHGsfttttuSVauNztp0qRV5ifJrrvuusYzj8vKyurnP/fcc82uGQAAAABoXc0OZHfaaaeUSqU89NBD67SO6YoVK/LQQw+lrKws73vf+5pbRrNcdtllufPOO3PggQe22D6nT59ef7turdyGbL/99vW3p02bttr8tc1Nku222261uQAAAADAhqnZgexBBx2UZGUgOHr06CbPGz16dH2IWLePttK7d+8W3+fcuXPrb69tPdpu3brV354/f/5q8xs7e7juDOV3zwUAAAAANkyVjQ9Zuy984Qv56U9/mnfeeSc/+tGPsnDhwpx55pnp0qVLg+MXL16cH/3oR7npppuSJJtttln+/d//fb2Pf+211+aaa65ZpzlHHXVURowYsd7HbIqlS5fW3+7cufMax71727vn1N3u1KnTWo9Tt/3dc9dXZeW65fMVFc3O82lDRT1/+qR9K+L50yPtnz6hMd5zaAp9QlPoE5rCZxOaQp/QmNZ8/podyPbs2TMXXnhhvvGNb6SsrCw///nPc8stt+SjH/1odtttt/ozPKurq/P888/nb3/7WxYvXpxSqZSysrJccMEF6dmzZ7MfyIZmTeu+rsv8dVkCornKy8tSVdW1sOPR9nr02KytS6Ad0Cc0hT6hMXqEptAnNIU+oSn0CU2hT2hMa/ZIswPZJDn22GMzb968/PCHP0ySLFq0KOPGjcu4ceNWG1t3oauysrKcccYZGTJkSLOOPWTIkAwcOHCd5tR9zb81bbbZ/z1pS5cuTWVlw3/V77zzTv3td58tu9lmm6WmpibLli1b63GaeiZtY2prS5k/f/E6zamoKPcC1o7Nn78kK1a0fuivT9q3IvpEj7R/+oTGeM+hKfQJTaFPaAqfTWgKfUJj1rVHevTYrMln1bZIIJskp512Wvr27ZuRI0fmmWeeqQ9eG9KvX7+cffbZOeCAA5p93KqqqlRVVTV7Py3t3evGLly4MF27Nnz26YIFC+pvv/txdO/ePfPnz19le0Pq1o5tib+D5cuLOyOXtrdiRa3nnEbpE5pCn9AYPUJT6BOaQp/QFPqEptAnNKY1e6TFAtkk+fCHP5zf/OY3mT59eh577LFMmzYt1dXVKZVK2XzzzfP+978/AwYMyPve976WPOwG6d0XCps+fXq23nrrBsfNmDGj/va2225bf3vHHXfM9OnTV9nekJkzZyZJtttuu2ZUCwAAAAAUoUUD2Trbb799jj766NbYdbux8847p6ysLKVSKZMnT07//v0bHDdp0qQkK5dw2HXXXevv79OnTx555JE8//zz9evt/qu6fSfJbrvt1gqPAgAAAABoSS16ubBFixbltttua3Dt2CT53e9+ly9+8Yv5xS9+kYULF7bkoTc43bp1yz777JMkGT9+/BrH1W3r27dvtthii/r7Dz744CTJ7Nmz88wzzzQ4d8KECZk7d26S5KCDDmqBqgEAAACA1tRigezvfve7HHroobn00ktz7733NjjmxRdfzBNPPJERI0Zk4MCBefDBB1vq8Bukz33uc0mSRx55JA899NBq2x966KE8+uijSZJhw4atsm3//ffP9ttvnyT5/ve/v9rFvZYtW5Yrr7wyycqzcQWyAAAAALDha5FAduzYsbnooouyYMGClEqlvPrqqw2OmzZtWpKVX7WfPXt2zjrrrDzwwAMtUUKbGT58eAYNGpRBgwattu3zn/98dt999yTJOeeckxtvvDFvvPFG3njjjdx4440555xzkiR77bXXavPLy8tz0UUXJVl5JuzJJ5+cp556KnPnzs1TTz2Vk08+ORMmTEhZWVnOO++8Bpc0AAAAAAA2LM1eQ/b111/P9773vZRKpSTJAQcckBNOOKHBsVdddVVOPPHE/OpXv8rdd9+d5cuX5+KLL07//v3Ts2fP5pbSJmbOnJlXXnmlwW0VFRX58Y9/nBNPPDFTp07N9773vXzve99bZcyOO+6Y0aNHp7x89Wz8k5/8ZM4+++yMGjUqTzzxRI477rhVtpeVleXiiy/OYYcd1nIPCAAAAABoNc0OZH/9619n2bJlKSsry5e+9KWce+65axxbUVGRfv36pV+/ftlzzz3zve99LwsWLMivf/3rnHnmmc0tZYO0/fbb5/e//31uuumm3H///Zk6dWpWrFiR97///Rk4cGBOOumkdO3adY3zzzjjjOy///755S9/maeeeirV1dXp0aNH+vXrl2HDhmW//fYr8NEAAAAAAM3R7EC2bg3UnXfeea1h7L866aST8vvf/z7PP/98HnrooQ0ukF3bhbjebcyYMY2O6dq1a84444ycccYZ61XLgAEDMmDAgPWaCwAAAABsOJq9huz06dNTVlaWj370o+s89+CDD06SNa45CwAAAACwMWl2ILt06dIkSffu3dd5bt1X9ZctW9bcMgAAAAAANnjNDmTrLsb10ksvrfPc1157bZV9AAAAAABszJodyH7oQx9KqVTKgw8+mLfeeqvJ8+bPn58///nPKSsry+67797cMgAAAAAANnjNDmQHDRqUJFmyZEnOPffcLFy4sNE5y5YtywUXXJB58+YlST71qU81twwAAAAAgA1eswPZww8/PDvttFOSZMKECTniiCPyi1/8on45gnebNm1abr755hx55JH5y1/+krKysuy0004ZPHhwc8sAAAAAANjgVTZ3BxUVFbnqqqvyxS9+MYsWLcqsWbMyYsSIjBgxIh06dKi/2NfChQtXuXhXqVTK5ptvnh/96EcpL292LgwAAAAAsMFrkSR0t912y9ixY7PzzjunVCrV/1m2bFnmzJmTOXPmZOnSpats22233fKb3/ym/uxaAAAAAICNXbPPkK2zyy675Pe//33+8pe/5IEHHsjf/va3vPnmm1m+fHn9mK222ir9+/fPkUcemY9//OMpKytrqcMDAAAAAGzwWiyQTZKysrIccsghOeSQQ+rvq66uzvLly9OjR4907NixJQ8HAAAAANCutGgg25Atttgiyco1Y5988snMmjUrW2+9dfbaa6906NChtQ8PAAAAALDBaLFAdvny5bn77rvzj3/8I5dccskq2yZNmpRzzjkn06ZNq7/vve99by688MJ8+tOfbqkSAAAAAAA2aC0SyE6dOjWnnHJKpk6dmrKysgwfPrx+eYK5c+fmpJNOyrx581aZM2vWrJx//vlZsmRJPv/5z7dEGQAAAAAAG7Ty5u6gtrY2p512Wl5//fWUSqWUSqVMnTq1fvuNN96YefPmpaysLJWVlTn44IOz55571s/97ne/m7fffru5ZQAAAAAAbPCaHcjefffdeeWVV1JWVpatttoq3/3ud7PDDjvUb//DH/5Qf/uHP/xhfvazn+X222/PhRdemCRZtGhR7rzzzuaWAQAAAACwwWt2IPvggw8mSTp06JBf//rXOeqoo9KpU6ckybPPPptZs2alrKwsO+64Yz71qU/Vzxs2bFj69u2bUqmUhx9+uLllAAAAAABs8JodyD777LMpKyvLJz/5yfTq1WuVbX/5y1/qbx966KGrzd13332TJK+//npzywAAAAAA2OA1O5CdM2dOkmTHHXdcbdsjjzxSf/sjH/nIats333zzJCsv/AUAAAAAsLFrdiC7fPnyJCuXLHi3BQsW5B//+EeSpLKyMvvss89qc996660kqV/iAAAAAABgY9bsQHbLLbdMkkydOnWV+//2t79lxYoVKSsrS//+/dO5c+fV5tYFtltvvXVzywAAAAAA2OA1O5D90Ic+lFKplPHjx2fBggX199922231tw877LDV5v3lL3/JM888k7KysnzoQx9qbhkAAAAAABu8yubu4NOf/nTuv//+zJ07N0OGDMkXvvCFPPPMM/nb3/6WJKmoqMjhhx9eP/7NN9/MH//4x1xzzTX1933mM59pbhkAAAAAABu8ZgeyAwcOzN57751nnnkmL730Uq644ookSVlZWZJk6NCh2WqrrerHH3HEEVmwYEFKpVKS5MADD8zBBx/c3DIAAAAAADZ4zV6yoKysLP/93/+dD3/4wymVSqv8GTx4cL7yla+sMn6nnXaqD2MPOuigjBw5srklAAAAAAC0C80+QzZJqqqqctNNN+Xpp5/OxIkTU1FRkX333Te77rrramP33nvvvOc978nRRx/d4NqyAAAAAAAbqxYJZOv069cv/fr1W+uYCy+8sCUPCQAAAADQbjR7yQIAAAAAAJpGIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUBCBLAAAAABAQQSyAAAAAAAFqWzrAjZUDzzwQM4444wcddRRGTFiRLP2NX369IwZMyZ/+9vfMm3atNTU1GSrrbZK//79c8IJJ6Rfv35rnHv66adn/PjxjR5j9OjROfTQQ5tVJwAAAADQugSyDXj99ddz6aWXtsi+7r///lx44YVZvHjxKvfPmDEjM2bMyB//+Md8+ctfzle+8pUG5z/33HMtUgcAAAAA0PYEsv/itddey7BhwzJ79uxm7+u5557L+eefn5qammy33XY599xz8+EPfzilUinPPfdcRo4cmSlTpmT06NHZZpttMmTIkFXmz549O7NmzUqS/OxnP8uAAQPWeKzOnTs3u14AAAAAoHUJZN9l3Lhxueiii7JgwYIW2d/IkSNTU1OTnj175je/+U223nrr+m3bbLNNDjrooJxwwgmZOHFiRo4cmaOPPjodO3asH/PPf/4zSVJWVpb+/funa9euLVIXAAAAANA2XNQrycsvv5zTTz89Z555ZhYsWJBevXqlR48ezdrnwoUL8+ijjyZJjj/++FXC2DodO3bMGWeckSSprq7OM888s8r2SZMmJUl69+6d7t27N6seAAAAAKDtCWSTfOMb36i/cNagQYNy2223NTsAnTZtWrp165Yk6du37xrHve9976u//eabb66yrS6QXdt8AAAAAKD9sGTB/9pjjz1y3nnn5cADD2yR/e266655/PHHs3Tp0pSXrzn3fv311+tv/+tZuXUX9PrgBz+YG2+8Mffcc09efPHFJCvPmh00aFCGDh2aLl26tEjNAAAAAEDrEsgmueyyy9K7d+9W2XenTp3Wuv3mm29OklRWVmbvvfeuv7+6ujrTp09PkowaNSo1NTWrzJs8eXImT56c22+/Pdddd1123HHHli0cAAAAAGhxAtmk1cLYxtx777158MEHkyRHHHHEKmfI1p0dW+e0007L4MGDs+WWW2b69Om59dZbc8stt2Tq1Kk59dRTc+edd2bzzTdvVj2Vleu2gkVFhRUv2rOinj990r4V8fzpkfZPn9AY7zk0hT6hKfQJTeGzCU2hT2hMaz5/7T6Qvfbaa3PNNdes05yjjjoqI0aMaKWKmmbChAm56KKLkiRVVVU577zzVtk+e/bsbLnllpk3b16uu+66HHDAAfXbqqqqsueee2annXbKFVdckWnTpmX06NH5r//6r/Wup7y8LFVVXdd7Pu1Pjx6btXUJtAP6hKbQJzRGj9AU+oSm0Cc0hT6hKfQJjWnNHmn3gWx79MQTT+TLX/5ylixZkg4dOuSHP/xhtt5661XGDB48OIMHD86yZcvSsWPHBvczbNiw3HHHHZkyZUruvPPODB8+PGVlZetVU21tKfPnL16nORUV5V7A2rH585dkxYraVj+OPmnfiugTPdL+6RMa4z2HptAnNIU+oSl8NqEp9AmNWdce6dFjsyafVdvuA9khQ4Zk4MCB6zSne/furVRN4/70pz/lq1/9apYuXZrKyspcddVV+chHPrLG8WsKY+scdthhmTJlSqqrq/Paa681a/mF5ctb/4MNG44VK2o95zRKn9AU+oTG6BGaQp/QFPqEptAnNIU+oTGt2SPtPpCtqqpKVVVVW5fRJNddd12uuuqqlEqldO7cOddcc00+9rGPNWuf2223Xf3tOXPmtNl6uAAAAABA49p9INserFixIt/61rdyyy23JFkZIo8ePTp77713o3NLpdJalyGoqampv92lS5dm1woAAAAAtB6Xe2tlNTU1Oeuss+rD2N69e+eWW25pNIw94YQTsu+++2bo0KFrHffiiy8mSSoqKtKrV68WqRkAAAAAaB0C2VZUKpVywQUX5M9//nOSZK+99srNN9+c97///Y3O7dKlS+bPn5+nn3468+fPb3DM0qVLM27cuCTJPvvsk65du7Zc8QAAAABAixPItqJf/OIXuffee5Mk/fr1y0033ZSePXs2ae7gwYOTrDzDdsSIEQ2Oufzyy/P2228nSU455ZQWqBgAAAAAaE3WkG2m4cOH59lnn02S3HffffX3z549OyNHjkySbLHFFhkxYkRKpVIWLVq0xn116tQplZUrn5LDDz88Y8eOzYQJE3LHHXdk0aJFOfnkk9OrV6+8/vrruf766+vPjv3c5z7X7IuDAQAAAACtTyDbTDNnzswrr7yy2v233HJLlixZkiSprq7OwIEDG93XFVdckc9//vNJkvLy8vzkJz/J6aefnmeeeSb33XffKoFvnSOPPDKXX355Mx8FAAAAAFAEgWwrmThxYrP30bNnz4wdOza/+93v8oc//CEvvPBCFi1alKqqquy999455phjcsghh7RAtQAAAABAEQSyazB+/PgmjRszZkyD9//0pz9tkToqKytzzDHH5JhjjmmR/QEAAAAAbcdFvQAAAAAACiKQBQAAAAAoiEAWAAAAAKAgAlkAAAAAgIIIZAEAAAAACiKQBQAAAAAoiEAWAAAAAKAgAlkAAAAAgIIIZAEAAAAACiKQBQAAAAAoiEAWAAAAAKAgAlkAAAAAgIIIZAEAAAAACiKQBQAAAAAoiEAWAAAAAKAgAlkAAAAAgIIIZAEAAAAACiKQBQAAAAAoiEAWAAAAAKAgAlkAAAAAgIIIZAEAAAAACiKQBQAAAAAoiEAWAAAAAKAgAlkAAAAAgIIIZAEAAAAACiKQBQAAAAAoiEAWAAAAAKAgAlkAAAAAgIIIZAEAAAAACiKQBQAAAAAoiEAWAAAAAKAgAlkAAAAAgIIIZAEAAAAACiKQBQAAAAAoiEAWAAAAAKAgAlkAAAAAgIIIZAEAAAAACiKQBQAAAAAoiEAWAAAAAKAgAlkAAAAAgIIIZAEAAAAACiKQBQAAAAAoiEAWAAAAAKAgAlkAAAAAgIIIZAEAAAAACiKQBQAAAAAoiEAWAAAAAKAgAlkAAAAAgIIIZAEAAAAACiKQBQAAAAAoiEAWAAAAAKAgAlkAAAAAgIIIZAEAAAAACiKQBQAAAAAoiEAWAAAAAKAgAlkAAAAAgIIIZAEAAAAAClLZ1gVsqB544IGcccYZOeqoozJixIj13s+kSZNy1FFHNTpujz32yJ133tngtieffDI33XRTJkyYkPnz56dnz57ZZ599MnTo0PTr12+9awMAAAAAiuUM2Qa8/vrrufTSS1tkX88991yz5o8dOzYnnHBCxo0bl9mzZ6empiazZs3KPffck+OOOy433HBDi9QJAAAAALQ+Z8j+i9deey3Dhg3L7NmzW2R/dYFs//79c/31169xXEVFxWr3Pfzww/nOd76TUqmUgw46KGeffXZ69eqVl156KVdffXWefPLJ/OAHP8hOO+2UQw89tEXqBQAAAABajzNk32XcuHE5+uijM2PGjBbbZ10gu9dee6Vr165r/NO5c+dV5pVKpVx55ZWpra1N//79M3r06PTt2zdVVVUZMGBAfv7zn6dfv34plUr53ve+l9ra2harGQAAAABoHQLZJC+//HJOP/30nHnmmVmwYEF69eqVHj16NHu/K1asyJQpU5IkH/rQh9Zp7iOPPFI/95xzzkll5aonM3fs2DEXXHBBkuSVV17Jk08+2ex6AQAAAIDWJZBN8o1vfCPjx49PkgwaNCi33XZbunfv3uz9vvjii3nnnXeSJH379l2nuQ8//HCSpEePHtl3330bHNO/f/9UVVUlWXkRMgAAAABgw2YN2f+1xx575LzzzsuBBx7YYvusW65giy22yOzZs3PNNdfkf/7nfzJnzpxsvvnm2WeffTJs2LD0799/tbnPP/98kmTXXXdtcH3ZJCkrK8tuu+2WRx99tNkXDwMAAAAAWp9ANslll12W3r17t/h+J02alCRZtGhRjj322FW2vf3227n//vtz//3358tf/nK+8pWvrLJ9+vTpSZIddthhrcfYbrvtkiTTpk1rqbIBAAAAgFYikE1aJYxNkn/+859Jkpqamuyxxx75z//8z/Tt2zelUimPPfZYRo0alWnTpmX06NGpqqrKsGHD6ufOnTs3SbL55puv9Rh1SyvMnz+/VR4DAAAAANBy2n0ge+211+aaa65ZpzlHHXVURowY0UoV/Z/ly5enU6dO2W+//XLttdemY8eO9ds++9nP5qCDDsoXvvCFTJ06NSNHjsyRRx6Z97znPUmSpUuXJkk6deq01mPUba8b3xyVleu2pHBFhSWI27Oinj990r4V8fzpkfZPn9AY7zk0hT6hKfQJTeGzCU2hT2hMaz5/7T6Q3ZDdfvvtKZVKWbFiRSorV/+r7tmzZy644IKcffbZWbJkSe6+++4MHTo0SVJRUZHa2trCai0vL0tVVdfCjkfb69Fjs7YugXZAn9AU+oTG6BGaQp/QFPqEptAnNIU+oTGt2SPtPpAdMmRIBg4cuE5z6r7mX4SysrIGw9g6hxxySCorK7N8+fJMnDix/v7NNtssNTU1WbZs2Vr339QzaRtTW1vK/PmL12lORUW5F7B2bP78JVmxovVDf33SvhXRJ3qk/dMnNMZ7Dk2hT2gKfUJT+GxCU+gTGrOuPdKjx2ZNPqu23QeyVVVVqaqqausy1lvnzp1TVVWVt956q37d2GRlaDx//vwsWLBgrfPr1o5tib+D5cuLOyOXtrdiRa3nnEbpE5pCn9AYPUJT6BOaQp/QFPqEptAnNKY1e8RiFhuAmpqaJCvPiq2z4447JklmzJix1rkzZ85Mkmy33XatVB0AAAAA0FIEsq3kT3/6Uw4++ODsueeeefzxx9c4bvbs2amurk6S9O7du/7+Pn36JEmef/75lEqlBueWSqVMnjw5SbLbbru1TOEAAAAAQKsRyLaSbbbZJrNmzUpNTU0efvjhNY6766676m8ffPDBq92ePXt2nnnmmQbnTpgwoX6Zg4MOOqgFqgYAAAAAWpNAtpX07du3ftmBsWPH5pVXXlltzEsvvZQf//jHSZI999wz+++/f/22/fffP9tvv32S5Pvf//5qF/datmxZrrzyyiTJzjvvLJAFAAAAgHZAINtMw4cPz6BBgzJo0KDVtl188cUpLy/PO++8k+OOOy633357pk+fnjfeeCM333xzjj/++CxYsCBdunTJ5Zdfvsrc8vLyXHTRRUlWngl78skn56mnnsrcuXPz1FNP5eSTT86ECRNSVlaW8847L2VlZYU8XgAAAABg/VW2dQHt3cyZMxs8+zVZuezAZZddlm9+85uZM2dOvva1r602pmfPnhk1alR23XXX1bZ98pOfzNlnn51Ro0bliSeeyHHHHbfK9rKyslx88cU57LDDWubBAAAAAACtSiDbyo455pj0798/v/jFL/L3v/89b7zxRiorK9OrV68cdthhGTp0aKqqqtY4/4wzzsj++++fX/7yl3nqqadSXV2dHj16pF+/fhk2bFj222+/Ah8NAAAAANAcAtk1GD9+fJPGjRkzptExO+20U771rW+tdy0DBgzIgAED1ns+AAAAALBhsIYsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQkMq2LgAANmYLpj6WxW9OTpf37pbuvT7c1uUAAADQxpwhCwCtpFS7PIvfnJyklMVvTk6pdnlblwQAAEAbE8gCQCsp1a5IUqr76X9/BgAAYFMmkAUAAAAAKIg1ZAHYIGz/3s3buoQWt7zmnbw18f9+ft92W6SyQ+e2K6iFbYzPGQAAQGsTyALQpmprS1mxojZnDPloW5fS4hYuXJjP3vuT+p8v/fKn0q1btzasqOWtWFGb2tpS4wMBAABIIpAFoI3V1pZSXb045eVlbV1Ki1u0aNEqP1dXL0pNzcb1OGtrSwJZAACAdSCQBVhPC6Y+lsVvTk6X9+6W7r0+3NbltGsba6i3fHntaj//630AAABsWlzUC2A9lGqXZ/Gbk5OUsvjNySnVLm/rktgAVVZ2SFnZyrfa8vLyVFZ2aOOKAAAAaGsCWYD1UKpdkaTujM7S//4Mq+rUqVMGDTo85eXlGTjw8HTq1KmtSwIAAKCNWbJgDR544IGcccYZOeqoozJixIh1nv/4449n6NCh6zSnoWOdfvrpGT9+fKNzR48enUMPPXSdjgdA6zvxxFNz4omntnUZAAAALcYSfs3jDNkGvP7667n00ksLP25DV95+7rnnCq8DAACAjdOCqY9l1lM/z4Kpj7V1KUA7ZQm/5nOG7L947bXXMmzYsMyePbtZ+xkwYEAmTJiw1jGLFy/OCSeckFdffTU77bRTzj777FW2z549O7NmzUqS/OxnP8uAAQPWuK/OnTs3q15obdu/d/O2LqFFLa95J29N/L+f37fdFqnssPH8O9zYni8AAFYPUbptPyBl5WIBaG0b2+9Xy2veyZvvWsKv1zbd/T68jrzyvsu4ceNy0UUXZcGCBc3eV0VFRbp27brWMd/4xjfy6quvpnPnzhk1alR69OixyvZ//vOfSZKysrL079+/0f3Bhqi2tpQVK2pzxpCPtnUpLWrhwoX57L0/qf/50i9/qsGz3NuzFStqU1tbanwgAADtQkPXQRDIQuvx+3D71dq/D3vlTfLyyy/nBz/4Qf1arb169cq8efMyf/78Vjvmvffem7vuuitJct5552XnnXdebcykSZOSJL1790737t1brRZoTbW1pVRXL055eVlbl9KiFi1atMrP1dWLUlOzcT3G2tqSQBYAAGA9+X24/Wrt34cFsll5pur//M//JEkGDRqUb37zmzn66KNbLZBdsGBBLr/88iTJXnvtlS9+8YsNjqsLZPv27dsqdUBRNsZgb/ny2tV+/tf7AKCluHAGTaFPWt7G+DVjy25BsTbG34eTipSVladUqk15eXmSCr8PryOB7P/aY489ct555+XAAw9s9WP993//d956662UlZXlkksu+d/mXV3dBb0++MEP5sYbb8w999yTF198McnKs2YHDRqUoUOHpkuXLq1eMwAAbcOajzSFPmlZvmbcfll2C1pfp06dMmjQ4bn//nsycODh6dSpU1uX1O54h05y2WWXpXfv3oUca9asWRkzZkySZODAgWs8+7W6ujrTp09PkowaNSo1NTWrbJ88eXImT56c22+/Pdddd1123HHH1i0cWEVlZYdV/o9gZWWHti4JgI2UNR9pCn3SsnzNuP3aOM9GhA3PiSeemhNPPLWty2i3vEMnhYWxSTJmzJgsW7YsSXL66aevcVzd2bF1TjvttAwePDhbbrllpk+fnltvvTW33HJLpk6dmlNPPTV33nlnNt+8eV/PqKxs+EzdNamoWLfx7cmm8HWvjfn5K0Jl5WY5/PDP5N57786nP/2ZdO26WVuXBBu1jfk1y3tO+zsOrUOf0BSePxpTXl5WSJCuF9s/zyFtqd0Hstdee22uueaadZpz1FFHZcSIEa1U0ZotWrQot9xyS5LkkEMOya677rrGsbNnz86WW26ZefPm5brrrssBBxxQv62qqip77rlndtppp1xxxRWZNm1aRo8enf/6r/9a79rKy8tSVdV1veZubOv0rFhekyef+t+ve701ObsP+EQqNqKzH+uerx49BIjNdd555+a8885t6zJgk+I9p33xnsO6KLpPNrbXk01lbVCvJ83TocOqZ45usUXXdOu2fr8HQnvn9YS21O4D2fbkt7/9bf2Fwk477bS1jh08eHAGDx6cZcuWpWPHjg2OGTZsWO64445MmTIld955Z4YPH56ysvX7P4G1taXMn794neaUlZWle/fOG+e6SveMWvlDqZSvf+njG+W6SgsWvJNSyVd5gPbBe077VeR7TkVFuV+u2rH585dkxYrWvyDIRv16sgmsDeozbPMsXbos5eXlqa1duezWwoXLUlOzqPGJrMZ7TvtX1PsOm44ePTZr8pnX7T6QHTJkSAYOHLhOc7p3795K1azdXXfdlWTlEgkDBgxo0pw1hbF1DjvssEyZMiXV1dV57bXXmrX8wvpcEW9jXFdpU/iQYl0loD3yntM+ec+hqVasqC3sCs0b4+uJtUFpioqKDhk48P8uxFNR0cGV0dlkFfm+A/+q3QeyVVVVqaqqausyGjVr1qxMnLjyO0SHH354i+13u+22q789Z86cQtfDTTbOD0U+pABsmLznAC1lY3w9+dfXjuXLBQ00zIV4ANpeuw9k24sHHnig/qs1n/nMZ5o8r1QqrXUZgpqamvrbXbp0Wf8CWYUPKQAUxXsOAABsWgSyBfnrX/+aZOVyBR/84AcbHX/CCSfkhRdeyK677poxY8ascdyLL76YJKmoqEivXr1aplgAgHbMxZral43t+WorlZUdUlZWnlJp5RIolRvRBQIBYGMjkC1AqVTKhAkTkiR77bVXk+Z06dIl8+fPz9NPP5358+enR48eq41ZunRpxo0blyTZZ5990rWrq2MCAJuu2tpSVqyodbGmdmjFitqNbgmBonXq1CmDBv3fEiidOnVq65IAgDUQyBZg2rRpmTdvXpKkb9++TZozePDgPPzww6mpqcmIESPy3e9+d7Uxl19+ed5+++0kySmnnNJyBQMAtEO1tSUXa2qnNsY1XduCJVAAoH0QyDbT8OHD8+yzzyZJ7rvvvgbH1C0rkCTve9/7mrTfww8/PGPHjs2ECRNyxx13ZNGiRTn55JPTq1evvP7667n++uvrz4793Oc+l4997GPNeyAAABuBjTHYc7EmAICNi0C2mWbOnJlXXnllrWNmzJhRf7uhpQcaUl5enp/85Cc5/fTT88wzz+S+++5rMPA98sgjc/nll69b0QAAAABAmxDIFmD+/Pn1t7t3797keT179szYsWPzu9/9Ln/4wx/ywgsvZNGiRamqqsree++dY445JoccckhrlAwAAAAAtAKB7BqMHz++SePGjBnT6JjTTz89p59++nrVUVlZmWOOOSbHHHPMes0HAAAAADYc5W1dAAAAAADApkIgCwAAAABQEIEsAABswCorO6SsbOXH9vLy8lRWdmjjigAAaA6BLAAAbMA6deqUQYMOT3l5eQYOPDydOnVq65IAAGgGF/UCAIAN3IknnpoTTzy1rcsAAKAFOEMWAAAAAKAgAlkAAAAAgIIIZAEAAAAACiKQBQAAAAAoiEAWAAAAAKAgAlkAAAAAgIJUtnUBAAAAAGwYFkx9LIvfnJwu790t3Xt9uK3LgY2SM2QBAAAASKl2eRa/OTlJKYvfnJxS7fK2Lgk2SgJZAAAAAFKqXZGkVPfT//4MtDSBLAAAAABAQQSyAAAAAAAFEcgCAAAAABREIAsAAAAAUJDKti4AAAAAoD3a/r2bt3UJLWp5zTt5a+L//fy+7bZIZYfObVdQK9jYnjPap7JSqVRqfBgbuxUrajNnzqK2LgMAAAA2eOXlZdliiy6pqNi4vni8cOHCfPazn63/+fe//326devWhhW1jhUralNdvTi1tSIxWk7Pnl2b/JrgDFkAAACAdVBbW0p19eKUl5e1dSktatGiVU/Uqq5elJqajesxJiufP2EsbUkgCwAAALCONsZQb/ny2tV+/tf7gObbuM6tBwAAAADYgAlkAQAAAAAKIpAFAAAAACiIQBYAAACAVFZ2SFnZyqiovLw8lZUd2rgi2DgJZAEAAABIp06dMmjQ4SkvL8/AgYenU6dObV0SbJTKSqXSxnVJQNbLihW1mTNnUVuXAQAAAADtTs+eXVNR0bRzX50hCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQEIEsAAAAAEBBBLIAAAAAAAURyAIAAAAAFEQgCwAAAABQkLJSqVRq6yJoe6VSKbW1WgEAAAAA1lV5eVnKysqaNFYgCwAAAABQEEsWAAAAAAAURCALAAAAAFAQgSwAAAAAQEEEsgAAAAAABRHIAgAAAAAURCALAAAAAFAQgSwAAAAAQEEEsgAAAAAABRHIAgAAAAAURCALAAAAAFAQgSwAAAAAQEEEsgAAAAAABRHIAgAAAAAUpLKtC4ANxZ/+9Kfceuut+cc//pFFixZlyy23TL9+/fKFL3whBxxwQFuXxwbgO9/5TsaMGdPouK9//es54YQTCqiIDcmFF16Y3/72t+s055e//GX233//VqqI5lq0aFE++9nPplQq5d57703Hjh3rt91000254oorGt3HySefnP/6r/9q8doee+yx/OpXv8ozzzyT6urqVFVVZY899sjRRx+dT37ykw3Oue2223LJJZfkkksuyRe/+MUWr2lT1VCf/OhHP8qPf/zjddrPFVdckc9//vMtVtf69qg+aXlrey1Jkscffzxjx47NhAkTUl1dnR49eqRfv34ZMmRIDjzwwBavp7n9qUfWX2O98K/q/h2feeaZOeuss5p0jIULF+aII47IzJkz88ILL7RE2Wu0YMGC/OIXv8gDDzyQ1157LStWrMj73//+fPKTn8zQoUOzxRZbrDZn2bJl+cxnPpMVK1bkD3/4Q7p169aqNW6oWrMX5s+fn1/+8pcZN25cXnvttZSVlWWHHXbIoYcemuOPPz5bb711Sz6UtVrffmzK492YX4s2ts8WLWVj+/zrDFk2eTU1NTn33HNz1lln5a9//Wuqq6tTU1OTmTNn5p577smwYcNy6aWXplQqtXWptLHnnnuurUtgI9O1a9e2LoG1+O53v5upU6fmggsuWO0XpX/+859tVNXKD9cnnnhixo0bl7feeis1NTV588038+CDD+bMM8/Ml7/85Sxbtmy1eUcffXR22223XHnllXnppZfaoPKN09r6ZF20dCixvj2qT1remnqktrY2l112WYYOHZr777+//t/z7Nmz88ADD+SUU07JpZdemhUrVrRh9Su9uz/1yPpbl9eLiRMnZuTIkeu0/9ra2nzta1/LzJkzm1Fl00yaNCmf+cxn8qMf/SiTJ0/O4sWLs3Tp0kyZMiU/+clP8pnPfKbB16GOHTtm+PDhmT59ei6//PJWr3ND1Vq98P/+3//LkUcemR/96Ed5/vnns2TJkixevDhTpkzJT3/60xxxxBF5+OGHW+ARNG59+7Gpj3djfi3a2D5btISN8vNvCTZxV1xxRalPnz6lPn36lM4+++zSM888U3r77bdLEydOLJ199tn126699tq2LpU2tGLFitLee+9d6tOnT2ns2LGlhQsXrvHPsmXL2rpc2sDSpUvX2hcLFy4sjRs3rrTLLruU+vTpU7ryyivbumTW4oknnij16dOndOyxxza4/dOf/nT987i253zp0qUtWtcvf/nL+velE088sfT444+X3n777dLkyZNL3/zmN+u3fe1rX2tw/iOPPFLq06dP6Ytf/GKL1rWpWlOfNOX14Omnny596EMfKvXp06d03nnntXhtzelRfdJy1vZaMnLkyPp/s4cffnhp3LhxpdmzZ5dee+210o9+9KPS7rvvXurTp0/poosuatGaWqI/9ci6a+x95d0mTpxYGjBgQH1/jBo1qtE5y5YtKw0fPrx+Tp8+fVqi7Aa98cYbpY985COlPn36lHbdddfSiBEjSi+++GJpzpw5pUceeaR01FFHlfr06VPae++9Sy+++GKD+/j3f//3Up8+fUqPP/54q9W5oWqtXliwYEHp0EMPLfXp06fUv3//0o033lh6+eWXS2+88Ubp3nvvLX3iE5+of15efvnllnxIq1nfflzX3t8YX4s21s8WzbGxfv4VyLJJe+ONN0p77LFHqU+fPqWvfOUrDY758pe/XOrTp09pwIABpXfeeafgCtlQvPjii/Uv9M8//3xbl0M7NGvWrNL+++9f6tOnT+mEE04orVixoq1LYg1qa2tLgwcPLvXp06f06KOPrrZ90aJFpV133bXUp0+f0p///OfC6lqyZElpv/32K/Xp06c0ZMiQ0vLly1cbc9lll5X69OlT2m233UozZ85scD9Dhgwp9enTp3TPPfe0dskbtcb6ZG0WLVpU+tSnPlXq06dPadCgQaVFixa1aG0t0aP6pPnW1iPTpk2r/ww6ePDg0oIFC1abf/fdd9d/9igytGpqf+qRpluX14uxY8eW9txzz1WCrMZCqZkzZ5aOPfbYVea0ZiD79a9/vf4Yv/3tb1fbvmTJkvpQdk0ByKOPPlrq06dP6YgjjtikPhO1Zi9cd911pT59+pR22WWX0sMPP7za9mnTppX69etX6tOnT+nrX/96sx/LmqxvP65P75dKG9dr0cb+2WJ9bMyffy1ZwCbtwQcfTE1NTZLkjDPOaHDM4MGDk6xci+eVV14prDY2LHXLFXTp0iUf/OAH27ga2qNLLrkkc+fOTdeuXfP9738/5eXegjdU9913X55//vn06dOnwTXEJ0+enNra2iTJhz70ocLqeuKJJ1JdXZ0k+dKXvpSKiorVxtS9Z61YsWKNXysbOnRokuTHP/5x/eNg3TXWJ2vzgx/8IK+++moqKirygx/8IF26dGnR2lqiR/VJ862tR+655576z6Df+ta3Gvxa6eGHH5599903SXLddde1fsH/q6n9qUearimvF88++2yOP/74fOtb38qyZcuyxx57NLrfd955J9dee20+/elP5+mnn05lZWV23XXXli5/FcuXL8/dd9+dJDnwwAPzuc99brUxnTt3zvDhw5OsXCP52WefXW3MAQcckJ133jlTpkzJvffe26o1b0haqxeSZNy4cUlWvu4ffPDBq23ffvvtM2DAgPpjtLT17cf1fbx1NqbXoo39s8X62Jg///ptkE3av//7v+fhhx/OTTfdlA984AONjq+sdB28TdWkSZOSJLvvvnuDbwKwNvfcc0/9el3nn39+tt122zauiLW5/vrrk6xcc6ohda8H2267bbbaaqvC6jrooIPyt7/9Lb/4xS+a9CG9Q4cODd5/2GGHpaqqKi+++GIefPDBli5zk9FYn6zJM888k5tvvjlJcuKJJ2bPPfds8dpaokf1SfOtrUfq/kfv1ltvnb333nuN+6i7qNdjjz3W4Np4LW1d+lOPNF1TXi/OPffcPPnkkykrK8vxxx+fX//6143u95577sk111yTxYsXp1evXvn5z3+eT3ziEy1Wd0Nee+21LFy4MEkyaNCgNY7bd99907lz5yTJX/7ylwbHHHPMMUn+7+9nU9BavZAkY8aMyV133ZXvfOc7jY5tjd9r17cf1/fx1tmYXos29s8W62Nj/vwrkGWTt80226zxH3ZNTU39G8L222+f3r17F1gZG5K6X5x222233HrrrTnhhBOyzz77pG/fvvn0pz+dK6+8MnPnzm3jKtkQLV26ND/4wQ+SJH369Mm///u/t3FFrM0///nP+v+zPnDgwAbH1L0e7LnnnrnnnntyyimnZL/99suee+6ZT3ziE/n2t7+dGTNmtEp9W265ZT784Q83eIGHUqmUMWPGJFl5wbg1hTwdO3bMYYcdliT5zW9+0yp1buya0idrcvnll6dUKmWrrbZa47dzmqslelSfNE9jPTJv3rwkyXbbbbfW/fTs2TPJyivTF/FNrXXpTz3SNOvyerH//vvn1ltvzaWXXlofZjamR48eOffcc3PXXXdlv/32a3a9jak7Uy1Ze/9WVFSkR48eSZIXXnihwTF1fx+TJk1qlTM2NzSt3QsdO3ZMnz59sssuuzS4fcqUKfn73/+eJPnoRz+6DpU33fr24/o83joby2vRpvDZYn1trJ9/ne4H/2Lx4sV58803M2HChNx000154YUX0qFDh3zzm990huwmqlQq1f8fwd/85jf1XzGs8/LLL+fll1/OHXfckf/+7/9e65kubHp+/etf1384+epXv+oM6w3cPffckyT54Ac/uMYzmes+kD700EP1Xw+sM3Xq1IwdOzZ33nlnrrrqqnz84x9v1XqXLl2aN998M//85z8zZsyYPPXUU0mSiy66KJtvvvka5x188MG544478uijj2b+/Pn1vzTTNE3pk4b86U9/qg8dTj/99Ba/+nGdlupRfbL+GuuRrl27JkkWLVq01v3UBbdJ8sYbb6wxaGkJ69OfeqRxTX29uOGGG7Ljjjuu074/+tGP5uGHH27xryavTV3vJmvv31KpVH8m7RtvvNHgmG233TY777xz/t//+3+5995707dv35YtdgPTmr3QkFKplLlz52bGjBm5//778+tf/zrLli1Lnz59cuqppzZ7//9qffuxJR7vxvBatKl8tmgJG8vnX2fIwr/4j//4jwwcODAXXXRRXnjhhWy77bb51a9+1eA6PGwa3v3VrOXLl+fYY4/NHXfckcceeyx33XVXTjvttFRWVmbOnDk57bTTMnXq1DaumA3F8uXLc9NNNyVZudzFIYcc0rYF0ai//vWvSbLG/7GydOnSvPzyy0lWfoti0KBB+fWvf52///3vuf/++3P++eenS5cuWbJkSc4555xMnDixVev9+te/nk984hM599xz89RTT6VHjx756U9/mn/7t39b67y6x7d8+fI8+uijrVrjxqixPlmTuq8ibrXVVo0+R+urJXtUn6y/xnqkT58+SZKXXnops2bNWuN+Hn/88frbjYW3zbU+/alHGtfU14v1CaS23nrrQsPYJOndu3f9WWp/+9vf1jju2WefzeLFi5Ok/nN0Q/baa68k//f3tDFrzV5oyLRp03LAAQfk6KOPzs9+9rMsXLgwn/70p/OrX/0q3bt3b5FjvNv69mNLPN6N4bVoU/ls0RI2ls+/Aln4F/96mv3MmTPzzW9+M08++WQbVURbmzVrVrbZZpuUl5dnxIgR+fa3v50999wzVVVV6dOnT84///xcffXVSVaeyVL39XS455576s8KOe2009q4GhqzcOHCvPjii0n+Lyz5VzNmzMjWW2+dioqKnHXWWbnmmmuyzz77pGfPnundu3dOO+20/PznP0+HDh1SU1OTb3/7261a87++Z82fPz9XXHFFHnjggbXO22abberPCmjtD80bm6b0SUOeeuqp+r/rYcOGNfi1u5bQkj2qT9ZPU3pk4MCBKSsry4oVK3LZZZc1eIGRRx55JI888kj9z625huz69qceWbv1fb3YkHXu3DmHHnpokuTOO+9s8HmvqanJlVdeucrPa7LzzjsnWfk/J9YW3LZ3bdEL06dPX+2+Bx54IN/5znc2ur/r9v5atCl9tmipet6tvX7+FcjCv7jhhhvyj3/8I3//+9/zne98J1tssUUmT56cU045JRMmTGjr8mgD+++/fx5++OFMnDixwSvJJsmnPvWp+g+n48aNW+Urhmy66s6O7d279zqvBUXxXn311fpQZKeddmpwzI477pjx48dn4sSJOfPMMxscs/fee+fYY49NsnI9sOeff751Ck7yne98J88++2yeeOKJXH311dl+++3z6quv5qyzzsp999231rl1Z6QUsS7lxqQpfdKQX/ziF0lWrq/XmmtJt3SP6pN115Qe2WWXXfL5z38+ycrPDSeddFIef/zxVFdXZ+rUqfnZz36W//zP/8x73/ve+jmt9Yt28v/bu8+AKM71beDXqoAUEVQwgsYesUeJYKHZNTbUqLGj5liONaJRj0cjdrHkxF7C8VgSC/YeVBA7CHYDiiKhqIjAKoi4lH0/8O78d90KLLDg9fu0u/PMzMPsvbPDvc/cT+HikzGiXkHPF4Zu+vTpMDMzg0QigZeXF/z8/BAXFwexWIwbN25g9OjRCA0NRfXq1QGon2QH+L/jkpubi7///rtY+l8SSiIWGjVqhCtXruDBgwc4c+YMhgwZgqysLJw4cQKjR4/WmCgvjUrzuehzu7YorLJy/cuELNEn6tWrB2NjY1SpUgWDBg3Cnj17YGJigszMTPj6+pZ096gEaftHSFYrJzc3VyjITp+v58+fC7WWPD09Ua4cv3INnXyNO031pwDN/1wCUKidVZQTldSpUwcmJiawtLTEt99+i3379qFq1arIzc2Fr6+vxn+2ZH+jptulSVl+4kQmPT1dmNG3e/fuRVbfTZ6+YpRxkn+6xsjPP/8sTDBy8+ZNjBo1Cs7OzujSpQvWrl0LOzs7rFq1SmhfVLemFzY+GSPqFeR8URrUr18f69evh7m5OTIyMuDr64suXbrA2dkZXl5euHPnDmbMmCFMnKwpdq2srITH6mrNlgUlEQvW1tawtbWFsbEx6tevj8WLF2PSpEkA8hJmR48eLZZ+FJfSfC763K4tCqusXP/yv0MiLb766iv07dsXAHDnzh2kpKSUcI/IUMkXX2ecUEBAgPC4V69eJdgT0pWs1h2AQl/UltT5oHr16hg5ciSAvFsVNY1OkNWPk/+7SbuCxMmlS5eE280N5Xyga4wyTvJP1xgxMTHB5s2bsXr1ajg5OcHCwgJmZmZwcHCAt7c3jh49qjCBko2NTZH0t7DxyRhRT5/fK4bG1dUVp06dwtChQ2Fvbw8jIyPY2NigZ8+e2LdvHyZNmiScWzTFrvxxKcsxZCixMGnSJOG8cvHixRLrR1Eozeeiz+3aQt9K6/Uvp4wn0kHTpk3h7+8PIK84epUqVUq4R1QSpFIpRCKR2uXyv8SZmpoWR5fIgMkSss2bN8eXX35Zwr0hXch/vsuXL6+xrSGfD5o2bSo8jo+PR/PmzVW2y8nJKa4ulSn5iRMZ2fnAxsYGzs7ORdKvT+krRhkn+ZefGBGJROjbt6/w4/+nZP9UikQi1KlTR299lFfY+GSMqFeQ80VpYmdnh0WLFqldLotfTZM2yddP1nTOKu0MJRZMTEzQoEED3Lt3D/Hx8SXWj6JQms9Fn9u1RVEojde/HCFLn7Xt27dj2LBhauugyHz8+FF4XLFixaLuFhkYb29v4RZCTWSF2AH9zY5KpVNKSopQrqBr164l3BvSlfxItA8fPqhss3r1arRr1w6tW7dW+G74lPz5QF9JlEOHDmHkyJFaZ5DV9TsrNTUVgOLfTdrpEifycnNzhZl8O3XqVOTlS/Qdo4yT/NM1RqRSqdYRRLJJvRo2bFgk74E+4pMxol5+zxelSWZmJt6/f692eVRUFF6/fg1A86zxsvgBynYMFXUsvHv3DlOmTEG/fv1w/PhxjW0zMzMB5CVny5LSfC763K4t8qMsX/8yIUuftdevXyM8PBxBQUEaa4hcuXIFQN6HtqhGJ5DhsrS0hFgsRnx8vMKXjDypVIrTp08DAOzt7cvUxA2Uf7dv34ZUKgUAtGjRooR7Q7qSv81K3XeCtbU1UlJSkJGRgZs3b6rd1smTJwHk1c1zdHTUS//S09MRGhqK+/fva6zLJfvOEolEaNKkidp2sgtSOzs7vfTvc6FLnMh78uQJ0tLSABTP+UDfMco4yT9dYuTKlSto1qwZ2rVrh5iYGJVtkpKSEBwcDABafxQuKH3EJ2NEvfyeL0qL4cOHo2XLlli4cKHaNocOHQKQd47p0KGD2nbyCVn541XWFHUsVKpUCSEhIYiMjMSpU6fUtnv16pXw/0yzZs303o+SVJrPRZ/btUV+lOXrXyZk6bMmuz0sOzsba9euVdnm9OnTwuiE/v37F+kMt2SY+vTpIzxetmyZkGiTt2PHDkRERAAAxo0bV6ZvuSLtZKNjRSKR2ttlyPDUqVNHGGEQGxursk3Pnj2FCQ18fX2F2l3yTp06hcDAQADA999/r7dacT169BD2vWbNGpW3XIWFheHIkSMAAA8PD2GG609JpVJhAgn+gJQ/usSJPPlJHovjnyZ9xijjpGB0iZHmzZsL1wp79+5VWp6bmwsfHx9kZmbCzMwMQ4cOLZK+FjY+GSOa5fd8UVrIYiUwMBAJCQlKy+/evYs//vgDADB48GCN34MvXrwAkHebdlke+FLUsSASiYQ6opcvX8aNGzeU2mRnZ2PRokXIycmBSCTSOuKwNCnt56LP6doiv8ry9S8TsvRZa9GiBTw9PQEAx48fx8SJExEeHo6UlBRERUXB19cXs2fPBgDUrl0bU6dOLcHeUklp3bo1evfuDQC4fv06Ro8ejdDQUKSkpCAyMhILFiwQEvpOTk5F9k8TlR7Pnj0DAFStWrXMTeJRlpmamqJx48YAgL/++ktlG3t7e4wdOxZA3m1ZgwcPRnBwMN68eYNnz55hzZo1mDNnDoC8WahVfW+MHj0aPXr0wOjRo/PVvy+++ALjx48HAISEhGDEiBG4fv06kpOT8ffff2Pr1q0YN24csrKyYG1tjfnz56vd1tOnT/Hu3TsA0NsIhs+FLnEiT3Y+APKuJXRV0DjRR4zKME4KRpcYsbKyEpIhe/fuha+vL549e4aUlBTcuHEDo0ePxvnz5wEAs2fPhq2trdI2Choj8goanzKMEc3ye74oTufPn0ePHj3Qo0cPIdZ0NWLECJiamiIjIwP/+Mc/EBQUhDdv3iA2NhY7duyAl5cXJBKJTv8/3b59GwDQpEmTMl0arjhiYcqUKcJcJ5MmTcLWrVuF88q1a9cwatQoBAUFAQC8vLyUBg0UJiZKWmk/F30O1xa8/lXGSb3os7dkyRJkZGQgICAAQUFBwpeUvMaNG2Pjxo2wsrIq/g6SQVi2bBnev3+PoKAghISEICQkRKlN+/btsWHDhiKv4UOGTzZaRDaLJ5UeHTp0wKNHj3Dr1i21bWbMmAGxWIwDBw4gIiJCuEiU17hxY2zbtg1mZmZKy+Li4pCQkKBydIE2U6dOxdu3b7F3717cvn0bY8aMUWpjb2+PTZs2oVatWmq3Ex4eDiCvxtY333yT73587nSJExnZ+cDY2Dhf9foKEyeFjVEZxknB6RIjP/30E54+fYrQ0FD4+fnBz89PYXn58uUxY8YMDBs2TOX6hYkRmYLGpwxjRLv8nC+KU1paGp4/fy48zg97e3v4+vrC29sbz549w8SJE5XaNGzYEFu2bNH6w7QsIevi4pKvPpRGRR0L1apVg5+fHyZNmoRXr17hl19+wS+//KLUzsvLCz/99JPS64WJiZJWFs5FZf3agte/ypg1oM+esbExNmzYgE2bNsHDwwNVqlRBhQoVYGVlhXbt2mHp0qXw9/dHzZo1S7qrVIIqVqyILVu2YP369XB3d0eVKlVgZGSEatWqwcXFBWvXrsV///tfjoYkAP93EWtpaVnCPaH8kt3uFxcXp7auY7ly5bB48WL873//Q/fu3WFrawsjIyNYWVmhTZs2WLRoEQ4dOqT2dqnCEIlEWLBgAfbs2YMePXoI+7a0tETr1q0xd+5cnDp1ShhloU5oaCgAoGPHjgYxqUFpo0ucyJTE+UBfMco4KThdYsTU1BQ7d+7EwoUL8fXXX8PMzAxGRkawt7fHgAEDcOTIEZX/8OpTYeOTMaJdfs4XJaUgpba6deuGo0ePYsCAAahRowYqVKgAc3NztG7dGgsWLMCRI0c0JkYAIDo6GklJSQAUS4SVVcURC02aNMHJkycxY8YMNG3aFGZmZjA2Noa9vT08PT3h7++PefPmaR1AUtrKr5WFc9Hncm1REGX1+lckVVUMkYiIiOgzNWzYMISHh2PatGmYPHlykexjyZIlCA0NFSY/KE5paWlwcXFBZmYm9uzZAycnp2LvQ1nAOCFtGCMkUxyxUBCpqalo27Yt1q9fj+7duxf7/tetW4dt27bByckJe/bsKfb9lwRDjQWZko6JgihL56Ky/r3B7yxFHCFLREREJOef//wnAODYsWPIzc0tkn1EREQUqF6jPpw4cQKZmZlo3bq1QVyMllaME9KGMUIyxRELBREZGQmgYPWDCysnJwdHjx4FkFfv9HNhqLEgU5IxUVBl6VxU1r83+J2liAlZIiIiIjkuLi5o0aIFYmNjERwcrPft79y5E+Hh4SU2u/GhQ4cAfF7/ABcFxglpwxghmaKOhYJISEjA8uXL0aJFCzg4OBT7/i9duoTXr1/j66+/Rvv27Yt9/yXFEGNBpqRjoqDK0rmoLH9v8DtLGROyRERERJ+YNWsWRCIRtmzZovdtR0RE4N///jfc3d31vm1tLly4gL/++gvOzs5wc3Mr9v2XNYwT0oYxQjJFGQsF8fbtW1SuXBnr168v9n1LpVJs2rQJIpEIM2fOLPb9lzRDiwWZkoyJgiqL56Ky+r3B7yxlrCFLREREpMKSJUuwd+9ebNq0CV26dCnp7hRaTk4OevfujVevXuHkyZOcrFJPGCekDWOEZMpaLBTUiRMnMHv2bAwfPhwLFy4s6e6UCMZC4ZXlcxHjQ38MOU44QpaIiIhIhVmzZqF27dpYtWoVJBJJSXen0A4dOoTo6GjMnj3boC5GSzvGCWnDGCGZshYLBSGRSPCf//wHNWvWxKxZs0q6OyWGsVB4ZflcxPjQH0OOE46QJSIiIiIiIiIiIiomHCFLREREREREREREVEyYkCUiIiIiIiIiIiIqJkzIEhERERERERERERUTJmSJiIiIiIiIiIiIigkTskRERERERERERETFhAlZIiIiItK7DRs2oFGjRmjUqBGOHDlSqG116tRJ2Jah9Em2nU6dOhVqO6WRvt4PKnrx8fHCezVy5MiS7g4RERH9f0zIEhERERERERERERUTJmSJiIiIiIiIiIiIikmFku4AEREREZEmgYGBJd0FolKpZs2aePz4cUl3g4iIiD7BEbJERERERERERERExYQJWSIiIiIiIiIiIqJiwpIFREREZJBGjhyJ0NBQ2NvbIzAwEOnp6di1axfOnTuH+Ph4SKVS1K5dGx4eHhg5ciSqVaumcXtisRjHjh3DzZs38eTJE4jFYkgkElhaWsLe3h7Ozs4YMmQIatWqpXL9uXPn4ujRozA2NsaDBw8QGRmJVatW4c6dOzA1NUXDhg0xYsQIdOvWTWG9Bw8e4MyZMwgLC8PLly8hFothZGSEypUrw8HBAR07dkT//v1hbGyscr+dOnVCQkICPDw8sG3bNqSkpGDfvn0ICAhAfHw8AMDOzg7du3fHiBEjYGVlJax75swZ+Pv74/Hjx0hLS4OtrS1cXFwwYcIE2NnZ5ePd0I/Lly/j8OHDuHPnDlJSUmBlZYV69eqhT58+8PT0hJGRkcr1ZMcAgMbbr8PDw7Fv3z6EhYXhzZs3qFy5Mpo2bYrhw4fD3d1d536mp6dj//79CAgIwNOnT5GTkwM7Ozt069YNo0ePRpUqVXTe1ocPH+Dv74/AwEA8ffoUYrEYFhYWqFOnDtzd3TF06FCF90zd3+7i4gI/Pz+kp6cL739sbCw+fPgAW1tbtG3bFkOHDkXTpk117ltRi46OxokTJ3Dr1i3Exsbi7du3EIlEsLS0RMOGDeHq6opBgwbBwsJCYb3g4GCMHz8eAITPvzb/+Mc/cPnyZQCAv78/WrRoodTm3r17OHLkCEJCQvD69Wvk5OSgWrVqcHR0RN++feHi4qJ2+xs2bMDGjRsBAFevXsXHjx+xcuVKXL9+HUZGRqhTpw4GDBiAIUOG6Hx8dJWbm4uAgACcOXMGDx48wJs3b1ChQgVUqVIFLVq0QMeOHdGrVy+UL19ead34+Hh07twZAODk5IQ9e/YIy2Tn2PxasWIFBgwYoHJZYY6xTFRUFPz9/RESEoK4uDhIJBJYWVmhTp06aNeuHQYNGgRbW9t895uIiMiQMCFLREREBi8uLg4//PADYmJiFF6PjIxEZGQk9u7diw0bNqB9+/Yq19+3bx9Wr16N9+/fKy1LTk5GcnIy7t+/j507d2L+/PkYNmyYxv7ExsZi5MiRePfuHYC8pFtISIhCMjY9PR1z587F+fPnldbPyspCRkYGXr58iaCgIOzYsQM7duxA3bp1Ne43LCwMM2bMQFJSksLrT548wZMnT3Dy5Ens2rULlpaW8Pb2VkpkxcfHY//+/Th37hx27doFBwcHjfvTl8zMTEybNg1//vmnwutJSUlISkpCSEgIDh48iE2bNhUo0ZKbm4sVK1Zg9+7dCq+/efMGwcHBCA4OxsCBA1G9enWt24qMjMSECRPw6tUrhdejo6OxdetWHDp0CJs3b9apX9evX8dPP/2k9H6lpqYiNTUVd+7cgZ+fH3x8fNCrVy+t23v48CGmTp2KFy9eKLweFxeHuLg4HD58GNOnT8fEiRN16l9RycrKwpIlS+Dv74/c3Fyl5ZmZmXj9+jWuXbuG7du3Y/PmzWjVqpWw3MXFBTY2NkhKSkJCQgLu3LmjsPxTKSkpuH79OgCgXr16SsnYjx8/YsGCBTh+/LjSuvHx8YiPj8fx48fh6uqKtWvXonLlyhr/vrdv32L8+PHCjwQAcPfuXbRu3VrjegWRkpKCf/7zn7hz547C6xKJBBkZGYiPj8eZM2ewefNmbN++HV9++aXe+6ALfR3jzZs3Y8OGDUpxIztX3Lp1C9u3b8f8+fMxePDgIvlbiIiIigMTskRERGTQMjMzMXHiRMTExMDY2BhdunRBw4YNkZycjICAALx+/Rrp6ekYP348tm3bhg4dOiisv3//fixatEh43rJlSzg6OsLa2hqZmZmIiopCcHAwPn78iOzsbCxZsgTNmjVTOcJO5t///reQjJUpV66ckJDNzc3FDz/8ICRRKlasCHd3dzRo0AAVK1ZEamoqQkND8fDhQwB5CbXp06fj2LFjKFdOdUWp+Ph4TJo0Ce/evUP16tXRpUsXVKlSBU+fPkVAQABycnIQExODZcuWITc3F4GBgbCyskK3bt1gZ2cnJG4yMjIgFosxb948HD16NN/vR0GsWbNGSIY7OzujZcuWqFixIh48eIBLly5BKpXi/v37mDdvHvz8/PK9/fnz5+PIkSPCcycnJ7Rp0wZSqRRhYWEIDQ3F4cOHNY5EBfKSsSNGjEBaWhoAoEqVKujatStq1KiBly9fIiAgAG/evBFGb2py8eJFTJ8+HVlZWQCA2rVrw83NDTY2NhCLxbh69SqePHmCtLQ0eHt7IyMjA4MGDVK7vcTERIwfPx7JycmwsbFBp06dYGdnhzdv3uDcuXNISkpCbm4ufvnlFzRt2hSurq46HLmiMWfOHJw+fRoAUKFCBbi4uMDBwQHm5uZ49+4d7t27h1u3bkEqlSIlJQVTp07FuXPnhJGy5cuXR58+ffDf//4XAHD69GmNCdnTp08jOzsbANCvXz+FZRKJBGPGjEF4eDgAwMjICK6urmjSpAlEIhGePXuGS5cuISMjA1euXMHw4cOxf/9+pVG78lauXKmQjJXp0aNHPo6SbmbOnCmcR6ytrdGpUyfUqlULWVlZiImJQUBAALKysvD8+XOMHTsWZ86cUTva/lNDhw6Fh4eH1nanT5/Go0ePAAA2NjZK51h9HePjx4/j119/BZB3PnVxcUGTJk1gZmaGxMREXLp0CQkJCcjMzMSCBQtQs2ZNtT/CERERGTomZImIiMigyUaw1qpVC9u2bUP9+vWFZd7e3pg7dy7+/PNPZGVl4eeff1ZISLx9+xZr1qwR2qu71fbFixcYN24coqOjkZubi3379qlNyEokEoSEhKBu3brw8fFBixYtkJCQgJCQEGF059GjR4Ukir29PXbv3o2aNWsqbev06dOYNWsWcnNz8fjxY4SHh6NNmzYq9/v06VMAwJAhQ7BgwQKF2/sDAwMxadIkAEBAQAAAoE2bNti4caNCEtLLywuDBw9GRkYG/vrrL0RERKBx48Yq96dP79+/h42NDdavX680ivDKlSuYMGECcnJycPXqVTx48ADNmzfXedvXrl0TkrEmJiZYt24dunTpotDmwoUL8Pb2hlgs1ritRYsWCclYV1dXrFu3DpaWlsLyWbNmYdasWQgODta4nRcvXmDu3LnIyspCuXLlMGfOHIwaNUoh2T5nzhwcOXIECxcuRFZWFhYvXozWrVsrxLe8qKgoAHnv//z582FiYiIs8/b2xpQpU3D16lUAwM6dO0ssIXvz5k0hGWtpaYndu3erjLGQkBBMmDABHz58QFJSEi5cuABPT09heb9+/YSE7NmzZzFv3jyVt+QDwMmTJwEAIpEIffr0UVi2du1aIVHYpEkT/Prrr0qjSF+/fg1vb2+EhoYiKioKS5YswapVq9T+jVeuXIGNjQ18fHzQtm1bpKSkICAgAC1bttRydPLn9u3buHHjBgCgfv36+OOPP5R+VIiNjcWwYcOQlJSEuLg4nDlzRuE4avLtt99qbRMcHIyIiAgAeYnWDRs2KI0019cxlo08L1euHLZs2aKULJ43bx7+9a9/4cSJEwCArVu3MiFLRESlFif1IiIiIoNnamoKPz8/pWSVmZkZ1q1bhyZNmgDIG2nq7+8vLL9w4YKQYOvatavauod2dnaYNm2a8Fw2GkwdIyMj+Pn5wdnZGaampmjQoAGGDx8uLJcfeTp//nyVyVgA6NWrl0LiTNt+mzZtCh8fH6Vaq506dVJIYpqZmWH9+vVKyZuGDRsqJKxkI3SLmkgkwsaNG1Xe0u3q6oq+ffsKz2WJHV2tW7dOeDxv3jylZCwAdOnSBT4+Phq3c+nSJSGJXrNmTWzYsEEhGQvkJRg3btyoNmkqs337dmEE9eTJk+Hl5aVy5POAAQPw448/AshL9G/dulXjdp2cnODj46OQjAXyPh+LFy8WnoeGhiInJ0fjtoqKfOxPnTpVbcLf2dkZ/fv3F55/GosODg5CSY03b97g5s2bKrcTGxuLe/fuAcj7EcLe3l5YlpiYiN9//x1A3mhnPz8/lbf029raYsuWLbCxsQEAnDhxQqk8yqc2bNiAzp07w9zcHLVq1cK4ceM0ti8I2d8FAIMHD1Y5wvvLL7/EzJkzAeR9zh48eKC3/T979gwzZ84UygcsWrRIaaSyvo6xWCwWnn/11VcqR+4aGRlh8eLFMDU1BZBXqkUikRT2zyQiIioRTMgSERGRwRs2bBhq166tclmFChUwefJk4blshCiQl9SZO3cuRowYAS8vL437aNSokfBYVa1ZeR4eHgqJn099//33mDp1KoYMGaL1lmD5/aanp2tsO3r0aIhEIpXL5BNfnTt3VjvxVIMGDYTHKSkpGvenL23atMHXX3+tdnm7du2Ex6puBVcnMTFRSORVq1ZNY01JT09P1KlTR+3yixcvCo/HjBkjJH0+ZWxsLIxGVkUikQh1NI2NjTFmzBhNfwJGjRoFMzMzAMC5c+c0Jpi+//57te+/vb29EJNZWVl4+/atxv0WlR49euDHH3/EoEGDFBLtqmj7zMknbE+dOqVyG7LRkgCU9nf06FGhZMTgwYM1TsZmYWGBUaNGAcgrOaJuf0DeKFBNJRT0RX5E8N27d9W269mzJ06fPo179+5hwYIFetm3WCzGxIkThXPSiBEj8N133ym109cxrlDh/27cTEhIUKq7LGNqaorDhw/jxo0buHnzps7lGYiIiAwNSxYQERGRwdM24ZGbmxsqVKiA7OxshIWFITMzExUrVkTTpk11mnU+JycH0dHRwnNZPUp1NCUXAaB3795a9wnklVRITEzUeb+a6tpWq1ZNeKypDIEs+Qeg2EaXOTo6alwuGzUHaE+Gy5NN5AQA7du3V3tLu0ynTp2E2+A/de3aNeGxm5ubxu107NgRIpEIUqlUadmjR4+QkZEBAKhTpw7Mzc01bsvIyAjNmjVDaGgoJBIJHjx4oPZ4aXr/gbwRirKE9sePHzW2LSodO3ZEx44dtbaTTUgloyr2e/fujdWrVyM7Oxvnz5+Hj4+PUgJOVq7AxMREqYbrrVu3hMeyUfSayH+uNY3U1vb51xcnJyfh8dmzZ/Hu3TsMGjQIHTp0UBi9LRulry/Z2dmYNm0aYmNjhX7MmzdPZVt9HWMLCws0btwYERERSEtLw8CBAzF69Gh4eHgojUjXNkKdiIioNGBCloiIiAyakZGRwkg6VYyNjfHll18iOjoa2dnZeP36tcrbZrOysvD3338jNjYWsbGxiImJQVRUFP766y8hiQZAZaJNnroSBOq8ffsWMTExwn6jo6MRGRmJZ8+eKexL234/rd0oT/6W+E9vtVfXrrhUrVpV43L5ROqns6trIj+aVpckjbo4ys3NxatXrwDkxVutWrU0bsfCwgL29vYKCUUZWa1fIO+Wam2x+6mXL1+qXSafdFdFflRvfo5jUXr//j2eP3+O2NhYxMXF4fnz54iMjERUVJRCElZV7FerVg0dOnRAcHAw0tLScPnyZYWSFPfv3xduc+/cuTMqVaqksL78eyFfkkQXL168ULssv5//gnJwcEC/fv2EEdfXrl3DtWvXUL58eTRv3hyurq5wc3ND8+bN1Y6cLoilS5ciJCQEQN7I619//VVhBKs8fR7jWbNmYfz48cjJyUFiYiJ8fX3h6+sLOzs7uLi4wNXVFe3bt9c44RoREVFpwYQsERERGTRLS0u1yQB5lStXFh6/efNGISF769Yt+Pn54dq1a2pHhZYvX17nupuaEp4yEokE+/fvh7+/P548eaK2XX72q+42elXbNCTaRokWVHJysvD402ScKtbW1ipfF4vFwntQqVIlnZJb1tbWKhOyhS0VoGl9Xd9/QHtyvyjl5ubi+PHj+OOPP/Dw4UO1yWFdYt/T01OYRO3UqVMKCVn5cgX9+vVTWrcw74WmdXX5/OvL0qVLUbVqVezevVtIYOfk5ODu3bu4e/euMMlW3759MXbsWI0lA3Tx+++/Y9++fQDy4m3z5s0at6nPY+zi4oLNmzfj559/Fn4gAfIStwcPHsTBgwdhbGwMDw8PjBkzRmVNaiIiotKCCVkiIiIyaLokYwEoJHbkJ71avXo1fvvtN6X2VlZWaNCgAZo0aYLWrVujbt26KpM6qmhLeCYlJeGHH35AZGSkwuvlypWDvb09GjZsiObNm8PZ2RlXr14VZhfXRp+j4MqC/B6PTydDKwx125KPw6ZNm2ott/Gp4rodvqi8f/8eU6ZMUSgnAeS9V1988QUaNGiAZs2awcnJCfHx8Vprnnbu3BmWlpZ49+4dgoKC8P79e5ibmyMnJwdnz54FkFeqwcXFRWld+RG448ePVzkpljqfTpwmrzh/8DA2NsacOXPg5eWFs2fP4uLFi7hz545QtxXIq6W8Y8cO+Pv7w8/PD82aNSvQvq5fv47ly5cLz5cvXy5MrKaOvo+xh4cHzp8/j+DgYAQEBODq1asKta4lEgkCAgIQEBCAyZMn53tULhERkaFgQpaIiIgMWlpamk7t5EdbyWqSHjt2TEjGlitXDp6enujRoweaNWumdBu9/K23hTVr1iwhGVu1alV4eXmhffv2aNiwoVISQn4yKcof+Vv4dRmppy6WrK2tYWRkhKysLKSlpSE3N1draQd1E7DJj56sXr06xo0bp7VfZcmyZcuEZKy5uTlGjRoFV1dXODg4KI2U/v3337Vuz8TEBD179sSBAweQmZmJwMBA9OnTByEhIXjz5g2AvBrTqn64qVy5stCmZ8+eOtU4NVTVq1eHl5cXvLy8kJGRgfDwcFy/fh1BQUF4/vw5gLyR3tOnT0dAQEC+k8YxMTGYMWOGkGCdOHEivv32W63rFcUxNjY2RteuXdG1a1dIpVI8fvwYN2/exJUrV3Dz5k2hj5s2bYKTkxPatm1b6H0SEREVt+IvIkZERESUDxkZGQq3r6ry4cMHxMXFAcibtEqWqNu2bZvQxtvbGytWrIC7u7vKmqbyo7AKc7v3vXv3cPPmTaEvBw4cwPjx49GsWTOVI8JSU1MLvK/Pnb29vfD48ePHWts/e/ZM5esikQg1atQAkFdnWH6CN1Wys7Px999/q1wmX39W1yT/27dvDabma2EkJibi2LFjAPKO6c6dOzFjxgw4OjqqLFshH/uaPnPyI9dlP2AEBgaqXC5P/r2IiorS2n+JRKI20W5IzMzM4Orqijlz5uDcuXNYv369MGI7Pj4et2/fztf20tLSMHHiROFHjY4dO2L69Ok6rVvUx1gkEsHBwQFeXl7w8/NDYGCgQl1mWX1dIiKi0oYJWSIiIjJ4ly9f1rg8KChISGi5urqiQoUKSEtLU0isff/99xq3IZvEBihcQvbu3bvC4w4dOmicIEoqlSI0NFR4XhaScsXJ1dVVGAl47do1fPjwQWN7TXHk7u4uPD5//rzG7YSEhODjx48ql7Vq1UoYrRkbG6s1Ufzx40d0794dLVq0QLdu3ZTKXJQmDx48EEo2NG7cGC1bttTYXtfPnKOjo1AT+sqVK5BIJLh06RIAoF69emjevLnK9b755hvh8YULF7T2f8+ePXB0dISzszMWLlyotX1RW7FiBYYMGYI2bdogMTFRbbvu3bujXbt2wnNtP2DJy8nJwYwZM4RRtvXq1cOaNWt0nvxPX8f44sWLGDduHDp27KjwQ9qnqlevjokTJwrPNR0XIiIiQ8aELBERERk8Pz8/ZGZmqlwmkUiwZcsW4XmPHj2E1+VpGomakJCAXbt2Cc/l6zPml/x+tY1+3b17t8LEUPL1GEm7KlWqCImotLQ0jYmcq1ev4s6dO2qXy9d63bVrl3Ab9qdyc3OxadMmtdsxNzdH165dhee+vr4ak42//fYbUlNTkZWVhYyMDDRo0EBtW0MnH/tisVhj2wsXLij8GKEt9mWjYNPT07Fv3z5hRLymus+enp5CneELFy4gLCxMbdvU1FT4+fkJfZcfhVlS4uLicPfuXbx79w4nT57U2FZ+hH/16tV13sfKlStx9epVAHnlNjZv3gwLCwud19fXMZZKpbh69SpevHiB06dPa4wH+fNqfv5WIiIiQ8KELBERERm8mJgYTJs2De/evVN4PS0tDdOmTcOTJ08AAK1bt0bPnj0B5CXrZLVkAWDNmjUqE61hYWEYMWKEQn1RdclfXchPghMeHq5ytKVEIsHWrVuxatUqhde1jfAkZbNnzxZGpG7duhW7d+9WahMWFgZvb2+N22nVqhW6d+8OIC/h88MPP+DFixcKbTIzM/Gvf/0L4eHhGrc1adIkGBsbA8hLBM+ePVvpNm2pVAp/f3+FCd0mTZqk8yR2hkg+9l+8eKHwI4dMbm4u/P39ld4PbbHfr18/IfG3fv16AHm3s/ft21ftOg0aNBAS7bm5uZg8eTKuXbum1C4xMRGTJk1CcnIyAMDOzg7fffedxv4Uh4EDBwqPf/31VwQHB6ts97///Q8PHz4EANja2uo8MZy/v7/weTEyMsL69etRt27dfPVRX8fYzc1NOF8/fvwYixcvVnkefv78OTZu3Cg879atW776S0REZChK7xUfERERfTaMjIwQHByMbt26oXv37qhRowZevnyJP//8UxgtVaVKFSxdulRI2ohEIowaNQpr164FAJw7dw4PHz6Eh4cHqlWrhuTkZNy+fRuPHj0S9lOhQgVkZ2cjMzMTmZmZqFixYr77Kpu8KyoqClKpFFOmTIGLiwuaNGkCExMTJCQkICgoSOi3bDIpQPuoQlLm4OCAadOmYd26dZBKpVi2bBmOHDkCNzc3mJiY4P79+wgODoZUKkWdOnUQExOjdlsLFizAw4cPkZCQgIiICPTq1QvdunVDnTp1kJycjPPnz+PVq1ewsLBAxYoV1Y6ibdSoERYuXIgFCxZAKpXi5MmTuHLlCjp37oxatWohJSUFISEhCuUMOnbsiGHDhun78BSrevXqwcXFRRhxuXz5cpw9exatWrWChYUFEhMTcfnyZbx8+RJA/mK/Vq1acHR0RFhYmJDcbtOmDezs7DSu5+Pjg8jISDx9+hRisRhjx46Fo6Mj2rRpAyMjI0RHR+PChQtCCQoTExOsWbNGZb3n4ta5c2e4uroKZRrGjx+PVq1aoVmzZrCxscHbt29x69Yt3L9/H0DeOW/u3LnCjwGaPHz4ED4+PsJzDw8PvHjxAnv37kV2drZQekId+cnq9HGMjY2NMW/ePMycORMAcODAAQQGBsLNzU14j588eYJLly4J23F3d0fHjh11OZREREQGhwlZIiIiMngrVqzA0qVLkZqaiv379ystb9CgAbZu3apUr3XcuHF4/PgxTp06BSBvwpu9e/cqrW9lZQUfHx/s27dPmJDr4cOHCvURdVW+fHls2LABY8eOFUZYXr16VUhSyfvmm2/w448/Yvjw4QCgkBwm3U2YMAEWFhZYvnw5srOzERERgYiICIU27u7u8PT0xI8//qh2OzY2Nti/fz8mTpyIR48eISMjQ5ikSsbMzAy//PIL1q5dqzYhCwCDBg1CpUqV8PPPP0MsFkMsFuPw4cMq2w4cOBCLFi0SfkwozXx9fTFmzBgh2Xznzh2VpSK++uorrFy5EkOGDEFWVhaioqIgkUg0JhM9PT0VbonXVK5AxsLCAvv27cNPP/2EoKAgAHkj11WNcv7iiy+wevVqODo6at1ucfnPf/6D6dOnC+cPdcfT3Nwc8+bNUyi9ocmTJ08U7hg4f/681trJ8uQTsvo6xr169UJqaipWrlyJrKwsJCUlqf3MdO/eXekOAyIiotKECVkiIiIyeK1atcKZM2fw22+/4eLFi3j58iUqVqyIxo0bo3fv3vD09FSZyClfvjzWrl2Lnj174tChQ3j48CHEYjHKly8Pa2trNGjQAO3bt8d3330HS0tLxMbGCgnZ48ePFyghCwB169bF8ePHsXfvXgQGBuL58+f48OEDTE1NUaNGDTRu3BjffvstPDw8IBKJUK9ePURHRyM2Nha3b99G69atC3W8PkfDhw9H27ZtsWfPHly/fh0vXryAmZkZ6tevjwEDBuC7777DxYsXtW7H1tYWBw8exNGjR3Hy5ElERETgw4cPsLW1hYuLC8aNG4fatWsLI6816dGjB1xcXODv74/Lly8jKioKYrEYRkZGqFGjBhwdHTFo0CC0aNFCH4fAIFStWhX+/v44cOAAzp07h6dPnyI9PR0VK1aEjY0NHBwc0KVLF/Ts2RMVKlRA27ZtceXKFXz48AF//vkn+vTpo3bbPXv2xOLFiyGRSGBiYiLUi9bG0tISW7duRVhYGE6cOIFbt27h9evX+PjxIywtLdGoUSN07twZ/fv3h7m5ub4OhV5YWFjAz88PwcHBOHXqFB48eIDExERIJBJYW1ujVq1acHd3x4ABA2Bra1ti/dTXMR4xYgTc3Nxw6NAhhISEICYmBunp6TA1NYWNjQ2cnJzQp0+fAp+biYiIDIVIWphphImIiIiKyMiRI4VJfy5evIiaNWuWcI+IqCTFx8ejc+fOAPJGU65bt66Ee0RERERUMJzUi4iIiIiIDN6JEyeEx/379y/BnhAREREVDhOyRERERERk0LKysnDo0CEAgJ2dHTp06FDCPSIiIiIqOCZkiYiIiIjIoEgkEmHSqbdv32Lu3LlISEgAAAwbNgzlyvHfGCIiIiq9OKkXERER0Wfu4MGDSEtL08u2GjZsCDc3N71siwonPT0dBw4c0Nv23Nzc0LBhQ71tT5Pnz59j4MCBsLS0hFgsRk5ODgDA3t4ew4YNK5Y+5EdpPtZERERU/JiQJSIiIvrMbd26VRh9WFj9+/dnQtZAiMVi+Pr66m171tbWxZYktLOzQ1ZWFpKTk4XXTE1NsWrVKpibmxdLH/KjNB9rIiIiKn6814eIiIiIiAxKpUqV0L59e5iZmaFy5cpwd3fH3r170aZNm5LuGhEREVGhiaRSqbSkO0FERERERERERET0OeAIWSIiIiIiIiIiIqJiwoQsERERERERERERUTFhQpaIiIiIiIiIiIiomDAhS0RERERERERERFRMmJAlIiIiIiIiIiIiKiZMyBIREREREREREREVEyZkiYiIiIiIiIiIiIoJE7JERERERERERERExeT/AbpqiCCbPHZzAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "x_small = data[[c for c in data.columns if c.endswith(\"Mean\")]]\n", "nn = MLPRegressor(alpha=1e-4, random_state=1, learning_rate_init=0.01, max_iter=10000)\n", @@ -450,9 +377,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:absl:At this time, the v2.11+ optimizer `tf.keras.optimizers.Adam` runs slowly on M1/M2 Macs, please use the legacy Keras optimizer instead, located at `tf.keras.optimizers.legacy.Adam`.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3/3 [==============================] - 0s 658us/step\n", + "20/20 [==============================] - 0s 412us/step\n", + "Training MSE = 1.972; Test MSE = 1.723\n" + ] + } + ], "source": [ "x_train, x_test, y_train, y_test = train_test_split(\n", " x_small, y_reg, test_size=0.9, random_state=42\n", @@ -481,13 +425,6 @@ "mse_test = np.sum((y_pred_test.ravel() - y_test) ** 2) / len(y_test)\n", "print(\"Training MSE = %.3f; Test MSE = %.3f\" % (mse_train, mse_test))" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -506,7 +443,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/requirements.txt b/requirements.txt index 66ca762..7222395 100644 --- a/requirements.txt +++ b/requirements.txt @@ -2,5 +2,6 @@ pymatgen==2023.10.4 seaborn==0.13.0 scikit-learn==1.3.1 pandas==2.1.1 +tensorflow==2.14.0 pytest nbmake