diff --git a/.github/workflows/testing.yml b/.github/workflows/testing.yml index 4a96c0e4..97327390 100644 --- a/.github/workflows/testing.yml +++ b/.github/workflows/testing.yml @@ -44,7 +44,7 @@ jobs: run: | pytest --cov=matgl tests --color=yes - name: Upload coverage reports to Codecov - uses: codecov/codecov-action@v3 + uses: codecov/codecov-action@v4 env: CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }} diff --git a/docs/Gemfile.lock b/docs/Gemfile.lock index 26c8b11c..90c26507 100644 --- a/docs/Gemfile.lock +++ b/docs/Gemfile.lock @@ -224,8 +224,7 @@ GEM rb-fsevent (0.11.2) rb-inotify (0.10.1) ffi (~> 1.0) - rexml (3.3.6) - strscan + rexml (3.3.9) rouge (3.26.0) ruby2_keywords (0.0.5) rubyzip (2.3.2) @@ -240,7 +239,6 @@ GEM faraday (>= 0.17.3, < 3) simpleidn (0.2.1) unf (~> 0.1.4) - strscan (3.1.0) terminal-table (1.8.0) unicode-display_width (~> 1.1, >= 1.1.1) typhoeus (1.4.0) diff --git a/pyproject.toml b/pyproject.toml index 0bfde7e0..ba02846b 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -57,7 +57,7 @@ dependencies = [ "pydantic", "torchdata<=0.7.1", "boto3", - "numpy<2.0.0" + "numpy<3.0.0" ] version = "1.1.3" diff --git a/requirements.txt b/requirements.txt index fef7b7c1..25848745 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,10 +1,11 @@ dgl==2.2.1 torch==2.2.1 lightning==2.4.0 -pymatgen==2024.10.3 +pymatgen==2024.10.29 ase==3.23.0 pydantic==2.9.2 +numpy==2.1.3 torchdata==0.7.1 -boto3==1.35.44 -numpy==1.26.4 +boto3==1.35.55 sympy==1.13.3 + diff --git a/src/matgl/graph/converters.py b/src/matgl/graph/converters.py index cf880239..cb8c9056 100644 --- a/src/matgl/graph/converters.py +++ b/src/matgl/graph/converters.py @@ -50,7 +50,7 @@ def get_graph_from_processed_structure( DGLGraph object, state_attr """ - u, v = torch.tensor(src_id), torch.tensor(dst_id) + u, v = torch.tensor(src_id, dtype=matgl.int_th), torch.tensor(dst_id, dtype=matgl.int_th) g = dgl.graph((u, v), num_nodes=len(structure)) # TODO: Need to check if the variable needs to be double or float, now use float pbc_offset = torch.tensor(images, dtype=matgl.float_th)