-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
388 lines (294 loc) · 13.4 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch as tc
from torch.optim.lr_scheduler import StepLR
import random
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# f^theta
class Morphism(nn.Module):
def __init__ (self, name = 'Morphisme R^n --> E', dim_E = 1, neurons = 6):
print(f'[Model] name : {name}')
print(f'[Model] dim E : {dim_E}')
print(f'[Model] no. neurons per layers : {neurons}')
super(Morphism, self).__init__()
# layers for plus : E --> E
self.fc1 = nn.Linear(dim_E, neurons)
self.fc2 = nn.Linear(neurons, neurons)
self.fc3 = nn.Linear(neurons, neurons)
self.fc4 = nn.Linear(neurons, dim_E)
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
output = self.fc4(x)
return output
# f inv theta
class InverseMorphism(nn.Module):
def __init__ (self, name = 'Inverse E --> R^n', dim_E = 1, neurons = 6):
print(f'[Model] name : {name}')
print(f'[Model] dim E : {dim_E}')
print(f'[Model] no. neurons per layers : {neurons}')
super(InverseMorphism, self).__init__()
# layers for plus : E --> E
self.fc1 = nn.Linear(dim_E, neurons)
self.fc2 = nn.Linear(neurons, neurons)
self.fc3= nn.Linear(neurons, neurons)
self.fc4 = nn.Linear(neurons, dim_E)
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
output = self.fc4(x)
return output
# Première proprieté du théorème
class LoiBinaire(nn.Module):
def __init__ (self, name = 'Loi binaire ExE-->E', dim_E = 1, neurons = 6):
print(f'[Model] name : {name}')
print(f'[Model] dim E : {dim_E}')
print(f'[Model] no. neurons per layers : {neurons}')
super(LoiBinaire, self).__init__()
# layers for plus : ExE --> E
self.fc1 = nn.Linear(2 * dim_E, neurons)
self.fc2 = nn.Linear(neurons, neurons)
self.fc3 = nn.Linear(neurons, neurons)
self.fc4 = nn.Linear(neurons, dim_E)
def forward(self, x, y):
z = torch.cat([x,y], axis=1) # [K,d], [K,d] ---> [K, 2*d]
z = self.fc1(z)
z = self.fc2(z)
z = self.fc3(z)
output = self.fc4(z)
return output
# Deuxième proprieté du théorème
class LoiScalaire(nn.Module):
def __init__ (self, name = 'Loi Scalaire RxE-->E', dim_E = 1, neurons = 6):
print(f'[Model] name : {name}')
print(f'[Model] dim E : {dim_E}')
print(f'[Model] no. neurons per layers : {neurons}')
super(LoiScalaire, self).__init__()
# layers for scaler : KxE --> E
self.fc1 = nn.Linear(dim_E, neurons)
self.fc2 = nn.Linear(neurons, neurons)
self.fc3 = nn.Linear(neurons, neurons)
self.fc4 = nn.Linear(neurons, dim_E)
# alpha est un scalaire, dim_E est la dimension de l'espace E
def forward(self, alpha, x):
z = alpha * x # [K,1], [K,d] ---> [K, d]
z = self.fc1(z)
z = self.fc2(z)
z = self.fc3(z)
output = self.fc4(z)
return output
"""Implementation of the theorem of the vector space with the Train"""
class Vect_space(nn.Module):
def __init__ (self, K, dim_E = 1 , neurons = 6 , name = 'Groupe (E,+)'):
super(Vect_space, self).__init__()
self.f = Morphism(dim_E = dim_E, neurons = neurons)
self.fi = InverseMorphism(dim_E = dim_E, neurons = neurons)
self.plus = LoiBinaire(dim_E = dim_E, neurons = neurons)
self.scalaire = LoiScalaire(dim_E = dim_E, neurons = neurons)
# losses
self.loss_1 = lambda x, y : torch.linalg.vector_norm(self.plus(x , y) - self.f( self.fi(x) + self.fi(y)) )**2
self.loss_2 = lambda alpha, x : torch.linalg.vector_norm(self.scalaire(alpha , x) - self.f( alpha*self.fi(x)) )**2
# Total loss can be weighted
self.loss = lambda x, y, alpha : self.loss_1(x, y) + self.loss_2(alpha, x)
def train(self, X, Y,alpha, optimizer, epoch):
self.f.train()
self.fi.train()
self.plus.train()
self.scalaire.train()
losses=[]
for i in range(epoch):
L1 = self.loss_1(X, Y)
L2 = self.loss_2(alpha, X)
loss = L1 + L2
if i % 200 == 0:
print('Epoch {}/{} -\t Loss 1: {:.6f}\t Loss 2: {:.6f}\t Total Loss: {:.6f}'.format(i, epoch, L1.item(), L2.item(), loss.item()))
loss.backward(retain_graph=True)
optimizer.step()
optimizer.zero_grad()
losses.append(loss.item())
return losses
def test(self, test_loader,X):
B,C,alpha = test_loader()
B_np, C_np, alpha_np = B.numpy(), C.numpy(), alpha.numpy()
# Create a DataFrame
print('Les données Test pour tester le modèle')
df = pd.DataFrame({
'B_x': B_np[:, 0],
'B_y': B_np[:, 1],
'C_x': C_np[:, 0],
'C_y': C_np[:, 1],
'alpha': alpha_np[:, 0]
})
print(df)
"""
Examinons le comportement des fonctions f, f^{-1}, +,
et \odot sur les données de test
"""
# First propriété
XXBC = G.f(G.fi(B) + G.fi(C))
YYBC = G.plus(B, C)
# Second propriété
PXBC = G.f(alpha * G.fi(C))
PYBC = G.scalaire(B, C)
# Calculer les erreur L2 et inf
Sum_erreur_list_l2 = [torch.norm(XXBC[i] - YYBC[i], p=2).item() for i in range(len(XXBC))]
Sum_erreur_list_inf = [torch.norm(XXBC[i] - YYBC[i], p=float('inf')).item() for i in range(len(XXBC))]
dot_erreur_list_l2 = [torch.norm(PXBC[i] - PYBC[i], p=2).item() for i in range(len(XXBC))]
dot_erreur_list_inf = [torch.norm(PXBC[i] - PYBC[i], p=float('inf')).item() for i in range(len(XXBC))]
# Ajouter les listes comme nouvelles colonnes dans le DataFrame
XXBC_list = [x.detach().numpy() for x in XXBC]
YYBC_list = [y.detach().numpy() for y in YYBC]
# Ajouter la colonne 'Erreur' à la fin du DataFrame
# Convertir les erreurs en notation scientifique
Sum_erreur_list_l2 = ['{:.1e}'.format(erreur) for erreur in Sum_erreur_list_l2]
Sum_erreur_list_inf = ['{:.1e}'.format(erreur) for erreur in Sum_erreur_list_inf]
########################
print('resultat obtenu pour le test de la première propriété du théorème')
frame_sum = pd.DataFrame({
'f($f^{-1}(B) + f^{-1}(C)$)': XXBC_list,
'B ⊕ C': YYBC_list,
'L^2 erreur': Sum_erreur_list_l2,
'inf erreur': Sum_erreur_list_inf
})
print(frame_sum)
# Convertir les erreurs en notation scientifique
# Ajouter les listes comme nouvelles colonnes dans le DataFrame
PXBC_list = [x.detach().numpy() for x in PXBC]
PYBC_list = [y.detach().numpy() for y in PYBC]
dot_erreur_list_l2 = ['{:.1e}'.format(erreur) for erreur in dot_erreur_list_l2]
dot_erreur_list_inf = ['{:.1e}'.format(erreur) for erreur in dot_erreur_list_inf]
###########
# plot sum
indice = random.sample(range(B.shape[0]),5)
print('the plot of sum')
for i in indice:
plt.figure()
plt.plot(X[:, 0], X[:, 1], '.', linewidth = 0.01)
plt.plot(B[i, 0], B[i, 1], 'x', color='red', label=r'$B_{' + str(i+1) + '}$')
plt.annotate(r'$B_{' + str(i+1) + '}$', (B[i, 0], B[i, 1] - 0.01))
plt.plot(C[i, 0], C[i, 1], 'x', color='black', label=r'$C_{' + str(i+1) + '}$', )
plt.annotate(r'$C_{' + str(i+1) + '}$', (C[i, 0], C[i, 1] + 0.01))
# Tracer le point XXBC[i]
plt.plot(XXBC[i, 0].detach().numpy(), XXBC[i, 1].detach().numpy(), 'o', color='yellow', label=r'f($f^{-1}(B) + f^{-1}(C)$)')
plt.annotate(r'f($f^{-1}(B) + f^{-1}(C)$)', (XXBC[i, 0].detach().numpy(), XXBC[i, 1].detach().numpy() - 0.1))
# Tracer le point YYBC[i]
plt.plot(YYBC[i, 0].detach().numpy(), YYBC[i, 1].detach().numpy(), 'x', color='purple', label=r'$B \oplus C$')
plt.annotate(r'$B \oplus C$', (YYBC[i, 0].detach().numpy(), YYBC[i, 1].detach().numpy() + 0.01))
# Ajouter une légende au subplot
plt.title(r'$B_{' + str(i+1) + '}$' + f': ({B[i, 0]:.3f}, {B[i, 1]:.3f}), ' + r'$C_{' + str(i+1) + '}$' + f': ({C[i, 0]:.3f}, {C[i, 1]:.3f})', fontsize=10)
plt.legend()
plt.show()
plt.close()
# plot dot
############################
print('resultat du test de la deuxième propriété du théorème ')
frame_dot = pd.DataFrame({
'f(α . f^{-1}(B))': PXBC_list,
'α ⊙ B': PYBC_list,
'L^2 erreur': dot_erreur_list_l2,
'inf erreur': dot_erreur_list_inf
})
print(frame_dot)
"""
affichage des Resultats de la seconde propriété du théorème
"""
indice = random.sample(range(B.shape[0]),5)
print('the plot of dot')
for i in indice:
plt.figure()
plt.plot(X[:, 0], X[:, 1], '.', linewidth = 0.01)
plt.plot(B[i, 0], B[i, 1], 'x', color='red', label=f'B_{i+1}')
plt.annotate(f'B_{i+1}', (B[i, 0], B[i, 1] - 0.01))
# Tracer le point XXBC[i]
plt.plot(PXBC[i, 0].detach().numpy(), PXBC[i, 1].detach().numpy(), 'o', color='yellow', label=r'f($ α \cdot f^{-1}(B)$)')
plt.annotate(r'f($ α \cdot f^{-1}(B)$)', (XXBC[i, 0].detach().numpy(), XXBC[i, 1].detach().numpy() - 0.1))
# Tracer le point YYBC[i]
plt.plot(PXBC[i, 0].detach().numpy(), PXBC[i, 1].detach().numpy(), 'x', color='purple', label=r'$ α \odot B$')
plt.annotate(r'$ α \odot B$', (PYBC[i, 0].detach().numpy(), PYBC[i, 1].detach().numpy() + 0.01))
# Ajouter une légende au subplot
plt.title(f'Pour B_{i+1}: ({B[i, 0].item():.3f}, {B[i, 1].item():.3f}), α = {alpha[i].item():.3f}', fontsize=10)
plt.legend()
plt.show()
plt.close()
"""On Génère les données pour l'entrainement"""
def line(K, epsilon):
X = torch.rand(K, 2).requires_grad_(False)
X[K//2:] *= -1
Y = torch.randn(K, 2).requires_grad_(False)
Y[K//2:] *= -1
# alpha = torch.empty(K, 1).uniform_(-5, 5).requires_grad_(False)
alpha = torch.randn(K, 1).requires_grad_(False)
X[:,1] = X[:,0] + epsilon * torch.sin(X[:,0] / epsilon)
Y[:,1] = Y[:,0] + epsilon * torch.sin(Y[:,0] / epsilon)
return X, Y, alpha
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=14, metavar='N',
help='number of epochs to train (default: 14)')
parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--no-mps', action='store_true', default=False,
help='disables macOS GPU training')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
args = parser.parse_args()
torch.manual_seed(args.seed)
use_cuda = not args.no_cuda and torch.cuda.is_available()
use_mps = not args.no_mps and torch.backends.mps.is_available()
if use_cuda:
device = torch.device("cuda")
elif use_mps:
device = torch.device("mps")
else:
device = torch.device("cpu")
# on génère les données
K = 2000
epislon = 0.1
X,Y,alpha = line(K, epislon)
dim = 2
# on initialise le vecteur space
G = Vect_space(K, dim_E = dim, neurons = 64)
# on initialise l'optimiseur
optimizer = optim.Adadelta(list(G.parameters()), lr=1e-3)
# la loss
losses = G.train(X,Y, alpha, optimizer, args.epochs)
plt.figure(figsize=(6, 4))
plt.plot(X[:,0], X[:,1], 'x', label='train X')
plt.title('Training Data X')
plt.legend()
plt.show()
# on affiche la loss
plt.figure(figsize=(6, 4))
plt.plot(losses)
plt.title('Losses')
plt.show()
# data test
def test_laoder():
K = 10
B = 0.3*torch.randn((K, 2))
C = 0.3*torch.randn((K, 2))
alpha = torch.linspace(-5,5,K).reshape(-1,1)
for i in range(K):
B[i,1] = B[i,0] + epislon * torch.sin(B[i,0] / epislon )
C[i,1] = C[i,0] + epislon * torch.sin(C[i,0] / epislon )
return B, C, alpha
# result test
test = G.test(test_laoder,X)