-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
174 lines (160 loc) · 15.1 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="/css/franklin.css">
<link rel="stylesheet" href="/css/jemdoc.css">
<link rel="icon" href="/assets/favicon.png">
<title>Masoud Zarepisheh</title>
</head>
<body>
<main class="outside">
<div class="box">
<aside class="layout-menu">
<div class="menu-category">Masoud Zarepisheh</div>
<div class="menu-item current"><a href="/">Home</a></div>
<!--<div class="menu-category">topics</div> -->
<!---- <div class="menu-item {{ispage menu1/*}}current{{end}}"><a href="/research/">Research</a></div> -->
<div class="menu-item "><a href="/CV/">CV</a></div>
<div class="menu-item "><a href="/people/">People</a></div>
<!-- <div class="menu-item {{ispage menu3/*}}current{{end}}"><a href="/bio/">Bio</a></div> -->
</aside>
<div class="layout-content">
<!-- Content appended here -->
<div class="franklin-content"><h1 id="masoud_zarepisheh"><a href="#masoud_zarepisheh" class="header-anchor">Masoud Zarepisheh</a></h1>
<div class="row"><div class="container"><div class="left"><img src="/assets/Masoud-MSK-Small.png" alt="" /></div></div>
<p>Associate Professor<br /><a href="https://www.mskcc.org/departments/medical-physics">Department of Medical Physics</a> <br /><a href="https://www.mskcc.org/">Memorial Sloan Kettering Cancer Center</a><br />321 East 61st Street, New York, NY, 10065<br />| <a href="mailto:[email protected]">Email</a> | <a href="https://scholar.google.com/citations?hl=en&user=DuytjrMAAAAJ&view_op=list_works&gmla=AJsN-F5YtiYd_-Nv4Skfc3Ttk0PRiYwkd9CWzh-a00GpjtOPi-edZ58wqmKFohCuKI_zPVoxhRF1gY1uVzStyKtY8Os3eOQRjxWOtPdBCaxz0lKzbA5D0bg">Google Scholar</a> | <a href="https://www.linkedin.com/in/masoud-zarepisheh-457a492b/">LinkedIn</a> | <a href="https://github.com/masoudzp">Github</a> |
<div style="clear: both"></div>
</p></div>
<h2 id="about"><a href="#about" class="header-anchor">About</a></h2>
<p>I have finished my Ph.D. in applied mathematics, mainly focusing on the theoretical aspects and algorithm design of Mathematical Optimization techniques. I have later shifted my focus, during my postdocs, on the applications of mathematical modeling and optimization in Medical Physics, and particularly in radiotherapy cancer treatment planning. I am currently a faculty member at MSKCC where I am working closely with clinicians to leverage mathematical optimization techniques in real clinical environments. </p>
<h3 id="what_is_radiotherapy_cancer_treatment_planning"><a href="#what_is_radiotherapy_cancer_treatment_planning" class="header-anchor">What is Radiotherapy Cancer Treatment Planning?</a></h3>
<div class="row"><div class="container"><div class="left"><img src="/assets/LinacMSK.jpg" alt="" /></div></div>
<p>Radiotherapy (aka radiation therapy) is one of the major modalities of cancer treatment that can be prescribed as the main treatment or can be given in combination with surgery and/or chemotherapy. Radiotherapy is the use of radiation beams, precisely directed to diseased cells, to fight cancer. The main objective of radiotherapy is to deliver radiation to the tumor to kill cancerous cells without harming the surrounding healthy tissue. Each cancer patient’s tumor is unique in terms of its shape, location, and the surrounding healthy tissue. The machine settings, including the beam angles and beam shapes, must be customized based on the patient’s image data and the physician’s dose prescription for both the tumor and nearby healthy tissues. This gives rise to <em>large-scale</em>, <em>multi-criteria</em>, and often <em>non-convex</em> optimization problems. </p>
<p><strong>Want to learn more?</strong> Visit our open-source project <a href="https://github.com/PortPy-Project/PortPy">PortPy</a>.</p>
<h3 id="open-source_python_package_portpy"><a href="#open-source_python_package_portpy" class="header-anchor">Open-Source Python Package (PortPy)</a></h3>
<div class="row"><div class="container"><div class="left"><img src="/assets/PortPy - logotype.png" alt="" /></div></div>
<p><a href="https://github.com/PortPy-Project">PortPy</a> is a codebase open-source package providing research-ready <em>data</em> and <em>code</em> to facilitate the development and clinical translation of radiotherapy treatment planning optimization algorithms. PortPy includes benchmark data (pre-calculated data from an FDA-approved commercial treatment planning system <a href="https://www.varian.com/products/radiotherapy/treatment-planning/eclipse">Eclipse</a>) and benchmark code (algorithms for optimizing beamlets, beam angles, apertures, and robust optimization).<br />
<div style="clear: both"></div>
</p></div>
<div style="clear: both"></div></div>
<h3 id="clinical_deployment_of_automated_planning_at_mskcc"><a href="#clinical_deployment_of_automated_planning_at_mskcc" class="header-anchor">Clinical Deployment of Automated Planning at MSKCC</a></h3>
<div class="row"><div class="container"><div class="left"><img src="/assets/Edelman.jpg" alt="" /></div></div>
<p>In radiotherapy, the machine settings must be customized for each cancer patient and this requires extensive iterative manual tuning of the parameters. This process is: 1) time-consuming, 2) labor-intensive, and 3) the plan quality heavily dependens on the skill and experience of the planner. We have recently developed and <em>clinically deployed</em> an in-house automated treatment planning system called ECHO (Expedited Constrained Hierarchical Optimization). ECHO is seamlessly integrated into an FDA-approved commertial treatment planning system <a href="(https://www.varian.com/products/radiotherapy/treatment-planning/eclipse)">Eclipse</a> and being used in our daily clinical routine with more than 10,000 treated to date (May, 2024). ECHO was nominated as a finalist for the prestigious Franz Edelman 2021 award (<a href="https://www.youtube.com/watch?v=895M6j5KjPs&t=1025s">YouTube</a> | <a href="/assets/Edelman-ECHO-Slides.pdf">Slides</a> | <a href="https://pubsonline.informs.org/doi/abs/10.1287/inte.2021.1095">Paper</a> | <a href="https://pubsonline.informs.org/do/10.1287/orms.2021.02.24p">Podcast</a> | <a href="https://www.informs.org/About-INFORMS/News-Room/Press-Releases/Finalists-Selected-for-the-World-s-Leading-Operations-Research-and-Analytics-Award-2021-INFORMS-Franz-Edelman-Competition-Elevates-Research-that-is-Saving-Lives-Saving-Money-and-Solving-Problems">News</a>).</p>
<p>The following table summarizes some of the technical chanllenges in this project and the optimization tools we have employed to tackle them. </p>
<!-- <div class="row"><div class="container"><div class="left"><img src="/assets/table7.png" alt="" /></div></div> -->
<!-- Clear previous floats and start the table container -->
<div style="clear: both;"></div>
<div class="table-container">
<table class="enhanced-table">
<!-- <caption>Implementation and Optimization in Clinical Research</caption> -->
<thead>
<tr>
<th>Implementation Status</th>
<th>Challenge</th>
<th>Optimization Tools</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<!-- Group 1: Clinically Implemented (Rows 2-5) -->
<tr>
<td rowspan="4" class="first-col">Clinically Implemented</td>
<td>Conflicts between tumor irradiation and healthy tissue sparing </td>
<td>Hierarchical Constrained Nonlinear Optimization</td>
<td>
<a href="https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13572">Zarepisheh et al. (2019)</a>,
<a href="https://pubsonline.informs.org/doi/abs/10.1287/inte.2021.1095">Zarepisheh et al. (2021)</a>
</td>
</tr>
<tr>
<!-- No first column cell here due to rowspan -->
<td>Radiation dose discrepancy between optimized and final plans</td>
<td>Lagrangian Methods</td>
<td>
<a href="https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13572">Zarepisheh et al. (2019)</a>
</td>
</tr>
<tr>
<td>Handling Dose Volume Histogram (DVH) constrains, non-convexity </td>
<td>Mixed Integer Programming, Convex Relaxation</td>
<td>
<a href="https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13908">Mukherjee et al. (2020)</a>
</td>
</tr>
<tr>
<td>Volumetric Modulated Arc Therapy (VMAT), non-convexity</td>
<td>Sequential Convex Programming</td>
<td>
<a href="https://iopscience.iop.org/article/10.1088/1361-6560/abee58">Dursun et al. (2021)</a>,
<a href="https://iopscience.iop.org/article/10.1088/1361-6560/ace09e/meta">Dursun et al. (2023)</a>
</td>
</tr>
<!-- Group 2: Research/Development (Rows 6-10) -->
<tr>
<td rowspan="6" class="first-col">Research/Development</td>
<td>Beam Angle Selection (Combinatorial Optimization Problem)</td>
<td>Bayesian Optimization</td>
<td>
<a href="https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.14215">Taasti et al. (2020)</a>
</td>
</tr>
<tr>
<!-- No first column cell here due to rowspan -->
<td>Curse of Dimensionality in Treatment Planning Optimization </td>
<td>Compressed Radiation Treatment Planning (CompressRTP)</td>
<td>
<a href="https://neurips.cc/virtual/2024/poster/95748">Adeli et al. (2024)</a>
<a href="https://iopscience.iop.org/article/10.1088/1361-6560/acbefe/meta">Tefagh et al. (2023)</a>
<a href="https://arxiv.org/abs/2410.00756">Tefagh et al. (2024)</a>
</td>
</tr>
<tr>
<!-- No first column cell here due to rowspan -->
<td>Setup and Range Uncertainty Errors in Proton</td>
<td>Robust Optimization (P-Norm Function)</td>
<td>
<a href="https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.14148">Taasti et al. (2020)</a>
</td>
</tr>
<tr>
<td>Multi-Criteria Challenge</td>
<td>Deep Learning Predictions (Moment-Based Loss Functions)</td>
<td>
<a href="https://iopscience.iop.org/article/10.1088/1361-6560/ac8d45">Jhanwar et al. (2022)</a>
</td>
</tr>
<tr>
<td>Increasing Computational Complexity With Uncertainty Managements</td>
<td>Distributed Optimization (ADMM)</td>
<td>
<a href="https://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.15897">Fu et al. (2022)</a>,
<a href="https://link.springer.com/article/10.1007/s11590-017-1116-y">Zarepisheh et al. (2018)</a>
</td>
</tr>
<tr>
<td>Proton Plan Delivery Efficiency</td>
<td>Weighted L-1 regularization</td>
<td>
<a href="https://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.17070">Fu et al. (2024)</a>
</td>
</tr>
</tbody>
</table>
</div>
<!--
<div style="clear: both"></div></div>
<table><tr><th align="left">Implementation Status</th><th align="left">Challenge</th><th align="left">Optimization Tools</th><th align="left">Publication</th></tr><tr><td align="left">Clinically Implemented</td><td align="left">Multi-Criteria Challenge</td><td align="left">Hierarchical Constrained Nonlinear Optimization</td><td align="left"><a href="https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13572">Zarepisheh et al. (2019)</a>, <a href="https://pubsonline.informs.org/doi/abs/10.1287/inte.2021.1095">Zarepisheh et al. (2021)</a></td></tr><tr><td align="left">Clinically Implemented</td><td align="left">Computational Complexity (Dense Influence Matrix)</td><td align="left">Lagrangian Methods</td><td align="left"><a href="https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13572">Zarepisheh et al. (2019)</a></td></tr><tr><td align="left">Clinically Implemented</td><td align="left">Non-convexity in Clinical Criteria (DVH)</td><td align="left">Mixed Integer Programming, Convex Relaxtion</td><td align="left"><a href="https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13908">Mukherjee et al. (2020)</a></td></tr><tr><td align="left">Clinically Implemented</td><td align="left">Non-convexity in Machine Parameters (VMAT)</td><td align="left">Sequential Convex Programming</td><td align="left"><a href="https://iopscience.iop.org/article/10.1088/1361-6560/abee58">Dursun et al. (2021)</a>, <a href="https://iopscience.iop.org/article/10.1088/1361-6560/ace09e/meta">Dursun et al. (2023)</a></td></tr><tr><td align="left">Research/Development</td><td align="left">Beam Angle Selection (Combinatorial Optimization Problem)</td><td align="left">Bayesian Optimization</td><td align="left"><a href="https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.14215">Taasti et al. (2020)</a></td></tr><tr><td align="left">Research/Development</td><td align="left">Uncertainty Management</td><td align="left">Robust Optimization (P-Norm Function)</td><td align="left"><a href="https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.14148">Taasti et al. (2020)</a></td></tr><tr><td align="left">Research/Development</td><td align="left">Multi-Criteria Challenge</td><td align="left">Deep Learning Predictions (Moment-Based Loss Functions)</td><td align="left"><a href="https://iopscience.iop.org/article/10.1088/1361-6560/ac8d45">Jhanwar et al. (2022)</a></td></tr><tr><td align="left">Research/Development</td><td align="left">Increasing Computational Complexity With Uncertainty Managements</td><td align="left">Distributed Optimization (ADMM)</td><td align="left"><a href="https://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.15897">Fu et al. (2022)</a>, <a href="https://link.springer.com/article/10.1007/s11590-017-1116-y">Zarepisheh et al. (2018)</a></td></tr><tr><td align="left">Research/Development</td><td align="left">Reducing IMRT Plan Complexity</td><td align="left">Wavelet-induced smoothness</td><td align="left"><a href="https://iopscience.iop.org/article/10.1088/1361-6560/acbefe/meta">Tefagh, Zarepisheh (2023)</a></td></tr></table>
-->
<!--
<div class="page-foot">
{{ fill author }}. {{isnotpage /tag/*}}
Website built with <a href="https://github.com/tlienart/Franklin.jl">Franklin.jl</a> and the <a href="https://julialang.org">Julia programming language</a>.
</div>
--></div><!-- CONTENT ENDS HERE -->
</div>
</div>
</main>
</body>
</html>