forked from lks-ai/ComfyUI-StableAudioSampler
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnodes.py
580 lines (484 loc) · 23.5 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
import os, sys, json, gc
import glob
import typing as tp
import numpy as np
import torch
import torchaudio
from einops import rearrange
from safetensors.torch import load_file
from torchaudio import transforms as T
from aeiou.viz import audio_spectrogram_image
from .util_dependencies import PackageDependencyChecker
from .util_config import get_model_config
# Add local stable-audio-tools to path
def add_stable_audio_tools_path():
current_path = os.path.dirname(os.path.abspath(__file__))
# Updated path to point to custom-extensions
stable_audio_path = os.path.abspath(os.path.join(current_path, '../../custom-extensions/stable-audio-tools'))
if stable_audio_path not in sys.path:
sys.path.insert(0, stable_audio_path)
print(f"[comfyui-stable-audio-sampler, nodes.py, add_stable_audio_tools_path] Added stable-audio-tools path: {stable_audio_path}")
add_stable_audio_tools_path()
# Import stable-audio-tools after path modification
from stable_audio_tools import get_pretrained_model, create_model_from_config
from stable_audio_tools.inference.generation import generate_diffusion_cond, generate_diffusion_uncond
from stable_audio_tools.inference.utils import prepare_audio
from stable_audio_tools.models.utils import load_ckpt_state_dict
from stable_audio_tools.training.utils import copy_state_dict
# try:
import torch
import torchaudio
from einops import rearrange
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
import numpy as np
from safetensors.torch import load_file
from .util_config import get_model_config
# from stable_audio_tools.models.factory import create_model_from_config
# from stable_audio_tools.models.utils import load_ckpt_state_dict
from stable_audio_tools import get_pretrained_model, create_model_from_config
# from stable_audio_tools.inference.generation import generate_diffusion_cond
from stable_audio_tools.models.utils import load_ckpt_state_dict
from stable_audio_tools.inference.generation import generate_diffusion_cond, generate_diffusion_uncond
from stable_audio_tools.inference.utils import prepare_audio
from stable_audio_tools.training.utils import copy_state_dict
from aeiou.viz import audio_spectrogram_image
from torchaudio import transforms as T
# except ImportError as e:
# checker = PackageDependencyChecker()
# discrepancies = checker.check_version_discrepancies('requirements.txt')
# #instructions = checker.generate_user_instructions(discrepancies)
# # Find dependent discrepancies for all packages with issues
# dependent_discrepancies = []
# for discrepancy in discrepancies:
# package_name = discrepancy['package_name']
# dependent_discrepancies.extend(checker.check_dependents_discrepancies(package_name))
# # Analyze discrepancies and suggest solutions
# solutions = checker.analyze_discrepancies(discrepancies + dependent_discrepancies)
# solution_suggestions = checker.suggest_solutions(solutions)
# out = "\nSuggested solutions:\n"
# for suggestion in solution_suggestions:
# out += f"{suggestion}\n"
# raise ValueError(f"<<StableAudioSampler>>: You Have some Environment Problems...\n\n{out}")
# Test current setup
# Add in Audio2Audio
# Comfy libs
def add_comfy_path():
current_path = os.path.dirname(os.path.abspath(__file__))
comfy_path = os.path.abspath(os.path.join(current_path, '../../../comfy'))
if comfy_path not in sys.path:
sys.path.insert(0, comfy_path)
add_comfy_path()
from comfy.utils import ProgressBar # type: ignore
import folder_paths # type: ignore
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_FP32 = np.iinfo(np.int32).max
SCHEDULERS = ["dpmpp-3m-sde", "dpmpp-2m-sde", "k-heun", "k-lms", "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"]
ACKPT_FOLDER = "models/audio_checkpoints/"
TEMP_FOLDER = "temp/"
class AnyType(str):
def __ne__(self, __value: object) -> bool:
return False
base_path = os.path.dirname(os.path.realpath(__file__))
os.makedirs(ACKPT_FOLDER, exist_ok=True)
os.makedirs(TEMP_FOLDER, exist_ok=True)
# Our any instance wants to be a wildcard string
any = AnyType("*")
def get_models_path(ckpt_name):
if not ckpt_name:
return None
return f"{ACKPT_FOLDER}{ckpt_name}"
model_files = [os.path.basename(file) for file in glob.glob(f"{ACKPT_FOLDER}*.safetensors")] + [os.path.basename(file) for file in glob.glob("models/audio_checkpoints/*.ckpt")]
config_files = [os.path.basename(file) for file in glob.glob(f"{ACKPT_FOLDER}*.json")]
if len(model_files) == 0:
model_files.append(f"Put models in {ACKPT_FOLDER}")
def repo_path(repo, filename):
path = os.path.join(repo, filename)
instance_path = os.path.normpath(path)
if sys.platform == 'win32':
instance_path = instance_path.replace('\\', "/")
return instance_path
import re
def replace_variables(template, values_dict):
"""Replace variables from a template where {} encloses a variable key from values_dict."""
pattern = r'\{(\w+)\}'
def replacer(match):
variable_name = match.group(1)
value = values_dict.get(variable_name, match.group(0))
if isinstance(value, (str, int, float, bool)):
return str(value)
return match.group(0)
result = re.sub(pattern, replacer, template)
return result
import io
# def wav_bytes_to_tensor(wav_bytes: bytes, model, sample_rate) -> tp.Tuple[int, torch.Tensor]:
# # Load the audio data and sample rate using torchaudio
# audio_tensor, in_sr = torchaudio.load(io.BytesIO(wav_bytes))
# #audio_tensor = torch.from_numpy(audio_tensor).float().div(32767)
# print("Before Transform", audio_tensor)
# audio_tensor.float().div(32767)
# print("Converted", audio_tensor)
# if audio_tensor.dim() == 1:
# audio_tensor = audio_tensor.unsqueeze(0) # [1, n]
# elif audio_tensor.dim() == 2:
# audio_tensor = audio_tensor.transpose(0, 1) # [n, 2] -> [2, n] print(sample_rate)
# print("Unsquoze", audio_tensor)
# if in_sr != sample_rate:
# resample_tf = T.Resample(in_sr, sample_rate).to(audio_tensor.device)
# audio_tensor = resample_tf(audio_tensor)
# print("Resampled", audio_tensor)
# dtype = next(model.parameters()).dtype
# audio_tensor = audio_tensor.to(dtype)
# print("Retyped", audio_tensor)
# return sample_rate, audio_tensor
def wav_bytes_to_tensor(wav_bytes: tp.Union[bytes, dict], model, sample_rate, sample_size: int) -> tp.Tuple[int, torch.Tensor]:
# Handle dictionary input case
if isinstance(wav_bytes, dict):
if 'waveform' in wav_bytes:
# Handle ComfyUI LoadAudio format
audio_tensor = wav_bytes['waveform']
in_sr = wav_bytes.get('sample_rate', sample_rate)
elif 'path' in wav_bytes:
# Load from file path
audio_tensor, in_sr = torchaudio.load(wav_bytes['path'])
elif 'tensor' in wav_bytes:
# Direct tensor data
audio_tensor = wav_bytes['tensor']
in_sr = wav_bytes.get('sample_rate', sample_rate)
elif 'filename' in wav_bytes:
# Load from filename
audio_tensor, in_sr = torchaudio.load(wav_bytes['filename'])
else:
print("Audio dictionary contents:", wav_bytes.keys())
raise ValueError("Invalid audio dictionary format - must contain 'waveform', 'path', 'tensor', or 'filename' key")
else:
# Original bytes handling
audio_tensor, in_sr = torchaudio.load(io.BytesIO(wav_bytes))
# Handle different tensor shapes
if audio_tensor.dim() == 3:
# If we have a 3D tensor [batch, channels, samples], squeeze out the batch dimension
audio_tensor = audio_tensor.squeeze(0)
elif audio_tensor.dim() == 1:
# If we have a 1D tensor [samples], add channel dimension
audio_tensor = audio_tensor.unsqueeze(0)
# Ensure we have [channels, samples] format
if audio_tensor.shape[0] > audio_tensor.shape[-1]:
audio_tensor = audio_tensor.transpose(0, -1)
if in_sr != sample_rate:
resample_tf = T.Resample(in_sr, sample_rate).to(audio_tensor.device)
audio_tensor = resample_tf(audio_tensor)
num_channels, num_samples = audio_tensor.shape
if num_samples > sample_size:
audio_tensor = audio_tensor[:, :sample_size]
elif num_samples < sample_size:
padding = torch.zeros((num_channels, sample_size - num_samples), dtype=audio_tensor.dtype, device=audio_tensor.device)
audio_tensor = torch.cat((audio_tensor, padding), dim=1)
dtype = next(model.parameters()).dtype
audio_tensor = audio_tensor.to(dtype)
return sample_rate, audio_tensor
def generate_audio(cond_batch, steps, cfg_scale, sigma_min, sigma_max, sampler_type, device, save, save_prefix, modelinfo, batch_size=1, seed=-1, after_generate="randomize", counter=0, init_noise_level=1.0, init_audio=None, quantum=True):
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
model, sample_rate, sample_size, _device = modelinfo
b_pos, b_neg = cond_batch
p_conditioning, p_batch_size = b_pos
n_conditioning, n_batch_size = b_neg
sample_size = p_conditioning[0]['seconds_total'] * sample_rate
#dprint("Model Loaded:", model)
print("[comfyui-stable-audio-sampler, nodes.py, generate_audio] Positive Conditioning:", p_conditioning)
print("[comfyui-stable-audio-sampler, nodes.py, generate_audio] Negative Conditioning:", n_conditioning)
print("[comfyui-stable-audio-sampler, nodes.py, generate_audio] Sample Size:", sample_size)
print("[comfyui-stable-audio-sampler, nodes.py, generate_audio] Sample Rate:", sample_rate)
print("[comfyui-stable-audio-sampler, nodes.py, generate_audio] Seconds:", sample_size / sample_rate)
# if init_audio is not None:
# print(len(init_audio))
# in_sr, init_audio = init_audio
# # Turn into torch tensor, converting from int16 to float32
# init_audio = torch.from_numpy(init_audio).float().div(32767)
# if init_audio.dim() == 1:
# init_audio = init_audio.unsqueeze(0) # [1, n]
# elif init_audio.dim() == 2:
# init_audio = init_audio.transpose(0, 1) # [n, 2] -> [2, n]
# if in_sr != sample_rate:
# resample_tf = T.Resample(in_sr, sample_rate).to(init_audio.device)
# init_audio = resample_tf(init_audio)
# audio_length = init_audio.shape[-1]
# if audio_length > sample_size:
# input_sample_size = audio_length + (model.min_input_length - (audio_length % model.min_input_length)) % model.min_input_length
# init_audio = (sample_rate, init_audio)
wt = None if init_audio is None else wav_bytes_to_tensor(init_audio, model, sample_rate, sample_size)
output = generate_diffusion_cond(
model,
steps=steps,
cfg_scale=cfg_scale,
conditioning=p_conditioning,
negative_conditioning=n_conditioning,
sample_size=sample_size,
sigma_min=sigma_min,
sigma_max=sigma_max,
sampler_type=sampler_type,
device=_device,
seed=seed,
batch_size=p_batch_size,
init_noise_level=init_noise_level,
init_audio=wt,
quantum=quantum
)
gendata = locals()
gendata['prompt'] = p_conditioning[0]['prompt']
gendata['negative_prompt'] = n_conditioning[0]['prompt']
print("[comfyui-stable-audio-sampler, nodes.py, generate_audio] Raw Output:", output)
output = rearrange(output, "b d n -> d (b n)")
print("[comfyui-stable-audio-sampler, nodes.py, generate_audio] Rearranged Output:", output)
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
print("[comfyui-stable-audio-sampler, nodes.py, generate_audio] Transformed Output:", output)
filepaths = None
if save:
filepaths = save_audio_files(output, sample_rate, save_prefix, counter, data=gendata)
spectrogram = audio_spectrogram_image(output, sample_rate=sample_rate)
audio_bytes = output.numpy().tobytes()
del model
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
return audio_bytes, sample_rate, spectrogram, filepaths
def get_model(model_filename=None, config=None, repo=None, half_precision=False, device_override=None):
#print(model_filename, config, repo, half_precision)
if model_filename:
model_path = get_models_path(model_filename) #f"models/audio_checkpoints/{model_filename}"
if model_filename.endswith(".safetensors") or model_filename.endswith(".ckpt"):
if not config:
model_config = get_model_config()
else:
with open(config, 'r') as f:
model_config = json.load(f)
model = create_model_from_config(model_config)
print(f"[comfyui-stable-audio-sampler, nodes.py, get_model] Model path: {model_path}")
model.load_state_dict(load_ckpt_state_dict(model_path))
else:
repo_id = "stabilityai/stable-audio-open-1.0" if not repo else repo
print(f"[comfyui-stable-audio-sampler, nodes.py, get_model] Loading pretrained model {repo_id}")
model, model_config = get_pretrained_model(repo_id)
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
elif repo:
if repo == "stabilityai/stable-audio-open-1.0":
print(f"[comfyui-stable-audio-sampler, nodes.py, get_model] Loading pretrained model {repo}")
model, model_config = get_pretrained_model(repo)
else:
json_path = config or repo_path(repo, "model_config.json")
model_path = repo_path(repo, "model.safetensors")
with open(json_path) as f:
model_config = json.load(f)
model = create_model_from_config(model_config)
model.load_state_dict(load_ckpt_state_dict(model_path), strict=False)
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
else:
raise ValueError("You must specify an Audio Checkpoint or a Repo to load from.")
_device = device if not device_override else device_override
model = model.to(_device).requires_grad_(False) #.eval().requires_grad_(False)
if half_precision and _device != "cpu":
model.to(torch.float16)
return (model, sample_rate, sample_size, _device)
def load_model(model_config=None, model_ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, device="cuda", model_half=False):
global model, sample_rate, sample_size
if pretrained_name is not None:
print(f"[comfyui-stable-audio-sampler, nodes.py, load_model] Loading pretrained model {pretrained_name}")
model, model_config = get_pretrained_model(pretrained_name)
elif model_config is not None and model_ckpt_path is not None:
print(f"[comfyui-stable-audio-sampler, nodes.py, load_model] Creating model from config")
model = create_model_from_config(model_config)
print(f"[comfyui-stable-audio-sampler, nodes.py, load_model] Loading model checkpoint from {model_ckpt_path}")
# Load checkpoint
copy_state_dict(model, load_ckpt_state_dict(model_ckpt_path))
#model.load_state_dict(load_ckpt_state_dict(model_ckpt_path))
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
if pretransform_ckpt_path is not None:
print(f"[comfyui-stable-audio-sampler, nodes.py, load_model] Loading pretransform checkpoint from {pretransform_ckpt_path}")
model.pretransform.load_state_dict(load_ckpt_state_dict(pretransform_ckpt_path), strict=False)
print(f"[comfyui-stable-audio-sampler, nodes.py, load_model] Done loading pretransform")
model.to(device).eval().requires_grad_(False)
if model_half:
model.to(torch.float16)
print(f"[comfyui-stable-audio-sampler, nodes.py, load_model] Done loading model")
return model, model_config
import shutil
from urllib.parse import quote
def save_audio_files(output, sample_rate, filename_prefix, counter, data=None, save_temp=True):
from datetime import datetime
filename_prefix += ""
output_dir = "output"
os.makedirs(output_dir, exist_ok=True)
# Get current datetime and format it
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
# Create filename with datetime
wavname = f"{filename_prefix}" if not data else f"{replace_variables(filename_prefix, data)}"
filepaths = []
for i, audio in enumerate(output):
if i > 0: # TODO fix batches
break
fpath = f"{quote(wavname)}_{counter:04}.wav"
file_path = os.path.join(output_dir, fpath)
print(f"[comfyui-stable-audio-sampler, nodes.py, save_audio_files] Saving audio to {file_path}")
torchaudio.save(file_path, audio.unsqueeze(0), sample_rate)
filepaths.append(fpath)
# Saves to temporary path so it can be used for streaming loops
if save_temp:
tpath = os.path.join(TEMP_FOLDER, "stableaudiosampler.wav")
print(f"[comfyui-stable-audio-sampler, nodes.py, save_audio_files] Saving temp audio to: {tpath}")
shutil.copyfile(file_path, tpath)
counter += 1
return filepaths
from aeiou.viz import spectrogram_image
def create_image_batch(spectrograms, batch_size):
images = []
for spec in spectrograms:
im = spec.convert("RGB") # Ensure image is in RGB format
im_tensor = torch.tensor(np.array(im)) # Convert to tensor, keeping the dimensions as (height, width, channels)
images.append(im_tensor)
batch_tensor = torch.stack(images) # Stack images into a batch
return batch_tensor
class StableAudioSampler:
def __init__(self):
self.counter = 0
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"audio_model": ("SAOMODEL", {"forceInput": True}),
"positive": ("CONDITIONING", {"forceInput": True}),
"negative": ("CONDITIONING", {"forceInput": True}),
"seed": ("INT", {"default": -1, "min": -1, "max": MAX_FP32}),
"steps": ("INT", {"default": 100, "min": 1, "max": 10000}),
"cfg_scale": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step": 0.1}),
# "sample_size": ("INT", {"default": 65536, "min": 1, "max": 1000000}),
"sigma_min": ("FLOAT", {"default": 0.3, "min": 0.01, "max": 1000.0, "step": 0.01}),
"sigma_max": ("FLOAT", {"default": 500.0, "min": 0.0, "max": 1000.0, "step": 0.01}),
"sampler_type": (SCHEDULERS, {"default": "dpmpp-3m-sde"}),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 20.0, "step": 0.01}),
"save": ("BOOLEAN", {"default": True}),
"save_prefix": ("STRING", {"default": "{prompt}-{seed}-{cfg_scale}-{steps}-{sigma_min}"}),
"quantum": ("BOOLEAN", {"default": True}),
},
"optional": {
"audio": (any, )
}
}
RETURN_TYPES = (any, "INT", "IMAGE")
RETURN_NAMES = ("audio", "sample_rate", "image")
FUNCTION = "sample"
OUTPUT_NODE = True
CATEGORY = "audio/samplers"
def sample(self, audio_model, positive, negative, seed, steps, cfg_scale, sigma_min, sigma_max, sampler_type, denoise, save, save_prefix, quantum=True, audio=None):
audio_bytes, sample_rate, spectrogram, filepaths = generate_audio(
(positive, negative),
steps,
cfg_scale,
sigma_min,
sigma_max,
sampler_type,
device,
save,
save_prefix,
audio_model,
seed=seed,
counter=self.counter,
init_noise_level=denoise,
init_audio=audio,
quantum=quantum
)
spectrograms = create_image_batch([spectrogram], 1)
return {"ui": {"paths": filepaths}, "result": (audio_bytes, sample_rate, spectrograms)}
#return (audio_bytes, sample_rate, spectrograms)
class StableLoadAudioModel:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model_filename": (model_files, ),
},
"optional": {
"model_config": (config_files, ),
"repo": ("STRING", {"default": "stabilityai/stable-audio-open-1.0"}),
"half_precision": ("BOOLEAN", {"default": False}),
"force_cpu": ("BOOLEAN", {"default": False}),
}
}
RETURN_TYPES = ("SAOMODEL", )
RETURN_NAMES = ("audio_model", )
FUNCTION = "load"
CATEGORY = "audio/loaders"
def load(self, model_filename, model_config=None, repo=None, half_precision=None, force_cpu=None):
mpath = get_models_path(model_config)
modelinfo = get_model(model_filename=model_filename, config=mpath, repo=repo, half_precision=half_precision, device_override=None if not force_cpu else "cpu")
return (modelinfo,)
class StableAudioPrompt:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"conditioning": ("CONDITIONING", {"forceInput": True}),
"prompt": ("STRING", {"multiline": True}),
}
}
RETURN_TYPES = ("CONDITIONING", )
RETURN_NAMES = ("conditioning", )
FUNCTION = "go"
CATEGORY = "audio/conditioning"
def go(self, conditioning, prompt):
print("[comfyui-stable-audio-sampler, nodes.py, go] PROMPT", prompt)
cond, batch_size = conditioning
print("[comfyui-stable-audio-sampler, nodes.py, go] cond, batch_size", cond, batch_size)
o = []
#cond[0]['prompt'] = prompt
for v in cond:
v['prompt'] = prompt
o.append(v.copy())
#c = conditioning[0]
# conditioning = [{
# "prompt": prompt,
# "seconds_start": seconds_start,
# "seconds_total": seconds_total
# }]
print("[comfyui-stable-audio-sampler, nodes.py, go] o, batch_size", o, batch_size)
return ((o, batch_size), )
import time
class StableAudioConditioning:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"seconds_start": ("INT", {"default": 0, "min": 0, "max": 60, "step": 1, "display": "number"}),
"seconds_total": ("INT", {"default": 30, "min": 0, "max": 600, "step": 1, "display": "number"}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 50, "step": 1, "display": "number"}),
}
}
RETURN_TYPES = ("CONDITIONING", )
RETURN_NAMES = ("conditioning", )
FUNCTION = "go"
CATEGORY = "audio/conditioning"
def go(self, seconds_start, seconds_total, batch_size):
conditioning = [{
"prompt": None,
"seconds_start": seconds_start,
"seconds_total": seconds_total
}]
return ((conditioning, batch_size), )
@classmethod
def IS_CHANGED(s, image, string_field, int_field, float_field, print_to_screen):
return time.time()
NODE_CLASS_MAPPINGS = {
"StableAudioSampler": StableAudioSampler,
"StableAudioLoadModel": StableLoadAudioModel,
"StableAudioPrompt": StableAudioPrompt,
"StableAudioConditioning": StableAudioConditioning,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"StableAudioSampler": "Stable Audio Sampler",
"StableAudioLoadModel": "Load Stable Audio Model",
"StableAudioPrompt": "Stable Audio Prompt",
"StableAudioConditioning": "Stable Audio Pre-Conditioning"
}