forked from karpiu/kp-minisatp
-
Notifications
You must be signed in to change notification settings - Fork 3
/
PbSolver.cc
779 lines (684 loc) · 27.7 KB
/
PbSolver.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
/*************************************************************************************[PbSolver.cc]
Copyright (c) 2005-2010, Niklas Een, Niklas Sorensson
KP-MiniSat+ based on MiniSat+ -- Copyright (c) 2018-2020 Michał Karpiński, Marek Piotrów
UWrMaxSat based on KP-MiniSat+ -- Copyright (c) 2019-2024 Marek Piotrów
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#include <unistd.h>
#include <signal.h>
#include "System.h"
#include "Sort.h"
#include "Debug.h"
extern int verbosity;
//=================================================================================================
// Interface required by parser:
int PbSolver::getVar(cchar* name)
{
int ret;
if (!name2index.peek(name, ret)){
// Create new variable:
Var x = index2name.size();
index2name.push(xstrdup(name));
n_occurs .push(0);
n_occurs .push(0);
//assigns .push(toInt(l_Undef));
sat_solver.newVar(); // (reserve one SAT variable for each PB variable)
ret = name2index.set(index2name.last(), x);
}
return ret;
}
void PbSolver::allocConstrs(int n_vars, int n_constrs)
{
declared_n_vars = n_vars;
declared_n_constrs = n_constrs;
}
void PbSolver::addGoal(const vec<Lit>& ps, const vec<Int>& Cs)
{
/**/debug_names = &index2name;
//**/reportf("MIN: "); dump(ps, Cs); reportf("\n");
goal = new (xmalloc<char>(sizeof(Linear) + ps.size()*(sizeof(Lit) + sizeof(Int)))) Linear(ps, Cs, Int_MIN, Int_MAX, lit_Undef);
}
bool PbSolver::addConstr(const vec<Lit>& ps, const vec<Int>& Cs, Int rhs, int ineq, Lit& lit) {
vec<Lit> norm_ps;
vec<Int> norm_Cs;
Int norm_rhs;
#define Copy do{ norm_ps.clear(); norm_Cs.clear(); for (int i = 0; i < ps.size(); i++) norm_ps.push(ps[i]), norm_Cs.push( Cs[i]); norm_rhs = rhs; }while(0)
#define CopyInv do{ norm_ps.clear(); norm_Cs.clear(); for (int i = 0; i < ps.size(); i++) norm_ps.push(ps[i]), norm_Cs.push(-Cs[i]); norm_rhs = -rhs; }while(0)
// non-normalize ORIGINAL
if (ineq == 0){
Copy;
if (normalizePb(norm_ps, norm_Cs, norm_rhs, lit))
storePb(norm_ps, norm_Cs, norm_rhs, Int_MAX, lit);
CopyInv;
if (normalizePb(norm_ps, norm_Cs, norm_rhs, lit))
storePb(norm_ps, norm_Cs, norm_rhs, Int_MAX, lit);
}else{
if (ineq > 0)
Copy;
else {
CopyInv;
ineq = -ineq;
}
if (ineq == 2)
++norm_rhs;
if (normalizePb(norm_ps, norm_Cs, norm_rhs, lit))
storePb(norm_ps, norm_Cs, norm_rhs, Int_MAX, lit);
}
return okay();
}
//=================================================================================================
static Int gcd(Int small, Int big) {
return (small == 0) ? big: gcd(big % small, small); }
// Normalize a PB constraint to only positive constants. Depends on:
//
// bool ok -- Will be set to FALSE if constraint is unsatisfiable.
// lbool value(Lit) -- Returns the value of a literal (however, it is sound to always return 'l_Undef', but produces less efficient results)
// bool addUnit(Lit) -- Enqueue unit fact for propagation (returns FALSE if conflict detected).
//
// The two vectors 'ps' and 'Cs' (which are modififed by this method) should be interpreted as:
//
// 'p[0]*C[0] + p[1]*C[1] + ... + p[N-1]*C[N-1] >= C[N]'
//
// The method returns TRUE if constraint was normalized, FALSE if the constraint was already
// satisfied or determined contradictory. The vectors 'ps' and 'Cs' should ONLY be used if
// TRUE is returned.
//
bool PbSolver::normalizePb(vec<Lit>& ps, vec<Int>& Cs, Int& C, Lit& lit)
{
assert(ps.size() == Cs.size());
if (!okay()) return false;
// Remove assigned literals and literals with zero coefficients:
int new_sz = 0;
for (int i = 0; i < ps.size(); i++){
if (value(ps[i]) != l_Undef){
if (value(ps[i]) == l_True)
C -= Cs[i];
}else if (Cs[i] != 0){
ps[new_sz] = ps[i];
Cs[new_sz] = Cs[i];
new_sz++;
}
}
ps.shrink(ps.size() - new_sz);
Cs.shrink(Cs.size() - new_sz);
// Group all x/~x pairs
//
Map<Var, Pair<Int,Int> > var2consts(Pair_new(0,0)); // Variable -> negative/positive polarity constant
for (int i = 0; i < ps.size(); i++){
Var x = var(ps[i]);
Pair<Int,Int> consts = var2consts.at(x);
if (sign(ps[i]))
consts.fst += Cs[i];
else
consts.snd += Cs[i];
var2consts.set(x, consts);
}
// Normalize constants to positive values only:
//
vec<Pair<Var, Pair<Int,Int> > > all;
var2consts.pairs(all);
vec<Pair<Int,Lit> > Csps(all.size());
for (int i = 0; i < all.size(); i++){
if (all[i].snd.fst < all[i].snd.snd){
// Negative polarity will vanish
C -= all[i].snd.fst;
Csps[i] = Pair_new(all[i].snd.snd - all[i].snd.fst, mkLit(all[i].fst));
}else{
// Positive polarity will vanish
C -= all[i].snd.snd;
Csps[i] = Pair_new(all[i].snd.fst - all[i].snd.snd, ~mkLit(all[i].fst));
}
}
// Sort literals on growing constant values:
//
Sort::sort(Csps); // (use lexicographical order of 'Pair's here)
Int sum = 0;
for (int i = 0; i < Csps.size(); i++){
Cs[i] = Csps[i].fst, ps[i] = Csps[i].snd, sum += Cs[i];
if (sum < 0) fprintf(stderr, "ERROR! Too large constants encountered in constraint.\n"), exit(1);
}
ps.shrink(ps.size() - Csps.size());
Cs.shrink(Cs.size() - Csps.size());
if (opt_maxsat_msu && opt_minimization == 1 && lit == lit_Undef && C >= sum && C != 0) {
lit = mkLit(sat_solver.newVar(VAR_UPOL, !opt_branch_pbvars));
sat_solver.setFrozen(var(lit), true);
}
// Propagate already present consequences:
//
bool changed;
do{
changed = false;
while (ps.size() > 0 && sum-Cs.last() < C){
changed = true;
if (lit != lit_Undef) {
if (use_base_assump) base_assump.push(ps.last());
else {
vec<Lit> ban;
ban.push( ~lit );
ban.push(ps.last());
addClause(ban);
}
} else if (!addUnit(ps.last())) {
sat_solver.addEmptyClause();
return false;
}
sum -= Cs.last();
C -= Cs.last();
ps.pop(); Cs.pop();
}
// Trivially true or false?
if (C <= 0) {
if (lit != lit_Undef && use_base_assump && base_assump.size() == 0) base_assump.push(lit);
return false;
}
if (sum < C) {
if (lit != lit_Undef) {
if (use_base_assump) { base_assump.clear(); base_assump.push(~lit); } else addUnit(~lit);
} else sat_solver.addEmptyClause();
return false;
}
assert(sum - Cs[ps.size()-1] >= C);
// GCD:
assert(Cs.size() > 0);
Int div = Cs[0];
for (int i = 1; i < Cs.size() && div != 1; i++)
div = gcd(div, Cs[i]);
if (div != 1) {
for (int i = 0; i < Cs.size(); i++)
Cs[i] /= div;
sum /= div;
C = (C + div-1) / div;
changed = true;
}
// Trim constants:
for (int i = Cs.size() - 1; i >= 0; i--)
if (Cs[i] > C)
changed = true,
sum -= Cs[i]-C,
Cs[i] = C;
else break;
}while (changed);
return true;
}
void PbSolver::storePb(const vec<Lit>& ps, const vec<Int>& Cs, Int lo, Int hi, Lit lit)
{
assert(ps.size() == Cs.size());
for (int i = 0; i < ps.size(); i++)
if (toInt(ps[i]) < n_occurs.size()) n_occurs[toInt(ps[i])]++;
if (lit!=lit_Undef && n_occurs.size() > toInt(lit))
n_occurs[toInt(lit)]++;
constrs.push(new (mem.alloc(sizeof(Linear) + ps.size()*(sizeof(Lit) + sizeof(Int)))) Linear(ps, Cs, lo, hi, lit));
}
//=================================================================================================
// Returns TRUE if the constraint should be deleted. May set the 'ok' flag to false
bool PbSolver::propagate(Linear& c)
{
//**/reportf("BEFORE propagate()\n");
//**/dump(c, sat_solver.assigns_ref()); reportf("\n");
// Remove assigned literals:
Int sum = 0, true_sum = 0;
int j = 0;
for (int i = 0; i < c.size; i++){
assert(c(i) > 0);
if (value(c[i]) == l_Undef){
sum += c(i);
c(j) = c(i);
c[j] = c[i];
j++;
}else if (value(c[i]) == l_True)
true_sum += c(i);
}
c.size = j;
if (c.lo != Int_MIN) c.lo -= true_sum;
if (c.hi != Int_MAX) c.hi -= true_sum;
// Propagate:
while (c.size > 0){
if (c(c.size-1) > c.hi){
addUnit(~c[c.size-1]);
sum -= c(c.size-1);
c.size--;
}else if (sum - c(c.size-1) < c.lo){
addUnit(c[c.size-1]);
sum -= c(c.size-1);
if (c.lo != Int_MIN) c.lo -= c(c.size-1);
if (c.hi != Int_MAX) c.hi -= c(c.size-1);
c.size--;
}else
break;
}
if (c.lo <= 0) c.lo = Int_MIN;
if (c.hi > sum) c.hi = Int_MAX;
//**/reportf("AFTER propagate()\n");
//**/dump(c, sat_solver.assigns_ref()); reportf("\n\n");
if (c.size == 0){
if (c.lo > 0 || c.hi < 0)
sat_solver.addEmptyClause();
return true;
}else
return c.lo == Int_MIN && c.hi == Int_MAX;
}
void PbSolver::propagate()
{
if (nVars() == 0) return;
if (occur.size() == 0) setupOccurs();
if (opt_verbosity >= 2) reportf(" -- Unit propagations: ", constrs.size());
bool found = false;
while (propQ_head < trail.size()){
//**/reportf("propagate("); dump(trail[propQ_head]); reportf(")\n");
Var x = var(trail[propQ_head++]);
for (int pol = 0; pol < 2; pol++){
vec<int>& cs = occur[toInt(mkLit(x,pol))];
for (int i = 0; i < cs.size(); i++){
if (constrs[cs[i]] == NULL) continue;
int trail_sz = trail.size();
if (propagate(*constrs[cs[i]]))
constrs[cs[i]] = NULL;
if (opt_verbosity >= 2 && trail.size() > trail_sz) found = true, reportf("p");
if (!okay()) return;
}
}
}
if (opt_verbosity >= 2) {
if (!found) reportf("(none)\n");
else reportf("\n");
}
occur.clear(true);
}
void PbSolver::setupOccurs()
{
// Allocate vectors of right capacities:
occur.growTo(nVars()*2);
assert(nVars() == pb_n_vars);
for (int i = 0; i < nVars()*2; i++){
vec<int> tmp(xmalloc<int>(n_occurs[i]), n_occurs[i]); tmp.clear();
tmp.moveTo(occur[i]); }
// Fill vectors:
for (int i = 0; i < constrs.size(); i++){
if (constrs[i] == NULL) continue;
for (int j = 0; j < constrs[i]->size; j++)
assert(occur[toInt((*constrs[i])[j])].size() < n_occurs[toInt((*constrs[i])[j])]),
occur[toInt((*constrs[i])[j])].push(i);
}
}
// Left-hand side equal
static bool lhsEq(const Linear& c, const Linear& d) {
if (c.size == d.size){
for (int i = 0; i < c.size; i++) if (c[i] != d[i] || c(i) != d(i)) return false;
return true;
}else return false; }
// Left-hand side equal complementary (all literals negated)
static bool lhsEqc(const Linear& c, const Linear& d) {
if (c.size == d.size){
for (int i = 0; i < c.size; i++) if (c[i] != ~d[i] || c(i) != d(i)) return false;
return true;
}else return false; }
void PbSolver::findIntervals()
{
if (opt_verbosity >= 2)
reportf(" -- Detecting intervals from adjacent constraints: ");
bool found = false;
int i = 0;
Linear* prev;
for (; i < constrs.size() && constrs[i] == NULL; i++);
if (i < constrs.size()){
prev = constrs[i++];
for (; i < constrs.size(); i++){
if (constrs[i] == NULL) continue;
Linear& c = *prev;
Linear& d = *constrs[i];
if (lhsEq(c, d)){
if (d.lo < c.lo) d.lo = c.lo;
if (d.hi > c.hi) d.hi = c.hi;
constrs[i-1] = NULL;
if (opt_verbosity >= 2) reportf("=");
found = true;
}
if (lhsEqc(c, d)){
Int sum = 0;
for (int j = 0; j < c.size; j++)
sum += c(j);
Int lo = (c.hi == Int_MAX) ? Int_MIN : sum - c.hi;
Int hi = (c.lo == Int_MIN) ? Int_MAX : sum - c.lo;
if (d.lo < lo) d.lo = lo;
if (d.hi > hi) d.hi = hi;
constrs[i-1] = NULL;
if (opt_verbosity >= 2) reportf("#");
found = true;
}
prev = &d;
}
}
if (opt_verbosity >= 2) {
if (!found) reportf("(none)\n");
else reportf("\n");
}
}
bool PbSolver::rewriteAlmostClauses()
{
vec<Lit> ps;
vec<Int> Cs;
bool found = false;
int n_splits = 0;
char buf[20];
if (opt_verbosity >= 2)
reportf(" -- Clauses(.)/Splits(s): ");
for (int i = 0; i < constrs.size(); i++){
if (constrs[i] == NULL) continue;
Linear& c = *constrs[i];
assert(c.lo != Int_MIN || c.hi != Int_MAX);
if (c.hi != Int_MAX) continue;
int n = c.size;
for (; n > 0 && c(n-1) == c.lo; n--);
if (n <= 1){
// Pure clause:
if (opt_verbosity >= 2) reportf(".");
found = true;
ps.clear();
for (int j = n; j < c.size; j++)
ps.push(c[j]);
addClause(ps);
constrs[i] = NULL; // Remove this clause
}else if (c.size-n >= 3){
// Split clause part:
if (opt_verbosity >= 2) reportf("s");
found = true;
snprintf(buf, sizeof(buf), "@split%d", n_splits);
n_splits++;
Var x = getVar(buf); assert(x == sat_solver.nVars()-1);
ps.clear();
ps.push(mkLit(x));
for (int j = n; j < c.size; j++)
ps.push(c[j]);
addClause(ps);
if (!okay()){
reportf("\n");
return false; }
ps.clear();
Cs.clear();
ps.push(~mkLit(x));
Cs.push(c.lo);
for (int j = 0; j < n; j++)
ps.push(c[j]),
Cs.push(c(j));
Lit lit = lit_Undef;
if (!addConstr(ps, Cs, c.lo, 1, lit)){
reportf("\n");
return false; }
constrs[i] = NULL; // Remove this clause
}
}
if (opt_verbosity >= 2) {
if (!found) reportf("(none)\n");
else reportf("\n");
}
return true;
}
//=================================================================================================
// Main solver/optimizer:
extern MsSolver *pb_solver;
static
void SIGINT_interrupt(int /*signum*/) { pb_solver->sat_solver.interrupt(); pb_solver->asynch_interrupt=true; }
Int evalGoal(Linear& goal, vec<bool>& model)
{
Int sum = 0;
for (int i = 0; i < goal.size; i++){
if (( sign(goal[i]) && model[var(goal[i])] == false)
|| (!sign(goal[i]) && model[var(goal[i])] == true )
)
sum += goal(i);
}
return sum;
}
void PbSolver::solve(solve_Command cmd)
{
if (!okay()) {
if (opt_verbosity >= 1) sat_solver.printVarsCls();
return;
}
#if defined(GLUCOSE3) || defined(GLUCOSE4)
if (opt_verbosity >= 1) sat_solver.verbEveryConflicts = 100000;
sat_solver.setIncrementalMode();
#endif
// Convert constraints:
pb_n_vars = nVars();
pb_n_constrs = constrs.size();
if (opt_verbosity >= 1)
reportf("Converting %d PB-constraints to clauses...\n", constrs.size());
propagate();
if (!convertPbs(true)){
if (opt_verbosity >= 1) sat_solver.printVarsCls(constrs.size() > 0);
assert(!okay()); return;
}
// Freeze goal function variables (for SatELite):
if (goal != NULL){
for (int i = 0; i < goal->size; i++)
sat_solver.setFrozen(var((*goal)[i]), true);
}
if (opt_maxsat) {
vec<Pair<weight_t, Minisat::vec<Lit>* > > &soft_cls = ((MsSolver *)this)->soft_cls;
for (int i = soft_cls.size() - 1; i >= 0; i--)
for (int j = soft_cls[i].snd->size() - 1; j >= 0; j--)
sat_solver.setFrozen(var((*soft_cls[i].snd)[j]), true);
}
// Solver (optimize):
//sat_solver.setVerbosity(opt_verbosity);
sat_solver.verbosity = opt_verbosity - 1;
Int goal_gcd;
if (goal != NULL) {
goal_gcd = (*goal)(0);
for (int i = 1; i < goal->size; ++i) goal_gcd = gcd(goal_gcd, (*goal)(i));
if (goal_gcd < 0) goal_gcd = -goal_gcd;
}
vec<Lit> goal_ps; if (goal != NULL){ for (int i = 0; i < goal->size; i++) goal_ps.push((*goal)[i]); }
vec<Int> goal_Cs; if (goal != NULL){ for (int i = 0; i < goal->size; i++) goal_Cs.push((*goal)(i)/goal_gcd); }
assert(best_goalvalue == Int_MAX);
if (opt_polarity_sug != 0){
for (int i = 0; i < goal_Cs.size(); i++){
bool dir = goal_Cs[i]*opt_polarity_sug > 0 ? !sign(goal_ps[i]) : sign(goal_ps[i]);
sat_solver.setPolarity(var(goal_ps[i]), LBOOL(dir));
}
}
if (opt_convert_goal != ct_Undef)
opt_convert = opt_convert_goal;
opt_sort_thres *= opt_goal_bias;
opt_shared_fmls = use_base_assump = true;
Lit assump_lit = lit_Undef;
if (opt_goal != Int_MAX)
addConstr(goal_ps, goal_Cs, opt_goal, -1, assump_lit),
convertPbs(false);
if (opt_cnf != NULL)
reportf("Exporting CNF to: \b%s\b\n", opt_cnf),
sat_solver.toDimacs(opt_cnf),
exit(0);
signal(SIGINT, SIGINT_interrupt);
#ifdef SIGXCPU
signal(SIGXCPU,SIGINT_interrupt);
#endif
bool sat = false;
Minisat::vec<Lit> assump_ps;
Int try_lessthan = opt_goal;
int n_solutions = 0; // (only for AllSolutions mode)
LB_goalvalue = 0, UB_goalvalue = 0;
if (goal != NULL)
for (int i = 0; i < goal_Cs.size(); ++i)
if (value(goal_ps[i]) != l_Undef) {
if (value(goal_ps[i]) == l_True)
LB_goalvalue += goal_Cs[i], UB_goalvalue += goal_Cs[i];
} else if (goal_Cs[i] < 0) LB_goalvalue += goal_Cs[i];
else UB_goalvalue += goal_Cs[i];
if (opt_minimization != 0 && goal != NULL && opt_goal == Int_MAX) {
assump_lit = mkLit(sat_solver.newVar(VAR_UPOL, !opt_branch_pbvars));
try_lessthan = (UB_goalvalue + LB_goalvalue)/2;
if (addConstr(goal_ps, goal_Cs, try_lessthan, -2, assump_lit)) {
if (!use_base_assump) assump_ps.push(assump_lit);
convertPbs(false);
}
}
if (opt_verbosity >= 1)
sat_solver.printVarsCls();
while (1) {
if (use_base_assump) for (int i = 0; i < base_assump.size(); i++) assump_ps.push(base_assump[i]);
lbool status =
base_assump.size() == 1 && base_assump[0] == assump_lit ? l_True :
base_assump.size() == 1 && base_assump[0] == ~assump_lit ? l_False :
sat_solver.solveLimited(assump_ps);
if (use_base_assump) {
for (int i = 0; i < base_assump.size(); i++) {
if (status == l_True && var(base_assump[i]) < pb_n_vars) addUnit(base_assump[i]);
assump_ps.pop();
}
base_assump.clear();
}
if (status == l_Undef) {
if (asynch_interrupt) { reportf("*** Interrupted ***\n"); break; }
} else if (status == l_True) { // SAT returned
if(assump_ps.size() > 0) {
assert(assump_ps.size() == 1);
addUnit(assump_ps[0]);
}
assump_ps.clear();
sat = true;
if (cmd == sc_AllSolutions){
Minisat::vec<Lit> ban;
n_solutions++;
reportf("MODEL# %d:", n_solutions);
for (Var x = 0; x < pb_n_vars; x++){
assert(sat_solver.modelValue(x) != l_Undef);
ban.push(mkLit(x, sat_solver.modelValue(x) == l_True));
if (index2name[x][0] != '#')
reportf(" %s%s", (sat_solver.modelValue(x) == l_False)?"-":"", index2name[x]);
}
reportf("\n");
sat_solver.addClause_(ban);
}else{
vec<bool> model;
Minisat::vec<Lit> soft_unsat;
for (Var x = 0; x < pb_n_vars; x++)
assert(sat_solver.modelValue(x) != l_Undef),
model.push(sat_solver.modelValue(x) == l_True);
if (goal == NULL) {
model.moveTo(best_model);
break;
}
Int goalvalue = (opt_maxsat ? evalGoal(((MsSolver *)this)->soft_cls, model, soft_unsat) : evalGoal(*goal, model)) / goal_gcd;
if (goalvalue < best_goalvalue) {
best_goalvalue = goalvalue;
model.moveTo(best_model);
char* tmp = toString(best_goalvalue * goal_gcd);
if (opt_satlive || opt_verbosity == 0)
printf("o %s\n", tmp), fflush(stdout);
else reportf("\bFound solution: %s\b\n", tmp);
xfree(tmp);
} else model.clear();
if (best_goalvalue < UB_goalvalue) UB_goalvalue = best_goalvalue;
if (cmd == sc_FirstSolution) break;
if (opt_verbosity >= 1 && !opt_satlive){
char* tmp = toString(best_goalvalue * goal_gcd);
reportf("\bFound solution: %s\b\n", tmp);
xfree(tmp); }
if(opt_minimization == 0 || best_goalvalue - LB_goalvalue < opt_seq_thres) {
assump_lit = lit_Undef;
try_lessthan = best_goalvalue;
} else {
assump_lit = assump_lit == lit_Undef || !use_base_assump ?
mkLit(sat_solver.newVar(VAR_UPOL, !opt_branch_pbvars)) : assump_lit;
try_lessthan = (LB_goalvalue*(100-opt_bin_percent) + best_goalvalue*(opt_bin_percent))/100;
}
if (!addConstr(goal_ps, goal_Cs, try_lessthan, -2, assump_lit))
break; // unsat
if (assump_lit != lit_Undef && !use_base_assump) assump_ps.push(assump_lit);
convertPbs(false);
}
} else { // UNSAT returned
if (assump_lit == lit_Undef) break;
if (assump_ps.size() == 1) addUnit(~(assump_ps[0]));
assump_ps.clear();
LB_goalvalue = try_lessthan;
if(opt_minimization != 2 || best_goalvalue == Int_MAX || best_goalvalue - LB_goalvalue < opt_seq_thres) {
assump_lit = lit_Undef;
try_lessthan = (best_goalvalue != Int_MAX ? best_goalvalue : UB_goalvalue+1);
} else {
assump_lit = assump_lit == lit_Undef || !use_base_assump ?
mkLit(sat_solver.newVar(VAR_UPOL, !opt_branch_pbvars)) : assump_lit;
try_lessthan = (LB_goalvalue*(100-opt_bin_percent) + best_goalvalue*(opt_bin_percent))/100;
}
if (!addConstr(goal_ps, goal_Cs, try_lessthan, -2, assump_lit))
break; // unsat
if (assump_lit != lit_Undef && !use_base_assump) assump_ps.push(assump_lit);
if (opt_minimization >= 1 && opt_verbosity >= 2) {
char *tmp; reportf("Lower bound = %s\n", tmp = toString(LB_goalvalue)); xfree(tmp); }
convertPbs(false);
}
} // END OF LOOP
if (goal == NULL && sat)
best_goalvalue = Int_MIN; // (found model, but don't care about it)
if (opt_verbosity >= 1){
if (!sat)
reportf(asynch_interrupt ? "\bUNKNOWN\b\n" : "\bUNSATISFIABLE\b\n");
else if (goal == NULL)
reportf("\bSATISFIABLE: No goal function specified.\b\n");
else if (cmd == sc_FirstSolution){
char* tmp = toString(best_goalvalue * goal_gcd);
reportf("\bFirst solution found: %s\b\n", tmp);
xfree(tmp);
}else if (asynch_interrupt){
char* tmp = toString(best_goalvalue * goal_gcd);
reportf("\bSATISFIABLE: Best solution found: %s\b\n", tmp);
xfree(tmp);
}else{
char* tmp = toString(best_goalvalue * goal_gcd);
reportf("\bOptimal solution: %s\b\n", tmp);
xfree(tmp);
}
}
}
void PbSolver::printStats(bool printSatStats)
{
#ifdef USE_SCIP
std::lock_guard<std::mutex> lck(stdout_mtx);
#endif
if (!statsPrinted) {
double cpu_time = cpuTime();
double mem_used = memUsedPeak();
if (printSatStats) {
printf("c _______________________________________________________________________________\nc \n");
#if defined(CADICAL) || defined(CRYPTOMS)
sat_solver.statistics();
#else
printf("c restarts : %" PRIu64"\n", sat_solver.starts);
printf("c conflicts : %-12" PRIu64" (%.0f /sec)\n", sat_solver.conflicts , sat_solver.conflicts /cpu_time);
printf("c decisions : %-12" PRIu64" (%4.2f %% random) (%.0f /sec)\n", sat_solver.decisions, (float)sat_solver.rnd_decisions*100 / (float)sat_solver.decisions, sat_solver.decisions /cpu_time);
printf("c propagations : %-12" PRIu64" (%.0f /sec)\n", sat_solver.propagations, sat_solver.propagations/cpu_time);
printf("c conflict literals : %-12" PRIu64" (%4.2f %% deleted)\n", sat_solver.tot_literals, (sat_solver.max_literals - sat_solver.tot_literals)*100 / (double)sat_solver.max_literals);
#endif
}
printf("c =======================[ UWrMaxSat resources usage ]===========================\n");
if (mem_used != 0) printf("c Memory used : %.2f MB\n", mem_used);
printf("c CPU time : %g s\n", cpu_time);
#ifdef USE_SCIP
extern bool opt_scip_parallel;
extern time_t wall_clock_time;
if (opt_scip_parallel)
printf("c Wall clock time : %g s\n", difftime(time(NULL), wall_clock_time));
#endif
if (srtEncodings != 0 || bddEncodings != 0 || addEncodings != 0)
printf("c Constr Enc: Srt/BDD/Add: %llu %llu %llu\n", srtEncodings, bddEncodings, addEncodings);
if (srtOptEncodings != 0 || bddOptEncodings != 0 || addOptEncodings != 0)
printf("c OptExp Enc: Srt/BDD/Add: %llu %llu %llu\n", srtOptEncodings, bddOptEncodings, addOptEncodings);
if (totalSorters > 0 && totalReusedInputs > 0.0)
printf("c Reused sorter inputs : %.0f of %.0f inputs (%.2f%% in avg) in %d sorters\n", totalReusedInputs, totalSorterInputs, totalReusedInputs*100.0/totalSorterInputs, totalSorters);
printf("c _______________________________________________________________________________\n");
statsPrinted = true;
}
}