-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathembedding_forest.py
43 lines (41 loc) · 1.61 KB
/
embedding_forest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from sklearn import ensemble
import pickle
import numpy as np
import copy
WORD2VEC_EMBEDDINGS = '/Users/marcotcr/phd/datasets/word2vec/our_dataset_embeddings.pickle'
class EmbeddingForest():
def __init__(self, vectorizer,
embedding_path=WORD2VEC_EMBEDDINGS,
inverse_vocabulary = None):
if inverse_vocabulary is not None:
self.inverse_vocabulary = inverse_vocabulary
else:
terms = np.array(list(vectorizer.vocabulary_.keys()))
indices = np.array(list(vectorizer.vocabulary_.values()))
self.inverse_vocabulary = terms[np.argsort(indices)]
self.embeddings = pickle.load(open(embedding_path))
self.classifier = ensemble.RandomForestClassifier(n_estimators=1000, random_state=1, class_weight='balanced_subsample')
def transform_example(self, X):
# X is a sparse vector or sparse matrix
ret = []
for v in X:
words = [self.inverse_vocabulary[x] for x in v.nonzero()[1]]
new = np.array([self.embeddings[x] for x in words if x in self.embeddings])
if new.shape[0] == 0:
new = np.zeros((1,300))
ret.append(np.mean(new, axis=0))
ret = np.array(ret)
return ret
def fit(self,X,Y):
emb_x = self.transform_example(X)
self.classifier.fit(emb_x, Y)
def predict_proba(self, v):
return self.classifier.predict_proba(self.transform_example(v))
def predict(self, v):
return self.classifier.predict(self.transform_example(v))
def get_params(self, deep=False):
#params = self.classifier.get_params(deep)
params = {}
params['vectorizer'] = ''
params['inverse_vocabulary'] = copy.deepcopy(self.inverse_vocabulary)
return params