forked from openairplay/node_airtunes
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmatrix_dec.c
390 lines (324 loc) · 9.27 KB
/
matrix_dec.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/*
* Copyright (c) 2011 Apple Inc. All rights reserved.
*
* @APPLE_APACHE_LICENSE_HEADER_START@
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* @APPLE_APACHE_LICENSE_HEADER_END@
*/
/*
File: matrix_dec.c
Contains: ALAC mixing/matrixing decode routines.
Copyright: (c) 2004-2011 Apple, Inc.
*/
#include "matrixlib.h"
#include "ALACAudioTypes.h"
// up to 24-bit "offset" macros for the individual bytes of a 20/24-bit word
#if TARGET_RT_BIG_ENDIAN
#define LBYTE 2
#define MBYTE 1
#define HBYTE 0
#else
#define LBYTE 0
#define MBYTE 1
#define HBYTE 2
#endif
/*
There is no plain middle-side option; instead there are various mixing
modes including middle-side, each lossless, as embodied in the mix()
and unmix() functions. These functions exploit a generalized middle-side
transformation:
u := [(rL + (m-r)R)/m];
v := L - R;
where [ ] denotes integer floor. The (lossless) inverse is
L = u + v - [rV/m];
R = L - v;
*/
// 16-bit routines
void unmix16( int32_t * u, int32_t * v, int16_t * out, uint32_t stride, int32_t numSamples, int32_t mixbits, int32_t mixres )
{
int16_t * op = out;
int32_t j;
if ( mixres != 0 )
{
/* matrixed stereo */
for ( j = 0; j < numSamples; j++ )
{
int32_t l, r;
l = u[j] + v[j] - ((mixres * v[j]) >> mixbits);
r = l - v[j];
op[0] = (int16_t) l;
op[1] = (int16_t) r;
op += stride;
}
}
else
{
/* Conventional separated stereo. */
for ( j = 0; j < numSamples; j++ )
{
op[0] = (int16_t) u[j];
op[1] = (int16_t) v[j];
op += stride;
}
}
}
// 20-bit routines
// - the 20 bits of data are left-justified in 3 bytes of storage but right-aligned for input/output predictor buffers
void unmix20( int32_t * u, int32_t * v, uint8_t * out, uint32_t stride, int32_t numSamples, int32_t mixbits, int32_t mixres )
{
uint8_t * op = out;
int32_t j;
if ( mixres != 0 )
{
/* matrixed stereo */
for ( j = 0; j < numSamples; j++ )
{
int32_t l, r;
l = u[j] + v[j] - ((mixres * v[j]) >> mixbits);
r = l - v[j];
l <<= 4;
r <<= 4;
op[HBYTE] = (uint8_t)((l >> 16) & 0xffu);
op[MBYTE] = (uint8_t)((l >> 8) & 0xffu);
op[LBYTE] = (uint8_t)((l >> 0) & 0xffu);
op += 3;
op[HBYTE] = (uint8_t)((r >> 16) & 0xffu);
op[MBYTE] = (uint8_t)((r >> 8) & 0xffu);
op[LBYTE] = (uint8_t)((r >> 0) & 0xffu);
op += (stride - 1) * 3;
}
}
else
{
/* Conventional separated stereo. */
for ( j = 0; j < numSamples; j++ )
{
int32_t val;
val = u[j] << 4;
op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);
op[MBYTE] = (uint8_t)((val >> 8) & 0xffu);
op[LBYTE] = (uint8_t)((val >> 0) & 0xffu);
op += 3;
val = v[j] << 4;
op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);
op[MBYTE] = (uint8_t)((val >> 8) & 0xffu);
op[LBYTE] = (uint8_t)((val >> 0) & 0xffu);
op += (stride - 1) * 3;
}
}
}
// 24-bit routines
// - the 24 bits of data are right-justified in the input/output predictor buffers
void unmix24( int32_t * u, int32_t * v, uint8_t * out, uint32_t stride, int32_t numSamples,
int32_t mixbits, int32_t mixres, uint16_t * shiftUV, int32_t bytesShifted )
{
uint8_t * op = out;
int32_t shift = bytesShifted * 8;
int32_t l, r;
int32_t j, k;
if ( mixres != 0 )
{
/* matrixed stereo */
if ( bytesShifted != 0 )
{
for ( j = 0, k = 0; j < numSamples; j++, k += 2 )
{
l = u[j] + v[j] - ((mixres * v[j]) >> mixbits);
r = l - v[j];
l = (l << shift) | (uint32_t) shiftUV[k + 0];
r = (r << shift) | (uint32_t) shiftUV[k + 1];
op[HBYTE] = (uint8_t)((l >> 16) & 0xffu);
op[MBYTE] = (uint8_t)((l >> 8) & 0xffu);
op[LBYTE] = (uint8_t)((l >> 0) & 0xffu);
op += 3;
op[HBYTE] = (uint8_t)((r >> 16) & 0xffu);
op[MBYTE] = (uint8_t)((r >> 8) & 0xffu);
op[LBYTE] = (uint8_t)((r >> 0) & 0xffu);
op += (stride - 1) * 3;
}
}
else
{
for ( j = 0; j < numSamples; j++ )
{
l = u[j] + v[j] - ((mixres * v[j]) >> mixbits);
r = l - v[j];
op[HBYTE] = (uint8_t)((l >> 16) & 0xffu);
op[MBYTE] = (uint8_t)((l >> 8) & 0xffu);
op[LBYTE] = (uint8_t)((l >> 0) & 0xffu);
op += 3;
op[HBYTE] = (uint8_t)((r >> 16) & 0xffu);
op[MBYTE] = (uint8_t)((r >> 8) & 0xffu);
op[LBYTE] = (uint8_t)((r >> 0) & 0xffu);
op += (stride - 1) * 3;
}
}
}
else
{
/* Conventional separated stereo. */
if ( bytesShifted != 0 )
{
for ( j = 0, k = 0; j < numSamples; j++, k += 2 )
{
l = u[j];
r = v[j];
l = (l << shift) | (uint32_t) shiftUV[k + 0];
r = (r << shift) | (uint32_t) shiftUV[k + 1];
op[HBYTE] = (uint8_t)((l >> 16) & 0xffu);
op[MBYTE] = (uint8_t)((l >> 8) & 0xffu);
op[LBYTE] = (uint8_t)((l >> 0) & 0xffu);
op += 3;
op[HBYTE] = (uint8_t)((r >> 16) & 0xffu);
op[MBYTE] = (uint8_t)((r >> 8) & 0xffu);
op[LBYTE] = (uint8_t)((r >> 0) & 0xffu);
op += (stride - 1) * 3;
}
}
else
{
for ( j = 0; j < numSamples; j++ )
{
int32_t val;
val = u[j];
op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);
op[MBYTE] = (uint8_t)((val >> 8) & 0xffu);
op[LBYTE] = (uint8_t)((val >> 0) & 0xffu);
op += 3;
val = v[j];
op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);
op[MBYTE] = (uint8_t)((val >> 8) & 0xffu);
op[LBYTE] = (uint8_t)((val >> 0) & 0xffu);
op += (stride - 1) * 3;
}
}
}
}
// 32-bit routines
// - note that these really expect the internal data width to be < 32 but the arrays are 32-bit
// - otherwise, the calculations might overflow into the 33rd bit and be lost
// - therefore, these routines deal with the specified "unused lower" bytes in the "shift" buffers
void unmix32( int32_t * u, int32_t * v, int32_t * out, uint32_t stride, int32_t numSamples,
int32_t mixbits, int32_t mixres, uint16_t * shiftUV, int32_t bytesShifted )
{
int32_t * op = out;
int32_t shift = bytesShifted * 8;
int32_t l, r;
int32_t j, k;
if ( mixres != 0 )
{
//Assert( bytesShifted != 0 );
/* matrixed stereo with shift */
for ( j = 0, k = 0; j < numSamples; j++, k += 2 )
{
int32_t lt, rt;
lt = u[j];
rt = v[j];
l = lt + rt - ((mixres * rt) >> mixbits);
r = l - rt;
op[0] = (l << shift) | (uint32_t) shiftUV[k + 0];
op[1] = (r << shift) | (uint32_t) shiftUV[k + 1];
op += stride;
}
}
else
{
if ( bytesShifted == 0 )
{
/* interleaving w/o shift */
for ( j = 0; j < numSamples; j++ )
{
op[0] = u[j];
op[1] = v[j];
op += stride;
}
}
else
{
/* interleaving with shift */
for ( j = 0, k = 0; j < numSamples; j++, k += 2 )
{
op[0] = (u[j] << shift) | (uint32_t) shiftUV[k + 0];
op[1] = (v[j] << shift) | (uint32_t) shiftUV[k + 1];
op += stride;
}
}
}
}
// 20/24-bit <-> 32-bit helper routines (not really matrixing but convenient to put here)
void copyPredictorTo24( int32_t * in, uint8_t * out, uint32_t stride, int32_t numSamples )
{
uint8_t * op = out;
int32_t j;
for ( j = 0; j < numSamples; j++ )
{
int32_t val = in[j];
op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);
op[MBYTE] = (uint8_t)((val >> 8) & 0xffu);
op[LBYTE] = (uint8_t)((val >> 0) & 0xffu);
op += (stride * 3);
}
}
void copyPredictorTo24Shift( int32_t * in, uint16_t * shift, uint8_t * out, uint32_t stride, int32_t numSamples, int32_t bytesShifted )
{
uint8_t * op = out;
int32_t shiftVal = bytesShifted * 8;
int32_t j;
//Assert( bytesShifted != 0 );
for ( j = 0; j < numSamples; j++ )
{
int32_t val = in[j];
val = (val << shiftVal) | (uint32_t) shift[j];
op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);
op[MBYTE] = (uint8_t)((val >> 8) & 0xffu);
op[LBYTE] = (uint8_t)((val >> 0) & 0xffu);
op += (stride * 3);
}
}
void copyPredictorTo20( int32_t * in, uint8_t * out, uint32_t stride, int32_t numSamples )
{
uint8_t * op = out;
int32_t j;
// 32-bit predictor values are right-aligned but 20-bit output values should be left-aligned
// in the 24-bit output buffer
for ( j = 0; j < numSamples; j++ )
{
int32_t val = in[j];
op[HBYTE] = (uint8_t)((val >> 12) & 0xffu);
op[MBYTE] = (uint8_t)((val >> 4) & 0xffu);
op[LBYTE] = (uint8_t)((val << 4) & 0xffu);
op += (stride * 3);
}
}
void copyPredictorTo32( int32_t * in, int32_t * out, uint32_t stride, int32_t numSamples )
{
int32_t i, j;
// this is only a subroutine to abstract the "iPod can only output 16-bit data" problem
for ( i = 0, j = 0; i < numSamples; i++, j += stride )
out[j] = in[i];
}
void copyPredictorTo32Shift( int32_t * in, uint16_t * shift, int32_t * out, uint32_t stride, int32_t numSamples, int32_t bytesShifted )
{
int32_t * op = out;
uint32_t shiftVal = bytesShifted * 8;
int32_t j;
//Assert( bytesShifted != 0 );
// this is only a subroutine to abstract the "iPod can only output 16-bit data" problem
for ( j = 0; j < numSamples; j++ )
{
op[0] = (in[j] << shiftVal) | (uint32_t) shift[j];
op += stride;
}
}