-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathibeval.py
529 lines (420 loc) · 20 KB
/
ibeval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
"""Valuation functions for interbank assets.
Interbank assets are marked-to-market using interbank valuation functions:
A_ij * V_ij(E_i, E_j) ,
where E_i, E_j are the equities of bank i and j, and A_ij is the face value of
the interbank asset between them. The interbank valuation functions is
factorised in following way:
V_ij(E_i, E_j) = ibeval_lender(E_i) * ibeval(E_j) ,
where the second factor is the interbank valuation function, which is meant to
capture the valuation of interbank claims depends on the equity of the
borrower.
References:
[1] P. Barucca, M. Bardoscia, F. Caccioli, M. D'Errico, G. Visentin,
G. Caldarelli, S. Battiston. Network Valuation in Financial Systems,
Mathematical Finance, https://doi.org/10.1111/mafi.12272
"""
from __future__ import division
import math
def exante_en_blackcox(equity, rho, prob_def):
"""Interbank valuation function for an ex-ante Eisenberg and Noe model in
which banks can default at any time before maturity.
For a derivation of this interbank valuation function see Eq. (7) in [1].
Such valuation function turns out to be a simple generalisation of
Linear DebtRank, in which the relationship between the probability of
default and equity is not necessairly linear [2]. A similar non-zero
exogenous recovery rate `rho` has been added in [3].
Parameters:
equity (float): equity
rho (float): exogenous recovery rate in case of default
prob_def (float): probability of default evaluated in `equity`
Returns:
value taken by the interbank valuation function
References:
[1] M. Bardoscia, P. Barucca, A. Brinley Codd, J. Hill.
Forward-looking solvency contagion, Journal of Economic Dynamics
and Control, https://doi.org/10.1016/j.jedc.2019.103755
[2] M. Bardoscia, F. Caccioli, J. I. Perotti, G. Vivaldo,
G. Caldarelli. Distress propagation in complex networks: the case
of non-linear DebtRank, PLoS One,
https://doi.org/10.1371/journal.pone.0163825
[3] M. Bardoscia, S. Battiston, F. Caccioli, G. Caldarelli.
Pathways towards instability in financial networks, Nature
Communications, https://www.nature.com/articles/ncomms14416
"""
return 1.0 + (rho - 1.0) * prob_def
def rel_loss(equity, equity0):
"""Compute the (clipped) relative equity loss.
The relative equity loss is the correct probability of default to use for
`lin_dr`.
The relative equity loss is computed with respect to the reference value
`equity0` and is equal to 0, if `equity` > `equity0`; it is equal to
1 - `equity`/`equity0`, if 0 < `equity` < `equity0`; and it is equal to 1,
if `equity` < 0.
Parameters:
equity (float): equity
equity0 (float): initial (face value) equity
Returns:
relative equity loss
"""
#return (equity0 - equity) / equity0
if equity > equity0:
return 0.0
if equity > 0.0:
return 1 - equity/equity0
else:
return 1.0
def lin_dr(equity, equity0):
"""Interbank valuation function for Linear DebtRank.
Linear DebtRank [1] is a shock propagation mechanism that allows to
account for distress propagation even in absence of defaults. In contrast
with the DebtRank inception [2] in which shocks are propagated only once,
here infinite rounds of propagations are taken into account.
Here it is conveniently expressed in terms of `exante_en_blackcox`.
Parameters:
equity (float): equity
equity0 (float): initial (face value) equity
Returns:
value taken by the interbank valuation function
References:
[1] M. Bardoscia, S. Battiston, F. Caccioli, G. Caldarelli. DebtRank:
A Microscopic Foundation for Shock Propagation, PLoS One,
https://doi.org/10.1371/journal.pone.0130406
[2] S. Battiston, M. Puliga, R. Kaushik, P. Tasca, G. Caldarelli.
DebtRank: Too Central to Fail? Financial Networks, the FED and
Systemic Risk, Scientific Reports,
https://www.nature.com/articles/srep00541
"""
prob_def = rel_loss(equity, equity0)
#return gen_dr(equity, 0.0, prob_def)
return exante_en_blackcox(equity, 0.0, prob_def)
def exante_en_merton(equity, extasset, liabtot, rho, prob_def,
prob_def_shifted, cav_aext):
"""Interbank valuation function for ex-ante Eisenberg and Noe model in
which banks can default only at maturity.
This interbank valuation function is derived in [1] with a standard no
arbitrage argument for the two counterparties taken in isolation. See Eq.
(13) in [1].
The additional exogenous recovery rate `rho` is meant to capture the effect
on the valuation of interbank assets of explicit default costs, as the
ones due to fire sales to liquidate such assets. See Eq. (12) in [2].
Parameters:
equity (float): equity
extasset (float): external assets
liabtot (float): total liabilities
rho (float): exogenous recovery rate in case of default
prob_def (float): probability of default evaluated in `equity`, see
Eq. (18a) in [1]
prob_def_shifted (float): probability of default evaluated in `equity`
+ `liabtot`, see Eq. (18b) in [1]
cav_aext (float): conditional expected endogenous recovery evaluated in
`equity`, see Eq. (18b) in [1]
Returns:
value taken by the interbank valuation function
References:
[1] P. Barucca, M. Bardoscia, F. Caccioli, M. D'Errico, G. Visentin,
G. Caldarelli, S. Battiston. Network Valuation in Financial Systems,
Mathematical Finance, https://doi.org/10.1111/mafi.12272
[2] P. Barucca, M. Bardoscia, F. Caccioli, M. D'Errico, G. Visentin,
S. Battiston, G. Caldarelli. Network Valuation in Financial Systems,
https://arxiv.org/abs/1606.05164v2
"""
return ( (1 - prob_def)
+ rho * ((1 + (equity - extasset) / liabtot) *
(prob_def - prob_def_shifted)
+ (1 / liabtot) * cav_aext))
def lognormal_pd(equity, extasset, sigma):
"""Compute the probability of default for external assets following a
Geometric Brownian Motion.
Such probability of default is the correct probability of default to use
for the NEVA interbank valuation function with external assets following a
Geometric Brownian Motion, implemented in `exante_en_merton_gbm`. See
Eq. (18a) in [1].
Parameters:
equity (float): equity
extasset (float): external assets
sigma (float): volatility of the Geometric Browninan Motion
Returns:
probability of default
References:
[1] P. Barucca, M. Bardoscia, F. Caccioli, M. D'Errico, G. Visentin,
G. Caldarelli, S. Battiston. Network Valuation in Financial Systems,
Mathematical Finance, https://doi.org/10.1111/mafi.12272
"""
if equity >= extasset:
#print('wow1')
return 0.0
else:
#print('wow2', (sigma**2 / 2 + math.log(1.0 - equity/extasset)) / (math.sqrt(2) * sigma))
#print('wow2', sigma**2 / 2, math.log(1.0 - equity/extasset), (math.sqrt(2) * sigma))
return 1/2 * (1 + math.erf((sigma**2 / 2 + math.log(1 - equity/extasset))
/ (math.sqrt(2) * sigma)))
def lognormal_cav_aext(equity, extasset, liabtot, sigma):
"""Compute the conditional expected endogenous recovery for external
assets following a Geometric Brownian Motion.
Such conditional expected endogenous recovery is the correct conditional
expected endogenous recovery to use for the NEVA interbank valuation
function with external assets following a Geometric Brownian Motion,
implemented in `exante_en_merton_gbm`. See Eq. (18b) in [1].
Parameters:
equity (float): equity
extasset (float): external assets
liabtot (float): total liabilities
sigma (float): volatility of the Geometric Browninan Motion
Returns:
conditional expected endogenous recovery
References:
[1] P. Barucca, M. Bardoscia, F. Caccioli, M. D'Errico, G. Visentin,
G. Caldarelli, S. Battiston. Network Valuation in Financial Systems,
Mathematical Finance, https://doi.org/10.1111/mafi.12272
"""
out = 0.0
if extasset > equity:
tmp_sigma_1 = sigma**2 / 2
tmp_sigma_2 = math.sqrt(2) * sigma
out += 1/2 * (1 + math.erf((math.log(1 - equity/extasset) - tmp_sigma_1)
/ tmp_sigma_2))
if extasset > equity + liabtot:
out -= 1/2 * (1 + math.erf((math.log(1 - (equity + liabtot)/extasset) -
tmp_sigma_1)
/ tmp_sigma_2))
return extasset * out
def exante_en_merton_gbm(equity, extasset, liabtot, rho, sigma):
"""Interbank valuation function for ex-ante Eisenberg and Noe model in
which banks can default only at maturity and in which with external
assets follow a Geometric Brownian Motion.
This function is simply `exante_en_merton` specialised for external assets
following a Geometric Brownian Motion. See Eqs. (15) and (18) in [1].
Parameters:
equity (float): equity
extasset (float): external assets
liabtot (float): total liabilities
rho (float): exogenous recovery rate in case of default
sigma (float): volatility of the Geometric Browninan Motion
Returns:
value taken by the interbank valuation function
References:
[1] P. Barucca, M. Bardoscia, F. Caccioli, M. D'Errico, G. Visentin,
G. Caldarelli, S. Battiston. Network Valuation in Financial Systems,
Mathematical Finance, https://doi.org/10.1111/mafi.12272
"""
prob_def = lognormal_pd(equity, extasset, sigma)
prob_def_shifted = lognormal_pd(equity + liabtot, extasset, sigma)
cav_aext = lognormal_cav_aext(equity, extasset, liabtot, sigma)
out = exante_en_merton(equity, extasset, liabtot, rho, prob_def,
prob_def_shifted, cav_aext)
if out >= 0.0:
if out <= 1.0:
return out
else:
print("Warning: valuation function overflow", out)
return 1.0
else:
print("Warning: valuation function underflow", out)
return 0.0
def lin_cav_aext(equity, liabtot, equity0):
"""Compute the conditional expected endogenous recovery for external
assets whose shocks have a uniform distribution.
Such conditional expected endogenous recovery is the correct conditional
expected endogenous recovery to use for the NEVA interbank valuation
function with external assets whose shocks have a uniform distribution,
implemented in `end_lin_dr` and needed to recover Linear DebtRank as a
particular case of NEVA. See Eq. (20b) in [1].
Parameters:
equity (float): equity
liabtot (float): total liabilities
equity0 (float): initial (face value) equity
Returns:
conditional expected endogenous recovery
References:
[1] P. Barucca, M. Bardoscia, F. Caccioli, M. D'Errico, G. Visentin,
S. Battiston, G. Caldarelli. Network Valuation in Financial Systems,
https://arxiv.org/abs/1606.05164v2
"""
# pylint: disable=C0103
a = max(-equity0, -equity -liabtot)
b = min(-equity, 0.0)
if b > a:
return (b**2 - a**2) / (2 * equity0)
else:
return 0.0
def end_lin_dr(equity, extasset, liabtot, rho, equity0):
"""Interbank valuation function for Linear DebtRank seen as an ex-ante
Eisenberg and Noe model in which banks can default only at maturity.
This interbank valuation function should output the same values as
`lin_dr`. Linear DebtRank is realized here as a particualr case of NEVA.
See Proposition 5 and Eq. (20) in [1].
Parameters:
equity (float): equity
extasset (float): external assets
liabtot (float): total liabilities
rho (float): exogenous recovery rate in case of default
equity0 (float): initial (face value) equity
Returns:
value taken by the interbank valuation function
References:
[1] P. Barucca, M. Bardoscia, F. Caccioli, M. D'Errico, G. Visentin,
S. Battiston, G. Caldarelli. Network Valuation in Financial Systems,
https://arxiv.org/abs/1606.05164v2
"""
prob_def = rel_loss(equity, equity0)
prob_def_shifted = rel_loss(equity + liabtot, equity0)
cav_aext = lin_cav_aext(equity, liabtot, equity0)
return exante_en_merton(equity, extasset, liabtot, rho, prob_def,
prob_def_shifted, cav_aext)
def eisenberg_noe(equity, liabtot):
"""Interbank valuation function for Eisenberg and Noe.
This interbank valuation function allows to recover both the clearing a la
Eisenberg and Noe [1].
Parameters:
equity (float): equity
liabtot (float): total liabilities
Returns:
value taken by the interbank valuation function
References:
[1] L. Eisenberg, T. H. Noe. Systemic risk in financial systems,
Management Science 47(2), 236-249 (2001)
"""
if equity > 0:
return 1.0
else:
return max((equity + liabtot) / liabtot, 0.0)
def rogers_veraart(equity, extasset, liabtot, alpha, beta):
"""Interbank valuation functions a la Rogers and Veraart.
This interbank valuation function allows to recover both the clearing a la
Rogers and Veraart [1], when used with the default external valuation
function.
If the equity is larger than zero, there is no effect of the valution of
interbank assets; otherwise they are discounted by a factor `beta`. This
mechanism is meant to capture the effect on the valuation of interbank
assets of explicit costs of the default of the lender, as the ones due to
fire sales to liquidate such assets.
Parameters:
equity (float): equity
extasset (float): external assets
liabtot (float): total liabilties
alpha (float): between 0 and 1, fraction of external assets recovered
beta (float): between 0 and 1, fraction of interbank assets recovered
Returns:
value taken by the interbank valuation function
References:
[1] L. C. G. Rogers, L. A. M. Veraart. Failure and rescue in an
interbank network, Management Science 59(4), 882-898 (2013)
"""
if equity > 0:
return 1.0
else:
return ((alpha - beta) * extasset / liabtot
+ beta * max((equity + liabtot) / liabtot, 0.0))
def roukny_battiston(equity, rho):
"""Interbank valuation function for the algorithm in ``Price of
Complexity``.
This interbank valuation function allows to recover the mechanism exposed
in [1]. It is essentially the Furfine algorithm with an exogenous recovery
`rho`.
Parameters:
equity (float): equity
rho (float): exogenous recovery rate in case of default
Returns:
value taken by the interbank valuation function
References:
[1] S. Battiston, G. Caldarelli, R. May, T. Roukny, J. E. Stiglitz.
The price of complexity in financial networks, PNAS,
https://doi.org/10.1073/pnas.1521573113
"""
if equity > 0:
return 1.0
else:
return rho
def furfine(equity):
"""Interbank valuation function for Furfine.
The Furfine algorithm is also called contagion-on-default, as the
consequences of distress are propagated only after a banks defaults.
Interbank assets keep their face value, if the equity of the borrower is
positive, while they are worth nothing, if the equity of the borrower is
negative.
Parameters:
equity (float): equity
Returns:
value taken by the interbank valuation function
References:
[1] C. H. Furfine. Interbank exposures: quantifying the risk of
contagion, Journal of Money, Credit & Banking 35(1), 111-129
(2003)
"""
if equity > 0:
return 1.0
else:
return 0.0
def blackcox_pd(equity, extasset, sigma):
"""Compute the probability of default for external assets following a
Geometric Brownian Motion and the Black and Cox model.
Such probability of default is the correct probability of default to use
for the NEVA interbank valuation function with external assets following a
Geometric Brownian Motion, implemented in `exante_en_blackcox_gbm`. See
Eq. (8) in [1] (which is the corresponding survival probability).
Parameters:
equity (float): equity
extasset (float): external assets
sigma (float): volatility of the Geometric Browninan Motion
Returns:
probability of default
References:
[1] M. Bardoscia, P. Barucca, A. Brinley Codd, J. Hill.
Forward-looking solvency contagion, Journal of Economic Dynamics
and Control, https://doi.org/10.1016/j.jedc.2019.103755
"""
if equity <= 0.0:
return 1.0
if equity >= extasset:
return 0.0
else:
#return 1 + (- 1/2 * (1 + math.erf((-math.log(1 - equity/extasset) - sigma**2/2) /
# (math.sqrt(2) * sigma)) )
# + (extasset/equity)/2 * (1 + math.erf((math.log(1 - equity/extasset) - sigma**2/2) /
# (math.sqrt(2) * sigma)) ) )
return (1/2 * (1 + math.erf((math.log(1 - equity/extasset) + sigma**2/2) /
(math.sqrt(2) * sigma)) ) +
(extasset/(extasset - equity))/2 * (1 + math.erf((math.log(1 - equity/extasset) - sigma**2/2) /
(math.sqrt(2) * sigma)) ) )
def exante_en_blackcox_gbm(equity, extasset, rho, sigma):
"""Interbank valuation function for ex-ante Eisenberg and Noe model in
which banks can default at any time before maturity and in which external
assets follow a Geometric Brownian Motion.
This function is simply `exante_en_blackcox` specialised for external
assets following a Geometric Brownian Motion. See Eqs. (7) and (8) in [1].
Parameters:
equity (float): equity
extasset (float): external assets
rho (float): exogenous recovery rate in case of default
sigma (float): volatility of the Geometric Browninan Motion
Returns:
value taken by the interbank valuation function
References:
[1] M. Bardoscia, P. Barucca, A. Brinley Codd, J. Hill.
Forward-looking solvency contagion, Journal of Economic Dynamics
and Control, https://doi.org/10.1016/j.jedc.2019.103755
"""
prob_def = blackcox_pd(equity, extasset, sigma)
#return gen_dr(equity, rho, prob_def)
return exante_en_blackcox(equity, rho, prob_def)
def exante_furfine_merton_gbm(equity, extasset, rho, sigma):
"""Interbank valuation function for ex-ante Furfine model in
which banks can default at any time before maturity and in which external
assets follow a Geometric Brownian Motion.
This function implements the exogenous Merton model in [1] for external
assets following a Geometric Brownian Motion, see Eqs. (5) and (A.8) in [1].
Here it is conveniently expressed in term of `exante_en_blackcox`.
Parameters:
equity (float): equity
extasset (float): external assets
rho (float): exogenous recovery rate in case of default
sigma (float): volatility of the Geometric Browninan Motion
Returns:
value taken by the interbank valuation function
References:
[1] M. Bardoscia, P. Barucca, A. Brinley Codd, J. Hill.
Forward-looking solvency contagion, Journal of Economic Dynamics
and Control, https://doi.org/10.1016/j.jedc.2019.103755
"""
prob_def = lognormal_pd(equity, extasset, sigma)
return exante_en_blackcox(equity, rho, prob_def)