-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
147 lines (124 loc) · 5.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from utils import encode_cephalometric_landmarks, decode_cephalometric_landmarks, craniofacial_landmark_regions, rescale_input, save_statistics
from network.model import Network
from data import Dataset
from paths import Paths
import tensorflow as tf
from config import cfg
def train_step(
data: list,
network: Network,
optimizer: tf.keras.optimizers.Optimizer,
):
images, landmarks = data
image_height, image_width = images.shape[1:-1]
with tf.GradientTape(persistent=False) as tape:
true_landmarks = encode_cephalometric_landmarks(landmarks, image_height, image_width)
pred_landmarks = network.landmark_detection_module(inputs=images, training=True)
pred_landmarks = tf.stack([pred_landmarks[:, 0::2], pred_landmarks[:, 1::2]], axis=-1)
ldn_true_landmarks = decode_cephalometric_landmarks(true_landmarks, height=cfg.ORIGINAL_HEIGHT, width=cfg.ORIGINAL_WIDTH)
ldn_pred_landmarks = decode_cephalometric_landmarks(pred_landmarks, height=cfg.ORIGINAL_HEIGHT, width=cfg.ORIGINAL_WIDTH)
detection_loss = tf.reduce_mean(tf.keras.losses.mean_squared_error(true_landmarks, pred_landmarks), axis=-1)
detection_error = tf.reduce_mean(
tf.sqrt(
tf.add(
tf.square(ldn_true_landmarks[:, :, 0] - ldn_pred_landmarks[:, :, 0]),
tf.square(ldn_true_landmarks[:, :, 1] - ldn_pred_landmarks[:, :, 1])
)
),
axis=0
)
block3_proposals = craniofacial_landmark_regions(pred_landmarks, height=(image_height / 8), width=(image_width / 4), size=7)
block4_proposals = craniofacial_landmark_regions(pred_landmarks, height=(image_height / 16), width=(image_width / 8), size=5)
block5_proposals = craniofacial_landmark_regions(pred_landmarks, height=(image_height / 32), width=(image_width / 16), size=3)
proposals = tf.stack([block3_proposals, block4_proposals, block5_proposals])
true_locations = []
pred_locations = []
for index in range(cfg.NUM_LANDMARKS):
candidate_regions = proposals[:, :, index, :]
actual_locations = true_landmarks[:, index, :]
refine_locations = network.landmark_refinement_module.heads[index](inputs=[images, candidate_regions], training=True) + pred_landmarks[:, index, :]
true_locations.append(actual_locations)
pred_locations.append(refine_locations)
true_locations = tf.stack(true_locations, axis=1)
pred_locations = tf.stack(pred_locations, axis=1)
lrn_true_landmarks = decode_cephalometric_landmarks(true_locations, height=cfg.ORIGINAL_HEIGHT, width=cfg.ORIGINAL_WIDTH)
lrn_pred_landmarks = decode_cephalometric_landmarks(pred_locations, height=cfg.ORIGINAL_HEIGHT, width=cfg.ORIGINAL_WIDTH)
refinement_loss = tf.reduce_mean(tf.keras.losses.mean_squared_error(true_locations, pred_locations), axis=0)
refinement_error = tf.reduce_mean(
tf.sqrt(
tf.add(
tf.square(lrn_true_landmarks[:, :, 0] - lrn_pred_landmarks[:, :, 0]),
tf.square(lrn_true_landmarks[:, :, 1] - lrn_pred_landmarks[:, :, 1])
)
),
axis=0
)
multi_head_loss = tf.concat([detection_loss, refinement_loss], axis=0)
gradients = tape.gradient(multi_head_loss, network.model.trainable_variables)
optimizer.apply_gradients(zip(gradients, network.model.trainable_variables))
return (detection_loss, detection_error), (tf.reduce_mean(refinement_loss[tf.newaxis, :], axis=-1), refinement_error)
def train_on_batch(
data: Dataset,
network: Network,
optimizer: tf.keras.optimizers.Optimizer,
):
stats = []
for index in range(len(data)):
images, landmarks = data[index]
images = rescale_input(images, scale=(1 / 255), offset=0)
ldn_stats, lrn_stats = train_step(
data=[
images,
landmarks
],
network=network,
optimizer=optimizer
)
stats.append(
tf.concat([
ldn_stats[0],
ldn_stats[1],
tf.reduce_mean(ldn_stats[1][tf.newaxis, :], axis=1),
lrn_stats[0],
lrn_stats[1],
tf.reduce_mean(lrn_stats[1][tf.newaxis, :], axis=1)
],
axis=0)
)
results = tf.reduce_mean(tf.stack(stats), axis=0)
print("\rloss: {:.5f} - landmark-detection-error: {:.3f} - landmark-refinment-error: {:.3f}".format(results[0], results[cfg.NUM_LANDMARKS+1], results[2*cfg.NUM_LANDMARKS+2]), end="")
return stats
def train(
data: Dataset,
network: Network,
optimizer: tf.keras.optimizers.Optimizer,
epochs: int = cfg.TRAIN.EPOCHS
):
for epoch in range(1, epochs + 1):
num_digits = len(str(epochs))
fmt = "{:" + str(num_digits) + "d}"
print("\nEpoch: " + fmt.format(epoch) + "/" + fmt.format(epochs) + "")
stats = train_on_batch(
data,
network,
optimizer=optimizer
)
results = tf.reduce_mean(tf.stack(stats), axis=0)
print("\ntrain_loss: {:.5f} - landmark-detection-error: {:.3f} - landmark-refinment-error: {:.3f}".format(results[0], results[cfg.NUM_LANDMARKS + 1], results[2*cfg.NUM_LANDMARKS+2]), end="")
save_statistics(results.numpy(), Paths.logs_root_path, mode="train")
if __name__ == "__main__":
from network.model import Network
from data import Dataset
from config import cfg
train_data = Dataset(name="isbi", mode="train", batch_size=1, shuffle=False)
network = Network(
backbone_name="resnet50",
freeze_backbone=False,
backbone_weights=None
)
train(
train_data,
network,
optimizer=cfg.TRAIN.OPTIMIZER,
epochs=2
)