-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathday25.rs
53 lines (47 loc) · 1.72 KB
/
day25.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
//! # Let It Snow
//!
//! There are two parts to solving this problem.
//!
//! The first is converting the row and column to an *zero based* index. Using the example of
//! the 12th code at row 4 column 2:
//!
//! ```none
//! | 1 2 3 4 5 6
//! ---+---+---+---+---+---+---+
//! 1 | 1 3 6 10 15 21
//! 2 | 2 5 9 14 20
//! 3 | 4 8 13 19
//! 4 | 7 12 18
//! 5 | 11 17
//! 6 | 16
//! ```
//!
//! First we observe that the numbers on the top row are the
//! [triangular numbers](https://en.wikipedia.org/wiki/Triangular_number) that can be calculated
//! with the formula `(n * (n + 1)) / 2` for the `nth` number.
//!
//! Starting at the chosen number 12 and moving diagonally upwards to the right we intersect
//! the top row at column `column + row - 1 = 2 + 4 - 1 = 5`. This gives the triangular number
//! `5 * (5 + 1) / 2 = 15`. Then we count backwards by `row` elements to get the one less
//! zero based based index `15 - 4 = 11`.
//!
//! The second part is realizing that the description of the code generation is
//! [modular exponentiation](https://en.wikipedia.org/wiki/Modular_exponentiation). The exponent
//! of the first code is zero, which is the reason for using a zero based index.
use crate::util::iter::*;
use crate::util::math::*;
use crate::util::parse::*;
type Input = [u64; 2];
pub fn parse(input: &str) -> Input {
input.iter_unsigned().chunk::<2>().next().unwrap()
}
pub fn part1(input: &Input) -> u64 {
let [row, column] = *input;
let n = column + row - 1;
let triangle = (n * (n + 1)) / 2;
let index = triangle - row;
(20151125 * 252533.mod_pow(index, 33554393)) % 33554393
}
pub fn part2(_input: &Input) -> &'static str {
"n/a"
}