forked from HabanaAI/Model-References
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocessorca.py
271 lines (228 loc) · 12.1 KB
/
processorca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import argparse
import pandas as pd
import numpy as np
from dataclasses import dataclass
from functools import partial
from pathlib import Path
from transformers import LlamaTokenizerFast
from typing import Dict
llama_prompt_system = "<s>[INST] <<SYS>>\n{}\n<</SYS>>\n\n{} [/INST]"
llama_prompt_no_system = "<s>[INST] {} [/INST]"
def format_llama_input(row):
if row['system_prompt']:
return llama_prompt_system.format(row['system_prompt'], row['question'])
else:
return llama_prompt_no_system.format(row['question'])
def is_english(s):
for c in s:
allowed = c.isascii()
allowed = allowed or (c in ['’', '–', '“', '”', '—']) # Taken from Habana: Unicode quotes and hyphens
if not allowed:
return False
return True
def _tokenize_helper(x, llama_tokenizer=None, append_response_init_token=True):
if not isinstance(x, str):
return []
tokens = llama_tokenizer(x)["input_ids"]
if append_response_init_token:
# Workaround to enable cheat checking for first token: Llama always outputs token 29871 first
# It is possible for submitters to just immediately output this token to achieve a very fast TTFT.
tokens.append(29871)
return tokens
@dataclass
class Keyphrase:
col: str
phrase: str
startswith: bool = False
case: bool = False
class OpenOrcaDatasetGenerator:
def __init__(self,
pq_path: os.PathLike,
model_dir: os.PathLike,
io_token_limit: int,
calibration_subset_size: int = 1000):
self.pq_path = Path(pq_path)
self.model_dir = Path(model_dir)
self.io_token_limit = io_token_limit
self.keyphrases = []
self.calibration_subset_size = calibration_subset_size
def load_parquet(self) -> pd.DataFrame:
llama_tokenizer = LlamaTokenizerFast.from_pretrained(self.model_dir)
tik = time.time()
df = pd.read_parquet(self.pq_path)
print(f"Tokenizing input")
df.rename(columns={'response': 'output'}, inplace=True)
df['input'] = df.apply(format_llama_input, axis=1)
input_tokenizer = partial(_tokenize_helper, llama_tokenizer=llama_tokenizer)
output_tokenizer = partial(_tokenize_helper, llama_tokenizer=llama_tokenizer, append_response_init_token=False)
df['tok_input'] = df['input'].apply(input_tokenizer)
df['tok_output'] = df['output'].apply(output_tokenizer)
tok = time.time()
print(f"Loaded parquet and tokenized in {tok-tik} sec.")
return df
def filter_english(self, df: pd.DataFrame) -> pd.DataFrame:
df['input_english'] = df['input'].apply(is_english)
df['output_english'] = df['output'].apply(is_english)
df['all_english'] = df['input_english'] & df['output_english']
# Filter based on english tokens
df = df[df['all_english']].drop(["input_english", "output_english", "all_english"], axis=1)
return df.reset_index(drop=True)
def filter_seqlen_oob(self, df: pd.DataFrame) -> pd.DataFrame:
df['tok_input_length'] = df['tok_input'].apply(lambda x: len(x))
df['tok_output_length'] = df['tok_output'].apply(lambda x: len(x))
# Filter based on sequence length (2048, 2048)
df = df[df["tok_input_length"] < self.io_token_limit]
df = df[df["tok_output_length"] < self.io_token_limit]
return df.reset_index(drop=True)
def filter_short_expected_response(self, df: pd.DataFrame) -> pd.DataFrame:
# We have found that short expected responses (such as for yes/no and true/false questions, or multiple choice
# questions where the expected response is just the choice, i.e. (B)), disproportionately have lower Rouge1
# scores (< 0.02).
# Filter out 1 and 2 word expected responses. We've seen best results when this is filtered to >= 6, but it is
# hard to justify removing that many samples.
df = df[df["tok_output_length"] >= 3]
return df.reset_index(drop=True)
def filter_bad_prompts(self, df: pd.DataFrame, only_niv_t0: bool = True) -> pd.DataFrame:
# Some prompts underperform and cause very bad Rouge scores for a significant percentage of samples with these
# prompts. See Jupyter notebook for analysis.
# These generally only affect NIV and t0 and do not exist in flan or cot.
# Set 'only_niv_t0' to True to explicitly only remove these prompts from niv and t0 samples.
bad_prompts = ['',
'You are an AI assistant that follows instruction extremely well. Help as much as you can.',
'You are an AI assistant. Provide a detailed answer so user don’t need to search outside to understand the answer.',
"You are an AI assistant. Provide a detailed answer so user don't need to search outside to understand the answer.",
'User will you give you a task with some instruction. Your job is follow the instructions as faithfully as you can. While answering think step-by-step and justify your answer.',
'Explain how you used the definition to come up with the answer.',
]
for prompt in bad_prompts:
criteria = (df.system_prompt == prompt)
if only_niv_t0:
criteria = criteria & ((df.origin == "niv") | (df.origin == "t0"))
df = df[~criteria]
return df.reset_index(drop=True)
def register_keyphrase(self, keyphrase: Keyphrase):
self.keyphrases.append(keyphrase)
def filter_keyphrases(self, df: pd.DataFrame) -> pd.DataFrame:
# Filter out registered keyphrases. This is unused for the final dataset as there are no registered keyphrases.
for kp in self.keyphrases:
if kp.startswith:
selector = df[kp.col].str.startswith(kp.phrase)
else:
selector = df[kp.col].str.contains(kp.phrase, case=kp.case)
df = df[~selector]
return df.reset_index(drop=True)
def set_origins(self, df: pd.DataFrame) -> pd.DataFrame:
get_sample_origin = lambda x: x.split(".")[0]
df['origin'] = df['id'].apply(get_sample_origin)
return df
def _per_origin_split(self, df: pd.DataFrame) -> Dict[str, pd.DataFrame]:
print(f"Unique sample origin datasets: {df.origin.unique()}")
dfs_by_origin = dict(tuple(df.groupby('origin')))
for origin, sub_df in dfs_by_origin.items():
sub_df = sub_df.reset_index(drop=True, inplace=True)
return dfs_by_origin
def _get_sampling(self, df, N, rng_seed: int = 1337):
_N = min(df.shape[0], N)
if _N < N:
raise RuntimeError(f"Not enough samples. Requires {N - _N} more.")
return df.sample(n=_N, random_state=rng_seed)
def sample(self, dfs_by_origin: Dict[str, pd.DataFrame], n_total, rng_seed: int = 1337) -> pd.DataFrame:
nways = len(dfs_by_origin)
assert n_total % nways == 0, f"Total number of samples ({n_total}) must be divisible by n_origins ({nways})"
split_size = n_total // nways
samplings = []
for origin, df in dfs_by_origin.items():
print(f"Sampling {split_size} from {origin}")
sample = self._get_sampling(df, split_size, rng_seed=rng_seed)
samplings.append(sample)
sampled_df = pd.concat(samplings)
sampled_df = sampled_df.reset_index(drop=True)
return sampled_df
def generate(self,
export_dir: os.PathLike,
n_samples: int = 24576,
use_cached: bool = True,
calib_rng_seed: int = 12345):
export_dir = Path(export_dir)
if not export_dir.exists():
print(f"Creating {export_dir}")
export_dir.mkdir(parents=True)
if export_dir.is_file():
raise ValueError(f"Cannot export to file {export_dir}. Must be a directory.")
full_fpath = export_dir / f"open_orca_gpt4_tokenized_llama.full.pkl"
if full_fpath.exists() and use_cached:
df = pd.read_pickle(full_fpath)
else:
df = self.load_parquet()
df = self.set_origins(df)
# Apply filters
df = self.filter_english(df)
df = self.filter_seqlen_oob(df)
df = self.filter_short_expected_response(df)
df = self.filter_bad_prompts(df)
df = self.filter_keyphrases(df)
df.to_pickle(full_fpath)
dfs_by_origin = self._per_origin_split(df)
# Export base files
for origin, sub_df in dfs_by_origin.items():
print(f"Subset '{origin}' has {sub_df.shape[0]} samples")
origin_fpath = export_dir / f"open_orca_gpt4_tokenized_llama.{origin}.pkl"
if not origin_fpath.exists() or not use_cached:
sub_df.to_pickle(origin_fpath)
# Strategy:
# After some analysis, we found that OpenOrca's dataset has a skewed "origin-dataset" distribution:
# cot and niv have significantly fewer samples (71K and 58K) compared to flan and t0 (375K and 278K).
# cot has a higher rouge score from a 100k sampling (of the whole dataset) than the rest, while niv has lower.
# Sample from each dataset equally.
sampled_df = self.sample(dfs_by_origin, n_samples)
sampled_fpath = export_dir / f"open_orca_gpt4_tokenized_llama.sampled_{n_samples}.pkl"
sampled_df.to_pickle(sampled_fpath)
# Calibration dataset
calib_ds = sampled_df.sample(n=self.calibration_subset_size,
random_state=calib_rng_seed)
calib_ds = calib_ds.reset_index(drop=True)
calib_fpath = export_dir / f"open_orca_gpt4_tokenized_llama.calibration_{self.calibration_subset_size}.pkl"
calib_ds.to_pickle(calib_fpath)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_pq_path', type=str,
default='/raid/data/mlperf-llm/OpenOrca/1M-GPT4-Augmented.parquet',
help="the path to the open_orca GPT4 parquet.")
parser.add_argument('--model_dir', type=str, default='/raid/data/mlperf-llm/Llama-2-70b-chat-hf')
parser.add_argument('--seqlen_limit', type=int, default=1024, help="Upper limit of the input/output sequence lengths")
parser.add_argument('--export_dir', type=str,
default="/raid/data/mlperf-llm/OpenOrca/llama/filtered",
help="Path to the output pkl file.")
parser.add_argument('--num_total_samples', type=int, default=24576, help="Number of samples to generate")
parser.add_argument('--calibration_subset_size', type=int, default=1000, help="Number of samples for calibration subset")
return parser.parse_args()
if __name__ == "__main__":
args = parse_arguments()
ds_gen = OpenOrcaDatasetGenerator(
pq_path=args.dataset_pq_path,
model_dir=args.model_dir,
io_token_limit=args.seqlen_limit,
calibration_subset_size=args.calibration_subset_size,
)
ds_gen.generate(
export_dir=args.export_dir,
n_samples=args.num_total_samples,
)
# Sample command to run:
# python3 processorca.py --dataset_pq_path=/raid/data/mlperf-llm/OpenOrca/1M-GPT4-Augmented.parquet --model_dir=/raid/data/mlperf-llm/Llama-2-70b-chat-hf --seqlen_limit=1024 --export_dir=/raid/data/mlperf-llm/OpenOrca/llama/filtered --num_total_samples=24576