-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain_danner_2023.py
64 lines (57 loc) · 2.06 KB
/
main_danner_2023.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
from networkx import to_numpy_array
from networkx.generators.random_graphs import random_regular_graph
from gossipy import set_seed
from gossipy.core import UniformDelay, AntiEntropyProtocol, CreateModelMode, StaticP2PNetwork
from gossipy.node import GossipNode
from gossipy.model.handler import LimitedMergeTMH
from gossipy.model.nn import LogisticRegression
from gossipy.data import load_classification_dataset, DataDispatcher
from gossipy.data.handler import ClassificationDataHandler
from gossipy.simul import GossipSimulator, SimulationReport
from gossipy.utils import plot_evaluation
# AUTHORSHIP
__version__ = "0.0.1"
__author__ = "Mirko Polato"
__copyright__ = "Copyright 2022, gossipy"
__license__ = "MIT"
__maintainer__ = "Mirko Polato, PhD"
__email__ = "[email protected]"
__status__ = "Development"
#
set_seed(98765)
X, y = load_classification_dataset("spambase", as_tensor=True)
data_handler = ClassificationDataHandler(X, y, test_size=.1)
dispatcher = DataDispatcher(data_handler, n=100, eval_on_user=False, auto_assign=True)
topology = StaticP2PNetwork(100, to_numpy_array(random_regular_graph(20, 100, seed=42)))
net = LogisticRegression(data_handler.Xtr.shape[1], 2)
nodes = GossipNode.generate(
data_dispatcher=dispatcher,
p2p_net=topology,
model_proto=LimitedMergeTMH(
net=net,
optimizer=torch.optim.SGD,
optimizer_params={
"lr": 1,
"weight_decay": .001
},
criterion=torch.nn.CrossEntropyLoss(),
),
round_len=100,
sync=True
)
simulator = GossipSimulator(
nodes=nodes,
data_dispatcher=dispatcher,
delta=100,
protocol=AntiEntropyProtocol.PUSH,
delay=UniformDelay(0,10),
online_prob=.2, #Approximates the average online rate of the STUNner's smartphone traces
drop_prob=.1, #Simulate the possibility of message dropping,
sampling_eval=.1
)
report = SimulationReport()
simulator.add_receiver(report)
simulator.init_nodes(seed=42)
simulator.start(n_rounds=1000)
plot_evaluation([[ev for _, ev in report.get_evaluation(False)]], "Overall test results")