forked from dwaithe/quantifly
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathv2_functions.py
843 lines (655 loc) · 32.2 KB
/
v2_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
from PyQt4 import QtGui, QtCore, Qt
import PIL.Image
import numpy as np
import os
import vigra
import csv
import time
from sklearn.ensemble import ExtraTreesRegressor
import cPickle as pickle
from scipy.ndimage import filters
"""QuantiFly Software v2.0
Copyright (C) 2015 Dominic Waithe
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
"""
def calculateCI(data1,data2, test_value):
"""Returns bootstrap estimate of 100.0*(1-alpha) CI for statistic."""
x = np.array(data1)
y = np.array(data2)
z = np.polyfit(x,y,1)
p = np.poly1d(z)
fit = p(x)
# get the coordinates for the fit curve
c_y = [np.min(fit),np.max(fit)]
c_x = [np.min(x),np.max(x)]
# predict y values of origional data using the fit
p_y = z[0] * x + z[1]
# calculate the y-error (residuals)
y_err = y -p_y
#Take the input prediction, convert to error, so is in format of x.
#p_xx = (p_x*z[0])+z[1]
# now calculate confidence intervals for new test x-series
mean_x = np.mean(x) # mean of x
n = len(x) # number of samples in origional fit
t = 2.31 # appropriate t value (where n=9, two tailed 95%)
s_err = np.sum(np.power(y_err,2)) # sum of the squares of the residuals
#This calculates the error for one point, pxx
confs = t * np.sqrt((s_err/(n-2))*(1.0/n + (np.power((( test_value)+mean_x),2)/ ((np.sum(np.power(x,2)))-n*(np.power(mean_x,2))))))
#We then modulate the point we the calculated correction +/- the Confidence interval.
p_up = test_value +abs(confs)
p_dn = test_value -abs(confs)
return p_up,p_dn
def apply_correction(par_obj,withGT=False):
par_obj.CC ={}
par_obj.CC1 ={}
par_obj.CC2 ={}
par_obj.lowerCI ={}
par_obj.upperCI ={}
if par_obj.gt_vec != None:
for i in range(par_obj.test_im_start,par_obj.test_im_end):
test_value = ((par_obj.sum_pred[i]*par_obj.M)+par_obj.c)
p_dn,p_up = calculateCI(par_obj.gt_vec, par_obj.error_vec, test_value);
par_obj.CC[i] = par_obj.sum_pred[i]-((par_obj.sum_pred[i]*par_obj.M)+par_obj.c)
par_obj.lowerCI[i] = abs(par_obj.sum_pred[i]-p_dn)-par_obj.CC[i]
par_obj.upperCI[i] = abs(par_obj.sum_pred[i]-p_up)-par_obj.CC[i]
print('corrected value: '+str(par_obj.CC[i]))
if withGT == True:
par_obj.CC_absErr = np.abs(par_obj.CC[i]-par_obj.gt_sum[i])
par_obj.CC_perErr = (np.abs(par_obj.CC[i]-par_obj.gt_sum[i])*100)/par_obj.gt_sum[i]
print('Ground Truth count: '+str(par_obj.gt_sum[i]))
print('corrected Absolute ERROR: '+str(np.abs(par_obj.CC[i]-par_obj.gt_sum[i])))
print('corrected Percentage ERROR: '+str((np.abs(par_obj.CC[i]-par_obj.gt_sum[i])*100)/par_obj.gt_sum[i]))
def make_correction(par_obj,model_num,withGT=False):
#Makes linear correction to model data.
par_obj.error_vec =[];
pred_vec=None;
par_obj.gt_vec = None;
par_obj.M = 1
par_obj.c = 0
if par_obj.saved_ROI.__len__()>2:
pred_vec=[];
par_obj.gt_vec =[];
for b in range(0,par_obj.saved_ROI.__len__()):
#Iterates through saved ROI.
rects = par_obj.saved_ROI[b]
par_obj.gt_vec.append(np.sum(par_obj.dense_array[rects[0]][rects[2]+1:rects[2]+rects[4],rects[1]+1:rects[1]+rects[3]])/255)
pred_vec.append(np.sum(par_obj.pred_arr[rects[0]][rects[2]+1:rects[2]+rects[4],rects[1]+1:rects[1]+rects[3]])/255)
par_obj.error_vec.append(pred_vec[-1]-par_obj.gt_vec[-1])
#Fits straight-line to data.
M, c = np.polyfit(par_obj.gt_vec, par_obj.error_vec,1)
par_obj.M = M
par_obj.c = c
apply_correction(par_obj,withGT)
def save_roi_fn(par_obj):
"""Saves ROI"""
#If there is no width or height either no roi is selected or it is too thin.
if par_obj.rect_w != 0 and par_obj.rect_h != 0:
#If the ROI was in the negative direction.
if par_obj.rect_w < 0:
s_ori_x = par_obj.ori_x_2
else:
s_ori_x = par_obj.ori_x
if par_obj.rect_h < 0:
s_ori_y = par_obj.ori_y_2
else:
s_ori_y = par_obj.ori_y
#Finds the current frame and file.
par_obj.rects = (par_obj.curr_img, int(s_ori_x), int(s_ori_y), int(abs(par_obj.rect_w)), int(abs(par_obj.rect_h)))
return True
return False
def update_training_samples_fn(par_obj,model_num):
"""Collects the pixels or patches which will be used for training and
trains the forest."""
#Makes sure everything is refreshed for the training, encase any regions
#were changed. May have to be rethinked for speed later on.
par_obj.f_matrix =[]
par_obj.o_patches=[]
region_size = 0
for b in range(0,par_obj.saved_ROI.__len__()):
rects = par_obj.saved_ROI[b]
region_size += rects[4]*rects[3]
calc_ratio = par_obj.limit_ratio_size
#print 'calcratio',calc_ratio
#print 'aftercratio',region_size/par_obj.limit_ratio_size
for b in range(0,par_obj.saved_ROI.__len__()):
#Iterates through saved ROI.
rects = par_obj.saved_ROI[b]
img2load = rects[0]
#Loads necessary images only.
try:
par_obj.feat_arr[img2load]
except:
im_pred_inline_fn(par_obj,par_obj,True,img2load,0,img2load-1)
if(par_obj.p_size == 1):
#Finds and extracts the features and output density for the specific regions.
mImRegion = par_obj.feat_arr[rects[0]][rects[2]+1:rects[2]+rects[4],rects[1]+1:rects[1]+rects[3],:]
denseRegion = par_obj.dense_array[rects[0]][rects[2]+1:rects[2]+rects[4],rects[1]+1:rects[1]+rects[3]]
#Find the linear form of the selected feature representation
mimg_lin = np.reshape(mImRegion, (mImRegion.shape[0]*mImRegion.shape[1],mImRegion.shape[2]))
#Find the linear form of the complementatory output region.
dense_lin = np.reshape(denseRegion, (denseRegion.shape[0]*denseRegion.shape[1]))
#Sample the input pixels sparsely or densely.
if(par_obj.limit_sample == True):
if(par_obj.limit_ratio == True):
par_obj.limit_size = round(mImRegion.shape[0]*mImRegion.shape[1]/calc_ratio,0)
#Randomly sample from input ROI or im a certain number (par_obj.limit_size) patches. With replacement.
indices = np.random.choice(int(mImRegion.shape[0]*mImRegion.shape[1]), size=int(par_obj.limit_size), replace=True, p=None)
#Add to feature vector and output vector.
par_obj.f_matrix.extend(mimg_lin[indices])
par_obj.o_patches.extend(dense_lin[indices])
else:
#Add these to the end of the feature Matrix, input patches
par_obj.f_matrix.extend(mimg_lin)
#And the the output matrix, output patches
par_obj.o_patches.extend(dense_lin)
if(par_obj.p_size >1):
mgn = (win.p_size-1)/2
#Finds the corresponding image.
left_rect = rects[2]+1 -mgn
right_rect = rects[2]+rects[4] +mgn+1
top_rect = rects[1]+1 -mgn
bot_rect = rects[1]+rects[3]+mgn+1
if left_rect < 0:
left_rect = 0
if top_rect < 0:
top_rect = 0
if right_rect > par_obj.width - 1:
right_rect = par_obj.width - 1
if bot_rect > par_obj.height - 1:
bot_rect = par_obj.height - 1
mImRegion = win.par_obj.feat_arr[rects[0]][rects[2]+1:rects[2]+rects[4],rects[1]+1:rects[1]+rects[3]]
mImRegion = win.par_obj.feat_arr[rects[0]][left_rect:right_rect,top_rect:bot_rect,:]
denseRegion = win.dense_array[rects[0]][left_rect:right_rect,top_rect:bot_rect]
mimg_linPatch,dense_linPatch, pos = v2.extractPatch(win.p_size,mImRegion,denseRegion, 'sparse')
win.f_matrix.extend(mimg_linPatch)
win.o_patches.extend(dense_linPatch)
#Sets up extra trees regressor object.
par_obj.RF[model_num] = ExtraTreesRegressor(par_obj.num_of_tree, max_depth=par_obj.max_depth, min_samples_split=par_obj.min_samples_split, min_samples_leaf=par_obj.min_samples_leaf, max_features=par_obj.max_features, bootstrap=True, n_jobs=-1)
#Fits the data.
t3 = time.time()
print 'fmatrix',np.array(par_obj.f_matrix).shape
print 'o_patches',np.array(par_obj.o_patches).shape
par_obj.RF[model_num].fit(np.asfortranarray(par_obj.f_matrix), np.asfortranarray(par_obj.o_patches))
t4 = time.time()
print 'actual training',t4-t3
def update_density_fn(par_obj):
for im in par_obj.im_for_train:
#Construct empty array for current image.
dots_im = np.zeros((par_obj.height,par_obj.width))
#In array of all saved dots.
for i in range(0,par_obj.saved_dots.__len__()):
#Any ROI in the present image.
#print 'iiiii',win.saved_dots.__len__()
if(par_obj.saved_ROI[i][0] == im):
#Save the corresponding dots.
dots = par_obj.saved_dots[i]
#Scan through the dots
for b in range(0,dots.__len__()):
#save the column and row
c_dot = dots[b][2]
r_dot = dots[b][1]
#Set it to register as dot.
dots_im[c_dot, r_dot] = 255
#Convolve the dots to represent density estimation.
dense_im = filters.gaussian_filter(dots_im.astype(np.float32), float(par_obj.sigma_data), order=0, output=None, mode='reflect', cval=0.0)
#Replace member of dense_array with new image.
par_obj.dense_array[im] = dense_im
def im_pred_inline_fn(par_obj, int_obj,inline=False,outer_loop=None,inner_loop=None,count=None):
"""Accesses TIFF file slice or opens png. Calculates features to indices present in par_obj.left_2_calc"""
if inline == False:
outer_loop = par_obj.left_2_calc
inner_loop_arr = par_obj.frames_2_load
count = -1
else:
#par_obj.feat_arr ={}
inner_loop_arr ={outer_loop:[inner_loop]}
outer_loop = [outer_loop]
#Goes through the list of files.
for b in outer_loop:
imStr = str(par_obj.file_array[b])
frames = inner_loop_arr[b]
for i in frames:
count = count+1
if par_obj.file_ext == 'tif' or par_obj.file_ext == 'tiff':
temp = Tiff_Controller(imStr)
imRGB = temp.get_frame(i)
elif par_obj.file_ext == 'png':
imRGB = np.array(PIL.Image.open(str(imStr)))*255
if par_obj.fresh_features == False:
try:
#Try loading features.
time1 = time.time()
feat = pickle.load(open(imStr[:-4]+'_'+str(i)+'.p', "rb"))
time2 = time.time()
int_obj.report_progress('Loading Features for Image: '+str(b+1)+' Frame: ' +str(i+1))
except:
#If don't exist create them.
int_obj.report_progress('Calculating Features for Image: '+str(b+1)+' Frame: ' +str(i+1))
feat = feature_create(par_obj,imRGB,imStr,i)
else:
#If you want to ignore previous features which have been saved.
int_obj.report_progress('Calculating Features for Image: '+str(b+1)+' Frame: ' +str(i+1))
feat =feature_create(par_obj,imRGB,imStr,i)
par_obj.num_of_feat = feat.shape[2]
par_obj.feat_arr[count] = feat
return
def feature_create(par_obj,imRGB,imStr,i):
time1 = time.time()
if par_obj.crop_x2 ==0 and par_obj.crop_x1 ==0:
par_obj.crop_x1 = 0
par_obj.crop_x2=imRGB.shape[1]
par_obj.crop_y1 = 0
par_obj.crop_y2=imRGB.shape[0]
par_obj.height = par_obj.crop_y2-par_obj.crop_y1
par_obj.width = par_obj.crop_x2-par_obj.crop_x1
if (par_obj.feature_type == 'basic'):
feat = np.zeros(((int(par_obj.crop_y2)-int(par_obj.crop_y1)),(int(par_obj.crop_x2)-int(par_obj.crop_x1)),13*par_obj.ch_active.__len__()))
if (par_obj.feature_type == 'fine'):
feat = np.zeros(((int(par_obj.crop_y2)-int(par_obj.crop_y1)),(int(par_obj.crop_x2)-int(par_obj.crop_x1)),21*par_obj.ch_active.__len__()))
if (par_obj.feature_type == 'fineSpatial'):
feat = np.zeros(((int(par_obj.crop_y2)-int(par_obj.crop_y1)),(int(par_obj.crop_x2)-int(par_obj.crop_x1)),23*par_obj.ch_active.__len__()))
for b in range(0,par_obj.ch_active.__len__()):
if (par_obj.feature_type == 'basic'):
imG = imRGB[:,:,par_obj.ch_active[b]].astype(np.float32)
feat[:,:,(b*13):((b+1)*13)] = local_shape_features_basic(imG,par_obj.feature_scale)
if (par_obj.feature_type == 'fine'):
imG = imRGB[:,:,par_obj.ch_active[b]].astype(np.float32)
feat[:,:,(b*21):((b+1)*21)] = local_shape_features_fine(imG,par_obj.feature_scale)
if (par_obj.feature_type == 'fineSpatial'):
imG = imRGB[:,:,par_obj.ch_active[b]].astype(np.float32)
feat[:,:,(b*23):((b+1)*23)] = local_shape_features_fine_spatial(imG,par_obj.feature_scale,i)
if par_obj.fresh_features == False:
pickle.dump(feat,open(imStr[:-4]+'_'+str(i)+'.p', "wb"),protocol=2)
return feat
def evaluate_forest(par_obj,int_obj,withGT,model_num,inline=False,inner_loop=None,outer_loop=None,count=None):
if inline == False:
outer_loop = par_obj.left_2_calc
inner_loop_arr = par_obj.frames_2_load
count = -1
else:
inner_loop_arr ={outer_loop:[inner_loop]}
outer_loop = [outer_loop]
#Finds the current frame and file.
for b in outer_loop:
frames =inner_loop_arr[b]
for i in frames:
count = count+1
if(par_obj.p_size >1):
mimg_lin,dense_linPatch, pos = extractPatch(par_obj.p_size, par_obj.feat_arr[count], None, 'dense')
tree_pred = par_obj.RF[model_num].predict(mimg_lin)
linPred = v2.regenerateImg(par_obj.p_size, tree_pred, pos)
else:
mimg_lin = np.reshape(par_obj.feat_arr[count], (par_obj.height * par_obj.width, par_obj.feat_arr[count].shape[2]))
t2 = time.time()
linPred = par_obj.RF[model_num].predict(mimg_lin)
t1 = time.time()
par_obj.pred_arr[count] = linPred.reshape(par_obj.height, par_obj.width)
maxPred = np.max(linPred)
sum_pred =np.sum(linPred/255)
par_obj.sum_pred[count] = sum_pred
print 'prediction time taken',t1 - t2
print 'Predicted count:',par_obj.sum_pred[count]
int_obj.report_progress('Making Prediction for Image: '+str(b+1)+' Frame: ' +str(i+1))
if withGT == True:
try:
#If it has already been opened.
a = par_obj.gt_sum[count]
except:
#Else find the file.
gt_im = np.array(PIL.Image.open(par_obj.gt_array[count]))[:,:,0]
par_obj.gt_sum[count] = np.sum(gt_im)
print('Ground Truth count: '+str(par_obj.gt_sum[count]))
print('Absolute ERROR: '+str(np.abs(par_obj.sum_pred[count]-par_obj.gt_sum[count])))
print('Percentage ERROR: '+str((np.abs(par_obj.sum_pred[count]-par_obj.gt_sum[count])*100)/par_obj.gt_sum[count]))
def regenerate_img(p_size,tree_pred,pos):
outImg = np.zeros((evalImWin.par_obj.feat_arr[0].shape[0],evalImWin.par_obj.feat_arr[0].shape[1]))
mgn = int((p_size-1)/2)
norm = np.zeros((evalImWin.par_obj.feat_arr[0].shape[0],evalImWin.par_obj.feat_arr[0].shape[1]))
zerot = np.ones((p_size,p_size))
for i in range(0,tree_pred.shape[0]):
y_pos = pos[i][0]
x_pos = pos[i][1]
outImg[y_pos-mgn:mgn+y_pos+1,x_pos-mgn:mgn+x_pos+1] += np.array(tree_pred[i].reshape(p_size,p_size))
norm[y_pos-mgn:mgn+y_pos+1,x_pos-mgn:mgn+x_pos+1] += zerot
ind2div = outImg > 0
outImg[ind2div]= outImg[ind2div]*(1/norm[ind2div])
return outImg
def extract_patch(p_size,mImRegion,denseRegion,sample):
#patch margin.
mgn = int((p_size-1)/2)
#Active areas given patch margin.
subImRegion =mImRegion[mgn:mImRegion.shape[0]-mgn-1,mgn:mImRegion.shape[1]-mgn-1,:]
if denseRegion !=None:
subDenseRegion = denseRegion[mgn:mImRegion.shape[0]-mgn-1,mgn:mImRegion.shape[1]-mgn-1]
#Create meshgrid for quick index to position reference
yR = np.arange(0,mImRegion.shape[0])
xR = np.arange(0,mImRegion.shape[1])
xvFull,yvFull = np.meshgrid(xR, yR)
yv = yvFull[mgn:mImRegion.shape[0]-mgn-1,mgn:mImRegion.shape[1]-mgn-1]
xv = xvFull[mgn:mImRegion.shape[0]-mgn-1,mgn:mImRegion.shape[1]-mgn-1]
xvLin = xv.reshape(-1)
yvLin = yv.reshape(-1)
totalLocations = yv.shape[0]*yv.shape[1]
if sample == 'sparse':
#Samples non-densely.
limit_size = np.floor(np.array((totalLocations/win.limit_ratio_size))).astype(np.int32)
indices = np.random.choice(totalLocations, size=limit_size, replace=True, p=None)
elif(sample == 'dense'):
indices = np.arange(0,totalLocations)
#output containers
mimgRegPatch =[]
denseRegPatch = []
pos =[]
for i in range(0,indices.shape[0]):
x_pos = xvLin[indices[i]]
y_pos = yvLin[indices[i]]
m_patch = mImRegion[y_pos-mgn:mgn+y_pos+1,x_pos-mgn:mgn+x_pos+1,:]
if denseRegion !=None:
dPatch = denseRegion[y_pos-mgn:mgn+y_pos+1,x_pos-mgn:mgn+x_pos+1]
#if m_patch.shape[0]==2 and m_patch.shape[1]==2:
mimgRegPatch.append(m_patch.reshape(-1))
pos.append((y_pos,x_pos))
if denseRegion !=None:
denseRegPatch.append(dPatch.reshape(-1))
return mimgRegPatch, denseRegPatch, pos
def local_shape_features_fine(im,scaleStart):
#Exactly as in the Luca Fiaschi paper.
s = scaleStart
imSizeC = im.shape[0]
imSizeR = im.shape[1]
f = np.zeros((imSizeC,imSizeR,21))
st08 = vigra.filters.structureTensorEigenvalues(im,s*1,s*2)
st16 = vigra.filters.structureTensorEigenvalues(im,s*2,s*4)
st32 = vigra.filters.structureTensorEigenvalues(im,s*4,s*8)
st64 = vigra.filters.structureTensorEigenvalues(im,s*8,s*16)
st128 = vigra.filters.structureTensorEigenvalues(im,s*16,s*32)
f[:,:, 0] = im
f[:,:, 1] = vigra.filters.gaussianGradientMagnitude(im, s)
f[:,:, 2] = st08[:,:,0]
f[:,:, 3] = st08[:,:,1]
f[:,:, 4] = vigra.filters.laplacianOfGaussian(im, s )
f[:,:, 5] = vigra.filters.gaussianGradientMagnitude(im, s*2)
f[:,:, 6] = st16[:,:,0]
f[:,:, 7] = st16[:,:,1]
f[:,:, 8] = vigra.filters.laplacianOfGaussian(im, s*2 )
f[:,:, 9] = vigra.filters.gaussianGradientMagnitude(im, s*4)
f[:,:, 10] = st32[:,:,0]
f[:,:, 11] = st32[:,:,1]
f[:,:, 12] = vigra.filters.laplacianOfGaussian(im, s*4 )
f[:,:, 13] = vigra.filters.gaussianGradientMagnitude(im, s*8)
f[:,:, 14] = st64[:,:,0]
f[:,:, 15] = st64[:,:,1]
f[:,:, 16] = vigra.filters.laplacianOfGaussian(im, s*8 )
f[:,:, 17] = vigra.filters.gaussianGradientMagnitude(im, s*16)
f[:,:, 18] = st128[:,:,0]
f[:,:, 19] = st128[:,:,1]
f[:,:, 20] = vigra.filters.laplacianOfGaussian(im, s*16 )
return f
def local_shape_features_fine_spatial(im,scaleStart,im_num):
#Exactly as in the Luca Fiaschi paper.
s = scaleStart
imSizeC = im.shape[0]
imSizeR = im.shape[1]
f = np.zeros((imSizeC,imSizeR,23))
xv, yv = np.meshgrid(range(0,imSizeC), range(0,imSizeR))
st08 = vigra.filters.structureTensorEigenvalues(im,s*1,s*2)
st16 = vigra.filters.structureTensorEigenvalues(im,s*2,s*4)
st32 = vigra.filters.structureTensorEigenvalues(im,s*4,s*8)
st64 = vigra.filters.structureTensorEigenvalues(im,s*8,s*16)
st128 = vigra.filters.structureTensorEigenvalues(im,s*16,s*32)
f[:,:, 0] = np.ones((imSizeC,imSizeR))*im_num
f[:,:, 1] = vigra.filters.gaussianGradientMagnitude(im, s)
f[:,:, 2] = st08[:,:,0]
f[:,:, 3] = st08[:,:,1]
f[:,:, 4] = vigra.filters.laplacianOfGaussian(im, s )
f[:,:, 5] = vigra.filters.gaussianGradientMagnitude(im, s*2)
f[:,:, 6] = st16[:,:,0]
f[:,:, 7] = st16[:,:,1]
f[:,:, 8] = vigra.filters.laplacianOfGaussian(im, s*2 )
f[:,:, 9] = vigra.filters.gaussianGradientMagnitude(im, s*4)
f[:,:, 10] = st32[:,:,0]
f[:,:, 11] = st32[:,:,1]
f[:,:, 12] = vigra.filters.laplacianOfGaussian(im, s*4 )
f[:,:, 13] = vigra.filters.gaussianGradientMagnitude(im, s*8)
f[:,:, 14] = st64[:,:,0]
f[:,:, 15] = st64[:,:,1]
f[:,:, 16] = vigra.filters.laplacianOfGaussian(im, s*8 )
f[:,:, 17] = vigra.filters.gaussianGradientMagnitude(im, s*16)
f[:,:, 18] = st128[:,:,0]
f[:,:, 19] = st128[:,:,1]
f[:,:, 20] = vigra.filters.laplacianOfGaussian(im, s*16 )
f[:,:, 21] = xv
f[:,:, 22] = yv
return f
def local_shape_features_basic(im,scaleStart):
#Exactly as in the Luca Fiaschi paper.
s = scaleStart
imSizeC = im.shape[0]
imSizeR = im.shape[1]
f = np.zeros((imSizeC,imSizeR,13))
st08 = vigra.filters.structureTensorEigenvalues(im,s*1,s*2)
st16 = vigra.filters.structureTensorEigenvalues(im,s*2,s*4)
st32 = vigra.filters.structureTensorEigenvalues(im,s*4,s*8)
f[:,:, 0] = im
f[:,:, 1] = vigra.filters.gaussianGradientMagnitude(im, s)
f[:,:, 2] = st08[:,:,0]
f[:,:, 3] = st08[:,:,1]
f[:,:, 4] = vigra.filters.laplacianOfGaussian(im, s )
f[:,:, 5] = vigra.filters.gaussianGradientMagnitude(im, s*2)
f[:,:, 6] = st16[:,:,0]
f[:,:, 7] = st16[:,:,1]
f[:,:, 8] = vigra.filters.laplacianOfGaussian(im, s*2 )
f[:,:, 9] = vigra.filters.gaussianGradientMagnitude(im, s*4)
f[:,:, 10] = st32[:,:,0]
f[:,:, 11] = st32[:,:,1]
f[:,:, 12] = vigra.filters.laplacianOfGaussian(im, s*4 )
return f
def eval_goto_img_fn(im_num, par_obj, int_obj):
"""Loads up and converts image to correct format"""
#Finds the current frame and file.
count = -1
for b in par_obj.left_2_calc:
frames =par_obj.frames_2_load[b]
for i in frames:
count = count+1
if par_obj.curr_img == count:
break;
else:
continue
break
if ( par_obj.file_ext == 'png'):
imStr = str(par_obj.file_array[b])
imRGB = np.array(PIL.Image.open(imStr))*255
if ( par_obj.file_ext == 'tif' or par_obj.file_ext == 'tiff'):
imStr = str(par_obj.file_array[b])
temp = Tiff_Controller(imStr)
imRGB = temp.get_frame(i)
count = 0
CH = [0]*par_obj.numCH
for c in range(0,par_obj.numCH):
name = 'a = int_obj.CH_cbx'+str(c)+'.checkState()'
exec(name)
if a ==2:
count = count + 1
CH[c] = 1
newImg =np.zeros((par_obj.height,par_obj.width,3))
if count == 1:
ch = par_obj.ch_active[0]
if imRGB.shape> 2:
newImg[:,:,0] = imRGB[:,:,ch]
newImg[:,:,1] = imRGB[:,:,ch]
newImg[:,:,2] = imRGB[:,:,ch]
else:
newImg[:,:,0] = imRGB
newImg[:,:,1] = imRGB
newImg[:,:,2] = imRGB
else:
if CH[0] == 1:
newImg[:,:,0] = imRGB[:,:,0]
if CH[1] == 1:
newImg[:,:,1] = imRGB[:,:,1]
if CH[2] == 1:
newImg[:,:,2] = imRGB[:,:,2]
par_obj.save_im = imRGB
for i in range(0,int_obj.plt1.lines.__len__()):
int_obj.plt1.lines.pop(0)
par_obj.newImg = newImg
int_obj.plt1.cla()
int_obj.plt1.imshow(newImg)
int_obj.draw_saved_dots_and_roi()
int_obj.plt1.set_xticklabels([])
int_obj.plt1.set_yticklabels([])
int_obj.canvas1.draw()
#del im
int_obj.image_num_txt.setText('The Current image is No. ' + str(par_obj.curr_img+1)) # filename: ' +str(evalLoadImWin.file_array[im_num]))
eval_pred_show_fn(im_num,par_obj,int_obj)
def eval_pred_show_fn(im_num,par_obj,int_obj):
"""Shows Prediction Image when forest is loaded"""
if par_obj.eval_load_im_win_eval == True:
int_obj.image_num_txt.setText('The Current Image is No. ' + str(par_obj.curr_img+1))
string_2_show = 'The Predicted Count: ' + str(round(par_obj.sum_pred[im_num],1))
if par_obj.gt_vec != None:
if par_obj.upperCI[im_num] < 1000:
string_2_show += ' with bias correction: '+str(round(par_obj.CC[im_num],1))+' +\- CI '+str(np.round(par_obj.upperCI[im_num],2))+''
int_obj.output_count_txt.setText(string_2_show)
int_obj.plt2.cla()
int_obj.plt2.imshow(par_obj.pred_arr[im_num].astype(np.float32))
int_obj.plt2.set_xticklabels([])
int_obj.plt2.set_yticklabels([])
int_obj.canvas2.draw()
def import_data_fn(par_obj,file_array):
"""Function which loads in Tiff stack or single png file to assess type."""
prevExt = []
prevBitDepth=[]
prevNumCH =[]
for i in range(0,file_array.__len__()):
n = str(i)
imStr = str(file_array[i])
par_obj.file_ext = imStr.split(".")[-1]
if prevExt != [] and prevExt !=par_obj.file_ext:
statusText = 'More than one file format present. Different number of image channels in the selected images'
return False, statusText
if par_obj.file_ext == 'tif' or par_obj.file_ext == 'tiff':
par_obj.tiff_file = Tiff_Controller(imStr)
par_obj.numCH = par_obj.tiff_file.im_sz[2]
par_obj.bitDepth = par_obj.tiff_file.im.tag[0x102][0]
if par_obj.tiff_file.im_sz[0] > par_obj.y_limit or par_obj.tiff_file.im_sz[1] > par_obj.x_limit:
statusText = 'Status: Your images are too large. Please reduce to less than 756x756.'
return False, statusText
if par_obj.tiff_file.maxFrames > 8:
par_obj.uploadLimit = 8
else:
par_obj.uploadLimit = par_obj.tiff_file.maxFrames
par_obj.test_im_end = par_obj.tiff_file.maxFrames
imRGB = par_obj.tiff_file.get_frame(0)
elif par_obj.file_ext =='png':
imRGB = np.array(PIL.Image.open(imStr))*255
par_obj.test_im_end = file_array.__len__()
par_obj.numCH =imRGB.shape.__len__()
par_obj.bitDepth = 8
if imRGB.shape[0] > par_obj.y_limit or imRGB.shape[1] > par_obj.x_limit:
statusText = 'Status: Your images are too large. Please reduce to less than 756x756.'
return False, statusText
else:
statusText = 'Status: Image format not-recognised. Please choose either png or TIFF files.'
return False, statusText
#Error Checking File Extension
par_obj.prevExt = par_obj.file_ext
#Error Checking number of cahnnels.
if prevNumCH != [] and prevNumCH !=par_obj.numCH:
statusText = 'More than one file format present. Different number of image channels in the selected images'
return False, statusText
prevNumCH = par_obj.numCH
#Error Checking Bit Depth.
if prevBitDepth != [] and prevBitDepth != par_obj.bitDepth:
statusText = 'More than one file format present. Different bit-depth in these different images'
return False, statusText
prevBitDepth = par_obj.bitDepth
#Creates empty array to record density estimation.
par_obj.test_im_start = 0
par_obj.height = imRGB.shape[0]
par_obj.width = imRGB.shape[1]
par_obj.im_num_range = range(par_obj.test_im_start, par_obj.test_im_end)
par_obj.num_of_train_im = par_obj.test_im_end
if imRGB.shape.__len__() > 2:
#If images have more than three channels.
if imRGB.shape[2]>1:
#If the shape of the third dimension is greater than 2.
par_obj.ex_img = imRGB[:,:,:]
else:
#If the size of the third dimenion is just 1, this is invalid for imshow show we have to adapt.
par_obj.ex_img = imRGB[:,:,0]
statusText= str(file_array.__len__())+' Files Loaded.'
return True, statusText
def save_output_data_fn(par_obj,int_obj):
local_time = time.asctime( time.localtime(time.time()) )
with open(par_obj.csvPath+'outputData.csv', 'a') as csvfile:
spamwriter = csv.writer(csvfile)
spamwriter.writerow([str(par_obj.selectedModel)]+[str('Filename: ')]+[str('Frame number: ')]+[str('Predicted count: ')]+[str('Corrected count: ')]+[str('CI ')])
count = -1
for b in par_obj.left_2_calc:
frames =par_obj.frames_2_load[b]
imStr = str(par_obj.file_array[count+1])
for i in frames:
count = count+1
n = str(count)
string = par_obj.csvPath+'output' + n.zfill(3)+'.tif'
im_to_save= PIL.Image.fromarray(par_obj.pred_arr[count].astype(np.float32))
im_to_save.save(string)
with open(par_obj.csvPath+'outputData.csv', 'a') as csvfile:
spamwriter = csv.writer(csvfile, dialect='excel')
string2print = [local_time]+[str(imStr)]+[str(i+1)]+[par_obj.sum_pred[count]]
if par_obj.gt_vec != None:
string2print += [par_obj.CC[count]]+[par_obj.upperCI[count]]
spamwriter.writerow( string2print)
int_obj.report_progress('Data exported to '+ par_obj.csvPath)
class Tiff_Controller:
def __init__(self,fname):
'''fname is the full path '''
self.im = PIL.Image.open(fname)
self.fname = fname
self.im.seek(0)
self.im_sz = [self.im.tag[0x101][0], self.im.tag[0x100][0],self.im.tag[0x102].__len__()]
self.cur = self.im.tell()
num = 0
self.maxFrames =1
while True:
num = num+1
try:
self.im.seek(num)
except EOFError:
return None
self.maxFrames = num
def get_frame(self,j):
'''Extracts the jth frame from the image sequence.
if the frame does not exist return None'''
try:
self.im.seek(j)
except EOFError:
return None
self.cur = self.im.tell()
return np.reshape(self.im.getdata(),self.im_sz)
def __iter__(self):
self.im.seek(0)
self.old = self.cur
self.cur = self.im.tell()
return self
def next(self):
try:
self.im.seek(self.cur)
self.cur = self.im.tell()+1
except EOFError:
self.im.seek(self.old)
self.cur = self.im.tell()
raise StopIteration
return np.reshape(self.im.getdata(),self.im_sz)