-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMPC.cpp
271 lines (229 loc) · 9.15 KB
/
MPC.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#include "MPC.h"
#include <cppad/cppad.hpp>
#include <cppad/ipopt/solve.hpp>
#include "Eigen-3.3/Eigen/Core"
using CppAD::AD;
// TODO: Set the timestep length and duration
size_t N = 10;
double dt = 0.1;
// This value assumes the model presented in the classroom is used.
//
// It was obtained by measuring the radius formed by running the vehicle in the
// simulator around in a circle with a constant steering angle and velocity on a
// flat terrain.
//
// Lf was tuned until the the radius formed by the simulating the model
// presented in the classroom matched the previous radius.
//
// This is the length from front to CoG that has a similar radius.
const double Lf = 2.67;
const double ref_cte = 0;
const double ref_epsi = 0;
const double ref_v = 70;
const size_t x_start = 0;
const size_t y_start = x_start + N;
const size_t psi_start = y_start + N;
const size_t v_start = psi_start + N;
const size_t cte_start = v_start + N;
const size_t epsi_start = cte_start + N;
const size_t delta_start = epsi_start + N;
const size_t a_start = delta_start + N - 1;
class FG_eval {
public:
// Fitted polynomial coefficients
Eigen::VectorXd coeffs;
FG_eval(Eigen::VectorXd coeffs) { this->coeffs = coeffs; }
typedef CPPAD_TESTVECTOR(AD<double>) ADvector;
void operator()(ADvector& fg, const ADvector& vars) {
// TODO: implement MPC
// `fg` a vector of the cost constraints, `vars` is a vector of variable values (state & actuators)
// NOTE: You'll probably go back and forth between this function and
// the Solver function below.
// The cost is stored is the first element of `fg`.
// Any additions to the cost should be added to `fg[0]`.
//from lecture.
fg[0] = 0;
// The part of the cost based on the reference state.
for(unsigned int i = 0; i < N; i++ ) {
fg[0] += 2000*CppAD::pow(vars[cte_start + i] - ref_cte, 2);
fg[0] += 2000*CppAD::pow(vars[epsi_start + i] - ref_epsi, 2);
fg[0] += CppAD::pow(vars[v_start + i] - ref_v, 2);
}
// Minimize the use of actuators.
for(unsigned int i = 0; i< N - 1; i++) {
fg[0] += 25*CppAD::pow(vars[delta_start + i], 2);
fg[0] += 25*CppAD::pow(vars[a_start + i], 2);
}
// Minimize the value gap between sequential actuations.
// (how smooth the actuations are)
for(unsigned int i = 0; i < N - 2; i++) {
fg[0] += 400000*CppAD::pow(vars[delta_start + i + 1] - vars[delta_start + i], 2);
fg[0] += 8000*CppAD::pow(vars[a_start + i + 1] - vars[a_start + i], 2);
}
// from lectrue.
// Initial constraints.
fg[1 + x_start] = vars[x_start];
fg[1 + y_start] = vars[y_start];
fg[1 + psi_start] = vars[psi_start];
fg[1 + v_start] = vars[v_start];
fg[1 + cte_start] = vars[cte_start];
fg[1 + epsi_start] = vars[epsi_start];
//from lecture.
for (unsigned int t = 1; t < N; t++) {
// The state at time t+1 .
AD<double> x1 = vars[x_start + t];
AD<double> y1 = vars[y_start + t];
AD<double> psi1 = vars[psi_start + t];
AD<double> v1 = vars[v_start + t];
AD<double> cte1 = vars[cte_start + t];
AD<double> epsi1 = vars[epsi_start + t];
// The state at time t.
AD<double> x0 = vars[x_start + t - 1];
AD<double> y0 = vars[y_start + t - 1];
AD<double> psi0 = vars[psi_start + t - 1];
AD<double> v0 = vars[v_start + t - 1];
AD<double> cte0 = vars[cte_start + t - 1];
AD<double> epsi0 = vars[epsi_start + t - 1];
// Only consider the actuation at time t.
AD<double> delta0 = vars[delta_start + t - 1];
AD<double> a0 = vars[a_start + t - 1];
//AD<double> f0 = coeffs[0] + coeffs[1] * x0 ;
//AD<double> psides0 = CppAD::atan(coeffs[1]);
AD<double> c0 = coeffs[0];
AD<double> c1 = coeffs[1];
AD<double> c2 = coeffs[2];
AD<double> c3 = coeffs[3];
AD<double> f0 = c0 + (c1 * x0) + (c2*CppAD::pow(x0,2))+ (c3*CppAD::pow(x0, 3));
AD<double> psides0 = CppAD::atan(c1 + (2*c2*x0) + (3*c3*CppAD::pow(x0,2)));
// Here's `x` to get you started.
// The idea here is to constraint this value to be 0.
//
// Recall the equations for the model:
// x_[t] = x[t-1] + v[t-1] * cos(psi[t-1]) * dt
// y_[t] = y[t-1] + v[t-1] * sin(psi[t-1]) * dt
// psi_[t] = psi[t-1] + v[t-1] / Lf * delta[t-1] * dt
// v_[t] = v[t-1] + a[t-1] * dt
// cte[t] = f(x[t-1]) - y[t-1] + v[t-1] * sin(epsi[t-1]) * dt
// epsi[t] = psi[t] - psides[t-1] + v[t-1] * delta[t-1] / Lf * dt
fg[1 + x_start + t] = x1 - (x0 + v0 * CppAD::cos(psi0) * dt);
fg[1 + y_start + t] = y1 - (y0 + v0 * CppAD::sin(psi0) * dt);
fg[1 + psi_start + t] = psi1 - (psi0 - v0 / Lf * delta0 * dt);
fg[1 + v_start + t] = v1 - (v0 + a0 * dt);
fg[1 + cte_start + t] = cte1 - ((f0 - y0) + (v0 * CppAD::sin(epsi0) * dt));
fg[1 + epsi_start + t] = epsi1 - ((psi0 - psides0) - v0 / Lf * delta0 * dt);
}
}
};
//
// MPC class definition implementation.
//
MPC::MPC() {}
MPC::~MPC() {}
vector<double> MPC::Solve(Eigen::VectorXd state, Eigen::VectorXd coeffs) {
bool ok = true;
// size_t i;
typedef CPPAD_TESTVECTOR(double) Dvector;
const double x = state[0];
const double y = state[1];
const double psi = state[2];
const double v = state[3];
const double cte = state[4];
const double epsi = state[5];
// TODO: Set the number of model variables (includes both states and inputs).
// For example: If the state is a 4 element vector, the actuators is a 2
// element vector and there are 10 timesteps. The number of variables is:
//
unsigned int n_vars = N * 6 + (N - 1) * 2;
// TODO: Set the number of constraints
unsigned int n_constraints = N * 6;
// Initial value of the independent variables.
// SHOULD BE 0 besides initial state.
Dvector vars(n_vars);
for (unsigned int i = 0; i < n_vars; i++) {
vars[i] = 0;
}
Dvector vars_lowerbound(n_vars);
Dvector vars_upperbound(n_vars);
// TODO: Set lower and upper limits for variables.
// Set the initial variable values
// Set all non-actuators upper and lower limits
// to the max negative and positive values.
for ( unsigned int i = 0; i < delta_start; i++ ) {
vars_lowerbound[i] = -1.0e19;
vars_upperbound[i] = 1.0e19;
}
// The upper and lower limits of delta are set to -25 to 25
// degrees (values in radians).
for (unsigned int i = delta_start; i < a_start; i++ ) {
vars_lowerbound[i] = -0.436332*Lf;
vars_upperbound[i] = 0.43632*Lf;
}
// Actuator limits.
for ( unsigned int i = a_start; i < n_vars; i++ ) {
vars_lowerbound[i] = -1.0;
vars_upperbound[i] = 1.0;
}
// Lower and upper limits for the constraints
// Should be 0 besides initial state.
Dvector constraints_lowerbound(n_constraints);
Dvector constraints_upperbound(n_constraints);
for (unsigned int i = 0; i < n_constraints; i++) {
constraints_lowerbound[i] = 0;
constraints_upperbound[i] = 0;
}
constraints_lowerbound[x_start] = x;
constraints_lowerbound[y_start] = y;
constraints_lowerbound[psi_start] = psi;
constraints_lowerbound[v_start] = v;
constraints_lowerbound[cte_start] = cte;
constraints_lowerbound[epsi_start] = epsi;
constraints_upperbound[x_start] = x;
constraints_upperbound[y_start] = y;
constraints_upperbound[psi_start] = psi;
constraints_upperbound[v_start] = v;
constraints_upperbound[cte_start] = cte;
constraints_upperbound[epsi_start] = epsi;
// object that computes objective and constraints
FG_eval fg_eval(coeffs);
//
// NOTE: You don't have to worry about these options
//
// options for IPOPT solver
std::string options;
// Uncomment this if you'd like more print information
options += "Integer print_level 0\n";
// NOTE: Setting sparse to true allows the solver to take advantage
// of sparse routines, this makes the computation MUCH FASTER. If you
// can uncomment 1 of these and see if it makes a difference or not but
// if you uncomment both the computation time should go up in orders of
// magnitude.
options += "Sparse true forward\n";
options += "Sparse true reverse\n";
// NOTE: Currently the solver has a maximum time limit of 0.5 seconds.
// Change this as you see fit.
options += "Numeric max_cpu_time 0.5\n";
// place to return solution
CppAD::ipopt::solve_result<Dvector> solution;
// solve the problem
CppAD::ipopt::solve<Dvector, FG_eval>(
options, vars, vars_lowerbound, vars_upperbound, constraints_lowerbound,
constraints_upperbound, fg_eval, solution);
// Check some of the solution values
ok &= solution.status == CppAD::ipopt::solve_result<Dvector>::success;
// Cost
// auto cost = solution.obj_value;
// std::cout << "Cost " << cost << std::endl;
// TODO: Return the first actuator values. The variables can be accessed with
// `solution.x[i]`.
//
// {...} is shorthand for creating a vector, so auto x1 = {1.0,2.0}
// creates a 2 element double vector.
vector<double> result;
result.push_back(solution.x[delta_start]);
result.push_back(solution.x[a_start]);
for ( unsigned int i = 0; i < N - 1; i++ ) {
result.push_back(solution.x[x_start + i + 1]);
result.push_back(solution.x[y_start + i + 1]);
}
return result;
}