-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun-SASR.py
78 lines (55 loc) · 3.49 KB
/
run-SASR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
"""
The script to run SASR algorithm on continuous control environments.
"""
import argparse
from SASR.SASRAlgo import SASR
from SASR.Networks import SACActor, QNetworkContinuousControl
from SASR.utils import continuous_control_env_maker, classic_control_env_maker
def parse_args():
parser = argparse.ArgumentParser(description="Run SASR on continuous control environments.")
parser.add_argument("--exp-name", type=str, default="sasr")
parser.add_argument("--env-id", type=str, default="MyMujoco/Ant-Height-Sparse")
parser.add_argument("--render", type=bool, default=False)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--cuda", type=int, default=0)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--buffer-size", type=int, default=1000000)
parser.add_argument("--rb-optimize-memory", type=bool, default=False)
parser.add_argument("--batch-size", type=int, default=256)
parser.add_argument("--policy-lr", type=float, default=3e-4)
parser.add_argument("--q-lr", type=float, default=1e-3)
parser.add_argument("--alpha", type=float, default=0.2)
parser.add_argument("--alpha-autotune", type=bool, default=True)
parser.add_argument("--alpha-lr", type=float, default=1e-4)
parser.add_argument("--target-network-frequency", type=int, default=1)
parser.add_argument("--tau", type=float, default=0.005)
parser.add_argument("--policy-frequency", type=int, default=2)
parser.add_argument("--total-timesteps", type=int, default=1000000)
parser.add_argument("--learning-starts", type=int, default=5e3)
parser.add_argument("--reward-weight", type=float, default=0.6)
parser.add_argument("--kde-bandwidth", type=float, default=0.2)
parser.add_argument("--kde-sample-burnin", type=int, default=1000)
parser.add_argument("--rff-dim", type=int, default=1000)
parser.add_argument("--retention-rate", type=float, default=0.1)
parser.add_argument("--write-frequency", type=int, default=100)
parser.add_argument("--save-folder", type=str, default="./sasr/")
args = parser.parse_args()
return args
def run():
args = parse_args()
# env = continuous_control_env_maker(env_id=args.env_id, seed=args.seed, render=args.render)
env = continuous_control_env_maker(env_id=args.env_id, seed=args.seed,
render=args.render) if args.env_id.startswith(
"My") else classic_control_env_maker(env_id=args.env_id, seed=args.seed, render=args.render)
agent = SASR(env=env, actor_class=SACActor, critic_class=QNetworkContinuousControl, exp_name=args.exp_name,
seed=args.seed, cuda=args.cuda, gamma=args.gamma, buffer_size=args.buffer_size,
rb_optimize_memory=args.rb_optimize_memory, batch_size=args.batch_size, policy_lr=args.policy_lr,
q_lr=args.q_lr, alpha_lr=args.alpha_lr, target_network_frequency=args.target_network_frequency,
tau=args.tau, policy_frequency=args.policy_frequency, alpha=args.alpha,
alpha_autotune=args.alpha_autotune, reward_weight=args.reward_weight, kde_bandwidth=args.kde_bandwidth,
kde_sample_burn_in=args.kde_sample_burnin, rff_dim=args.rff_dim, retention_rate=args.retention_rate,
write_frequency=args.write_frequency, save_folder=args.save_folder)
agent.learn(total_timesteps=args.total_timesteps, learning_starts=args.learning_starts)
agent.save(indicator="final")
if __name__ == "__main__":
run()