####Question:
Perform the following number conversions:
A. 0x39A7F8 to binary
B. binary 1100100101111011 to hexadecimal
C. 0xD5E4C to binary
D. binary 1001101110011110110101 to hexadecimal
A.
Hexadecimal 3 9 A 7 F 8
Binary 0011 1001 1010 0111 1111 1000
B.
Binary 1100 1001 0111 1011
Hexadecimal C 9 7 B
C.
Hexadecimal D 5 E 4 C
Binary 1101 0101 1110 0100 1100
D.
Binary 10 0110 1110 0111 1011 0101
Hexadecimal 2 6 E 7 B 5
Fill in the blank entries in the following table, giving the decimal and hexadecimal representations of different powers of 2:
314,15 314,156=19,634 .16+12 (C)
19,634 =1,227.16+2 (2)
1,227 =76.16+11 (B)
76=4.16+12 (C)
4=0.16+4 (4)
From this we can read off the hexadecimal representation as Ox4CB2C.
n | $$ 2^n(decimal) $$ | $$ 2^n(hexadecimal) $$ |
---|---|---|
9 | 512 | 0x200 |
19 | 524288 | 0x80000 |
14 | 16384 | 0x4000 |
16 | 65536 | 0x10000 |
17 | 131072 | 0x20000 |
5 | 32 | 0x20 |
7 | 128 | 0x80 |
A single byte can be represented by 2 hexadecimal digits. Fill in the missing entries in the following table, giving the decimal, binary, and hexadecimal values of different byte patterns:
Decimal | Binary | Hexadecimal |
---|---|---|
0 | 0000 0000 | 0x00 |
167 | 1010 0111 | 0xA7 |
62 | 0011 1110 | 0x3E |
188 | 1011 1100 | 0xBC |
55 | 0011 0111 | 0x37 |
136 | 1000 1000 | 0x88 |
243 | 1111 0011 | 0xF3 |
82 | 0101 0010 | 0x52 |
172 | 1010 1100 | 0xAC |
231 | 1110 0111 | 0xE7 |
Without converting the numbers to decimal or binary, try to solve the following arithmetic problems, giving the answers in hexadecimal. Hint: Just modify the methods you use for performing decimal addition and subtraction to use base 16.
A. 0x503c + 0x8 = 0x5044
B. 0x503c - 0x40 = 0x4ffc
C. 0x503c + 64 = 0x507c
D. 0x50ea - 0x503c = 0xad