forked from AntixK/PyTorch-VAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
181 lines (146 loc) · 6.17 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import torch
from torch import Tensor
from pathlib import Path
from typing import List, Optional, Sequence, Union, Any, Callable
from torchvision.datasets.folder import default_loader
from pytorch_lightning import LightningDataModule
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from torchvision.datasets import CelebA
import zipfile
# Add your custom dataset class here
class MyDataset(Dataset):
def __init__(self):
pass
def __len__(self):
pass
def __getitem__(self, idx):
pass
class MyCelebA(CelebA):
"""
A work-around to address issues with pytorch's celebA dataset class.
Download and Extract
URL : https://drive.google.com/file/d/1m8-EBPgi5MRubrm6iQjafK2QMHDBMSfJ/view?usp=sharing
"""
def _check_integrity(self) -> bool:
return True
class OxfordPets(Dataset):
"""
URL = https://www.robots.ox.ac.uk/~vgg/data/pets/
"""
def __init__(self,
data_path: str,
split: str,
transform: Callable,
**kwargs):
self.data_dir = Path(data_path) / "OxfordPets"
self.transforms = transform
imgs = sorted([f for f in self.data_dir.iterdir() if f.suffix == '.jpg'])
self.imgs = imgs[:int(len(imgs) * 0.75)] if split == "train" else imgs[int(len(imgs) * 0.75):]
def __len__(self):
return len(self.imgs)
def __getitem__(self, idx):
img = default_loader(self.imgs[idx])
if self.transforms is not None:
img = self.transforms(img)
return img, 0.0 # dummy datat to prevent breaking
class VAEDataset(LightningDataModule):
"""
PyTorch Lightning data module
Args:
data_dir: root directory of your dataset.
train_batch_size: the batch size to use during training.
val_batch_size: the batch size to use during validation.
patch_size: the size of the crop to take from the original images.
num_workers: the number of parallel workers to create to load data
items (see PyTorch's Dataloader documentation for more details).
pin_memory: whether prepared items should be loaded into pinned memory
or not. This can improve performance on GPUs.
"""
def __init__(
self,
data_path: str,
train_batch_size: int = 8,
val_batch_size: int = 8,
patch_size: Union[int, Sequence[int]] = (256, 256),
num_workers: int = 0,
pin_memory: bool = False,
**kwargs,
):
super().__init__()
self.data_dir = data_path
self.train_batch_size = train_batch_size
self.val_batch_size = val_batch_size
self.patch_size = patch_size
self.num_workers = num_workers
self.pin_memory = pin_memory
def setup(self, stage: Optional[str] = None) -> None:
# ========================= OxfordPets Dataset =========================
# train_transforms = transforms.Compose([transforms.RandomHorizontalFlip(),
# transforms.CenterCrop(self.patch_size),
# # transforms.Resize(self.patch_size),
# transforms.ToTensor(),
# transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])
# val_transforms = transforms.Compose([transforms.RandomHorizontalFlip(),
# transforms.CenterCrop(self.patch_size),
# # transforms.Resize(self.patch_size),
# transforms.ToTensor(),
# transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])
# self.train_dataset = OxfordPets(
# self.data_dir,
# split='train',
# transform=train_transforms,
# )
# self.val_dataset = OxfordPets(
# self.data_dir,
# split='val',
# transform=val_transforms,
# )
# ========================= CelebA Dataset =========================
train_transforms = transforms.Compose([transforms.RandomHorizontalFlip(),
transforms.CenterCrop(148),
transforms.Resize(self.patch_size),
transforms.ToTensor(),])
val_transforms = transforms.Compose([transforms.RandomHorizontalFlip(),
transforms.CenterCrop(148),
transforms.Resize(self.patch_size),
transforms.ToTensor(),])
self.train_dataset = MyCelebA(
self.data_dir,
split='train',
transform=train_transforms,
download=False,
)
# Replace CelebA with your dataset
self.val_dataset = MyCelebA(
self.data_dir,
split='test',
transform=val_transforms,
download=False,
)
# ===============================================================
def train_dataloader(self) -> DataLoader:
return DataLoader(
self.train_dataset,
batch_size=self.train_batch_size,
num_workers=self.num_workers,
shuffle=True,
pin_memory=self.pin_memory,
)
def val_dataloader(self) -> Union[DataLoader, List[DataLoader]]:
return DataLoader(
self.val_dataset,
batch_size=self.val_batch_size,
num_workers=self.num_workers,
shuffle=False,
pin_memory=self.pin_memory,
)
def test_dataloader(self) -> Union[DataLoader, List[DataLoader]]:
return DataLoader(
self.val_dataset,
batch_size=144,
num_workers=self.num_workers,
shuffle=True,
pin_memory=self.pin_memory,
)