forked from MLforHealth/MIMIC_Extract
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mimic_direct_extract.py
1061 lines (882 loc) · 44.8 KB
/
mimic_direct_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import print_function, division
# MIMIC IIIv14 on postgres 9.4
import os, psycopg2, re, sys, time, numpy as np, pandas as pd
from sklearn import metrics
from datetime import datetime
from datetime import timedelta
from os.path import isfile, isdir, splitext
import argparse
import pickle as cPickle
import numpy.random as npr
import spacy
# TODO(mmd): Upgrade to python 3 and use scispacy (requires python 3.6)
import scispacy
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from datapackage_io_util import (
load_datapackage_schema,
load_sanitized_df_from_csv,
save_sanitized_df_to_csv,
sanitize_df,
)
from heuristic_sentence_splitter import sent_tokenize_rules
from mimic_querier import *
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
SQL_DIR = os.path.join(CURRENT_DIR, 'SQL_Queries')
STATICS_QUERY_PATH = os.path.join(SQL_DIR, 'statics.sql')
CODES_QUERY_PATH = os.path.join(SQL_DIR, 'codes.sql')
NOTES_QUERY_PATH = os.path.join(SQL_DIR, 'notes.sql')
# Output filenames
static_filename = 'static_data.csv'
static_columns_filename = 'static_colnames.txt'
dynamic_filename = 'vitals_hourly_data.csv'
columns_filename = 'vitals_colnames.txt'
subjects_filename = 'subjects.npy'
times_filename = 'fenceposts.npy'
dynamic_hd5_filename = 'vitals_hourly_data.h5'
dynamic_hd5_filt_filename = 'all_hourly_data.h5'
codes_hd5_filename = 'C.h5'
notes_hd5_filename = 'notes.hdf' # N.h5
idx_hd5_filename = 'C_idx.h5'
outcome_filename = 'outcomes_hourly_data.csv'
outcome_hd5_filename = 'outcomes_hourly_data.h5'
outcome_columns_filename = 'outcomes_colnames.txt'
# SQL command params
ID_COLS = ['subject_id', 'hadm_id', 'icustay_id']
ITEM_COLS = ['itemid', 'label', 'LEVEL1', 'LEVEL2']
def add_outcome_indicators(out_gb):
subject_id = out_gb['subject_id'].unique()[0]
hadm_id = out_gb['hadm_id'].unique()[0]
icustay_id = out_gb['icustay_id'].unique()[0]
max_hrs = out_gb['max_hours'].unique()[0]
on_hrs = set()
for index, row in out_gb.iterrows():
on_hrs.update(range(row['starttime'], row['endtime'] + 1))
off_hrs = set(range(max_hrs + 1)) - on_hrs
on_vals = [0]*len(off_hrs) + [1]*len(on_hrs)
hours = list(off_hrs) + list(on_hrs)
return pd.DataFrame({'subject_id': subject_id, 'hadm_id':hadm_id,
'hours_in':hours, 'on':on_vals}) #icustay_id': icustay_id})
def add_blank_indicators(out_gb):
subject_id = out_gb['subject_id'].unique()[0]
hadm_id = out_gb['hadm_id'].unique()[0]
#icustay_id = out_gb['icustay_id'].unique()[0]
max_hrs = out_gb['max_hours'].unique()[0]
hrs = range(max_hrs + 1)
vals = list([0]*len(hrs))
return pd.DataFrame({'subject_id': subject_id, 'hadm_id':hadm_id,
'hours_in':hrs, 'on':vals})#'icustay_id': icustay_id,
def continuous_outcome_processing(out_data, data, icustay_timediff):
"""
Args
----
out_data : pd.DataFrame
index=None
Contains subset of icustay_id corresp to specific sessions where outcome observed.
data : pd.DataFrame
index=icustay_id
Contains full population of static demographic data
Returns
-------
out_data : pd.DataFrame
"""
out_data['intime'] = out_data['icustay_id'].map(data['intime'].to_dict())
out_data['outtime'] = out_data['icustay_id'].map(data['outtime'].to_dict())
out_data['max_hours'] = out_data['icustay_id'].map(icustay_timediff)
out_data['starttime'] = out_data['starttime'] - out_data['intime']
out_data['starttime'] = out_data.starttime.apply(lambda x: x.days*24 + x.seconds//3600)
out_data['endtime'] = out_data['endtime'] - out_data['intime']
out_data['endtime'] = out_data.endtime.apply(lambda x: x.days*24 + x.seconds//3600)
out_data = out_data.groupby(['icustay_id'])
return out_data
#
def fill_missing_times(df_by_sid_hid_itemid):
max_hour = df_by_sid_hid_itemid.index.get_level_values(max_hours)[0]
missing_hours = list(set(range(max_hour+1)) - set(df_by_sid_hid_itemid['hours_in'].unique()))
# Add rows
sid = df_by_sid_hid_itemid.subject_id.unique()[0]
hid = df_by_sid_hid_itemid.hadm_id.unique()[0]
icustay_id = df_by_sid_hid_itemid.icustay_id.unique()[0]
itemid = df_by_sid_hid_itemid.itemid.unique()[0]
filler = pd.DataFrame({'subject_id':[sid]*len(missing_hours),
'hadm_id':[hid]*len(missing_hours),
'icustay_id':[icustay_id]*len(missing_hours),
'itemid':[itemid]*len(missing_hours),
'hours_in':missing_hours,
'value':[np.nan]*len(missing_hours),
'max_hours': [max_hour]*len(missing_hours)})
return pd.concat([df_by_sid_hid_itemid, filler], axis=0)
def save_pop(
data_df, outPath, static_filename, pop_size_int,
static_data_schema, host=None
):
# Connect to local postgres version of mimic
# Serialize to disk
csv_fpath = os.path.join(outPath, static_filename)
save_sanitized_df_to_csv(csv_fpath, data_df, static_data_schema)
return data_df
# From Dave's approach!
def get_variable_mapping(mimic_mapping_filename):
# Read in the second level mapping of the itemids
var_map = pd.read_csv(mimic_mapping_filename, index_col=None)
var_map = var_map.ix[(var_map['LEVEL2'] != '') & (var_map['COUNT']>0)]
var_map = var_map.ix[(var_map['STATUS'] == 'ready')]
var_map['ITEMID'] = var_map['ITEMID'].astype(int)
return var_map
def get_variable_ranges(range_filename):
# Read in the second level mapping of the itemid, and take those values out
columns = [ 'LEVEL2', 'OUTLIER LOW', 'VALID LOW', 'IMPUTE', 'VALID HIGH', 'OUTLIER HIGH' ]
to_rename = dict(zip(columns, [ c.replace(' ', '_') for c in columns ]))
to_rename['LEVEL2'] = 'VARIABLE'
var_ranges = pd.read_csv(range_filename, index_col=None)
var_ranges = var_ranges[columns]
var_ranges.rename(columns=to_rename, inplace=True)
var_ranges = var_ranges.drop_duplicates(subset='VARIABLE', keep='first')
var_ranges['VARIABLE'] = var_ranges['VARIABLE'].str.lower()
var_ranges.set_index('VARIABLE', inplace=True)
var_ranges = var_ranges.loc[var_ranges.notnull().all(axis=1)]
return var_ranges
UNIT_CONVERSIONS = [
('weight', 'oz', None, lambda x: x/16.*0.45359237),
('weight', 'lbs', None, lambda x: x*0.45359237),
('fraction inspired oxygen', None, lambda x: x > 1, lambda x: x/100.),
('oxygen saturation', None, lambda x: x <= 1, lambda x: x*100.),
('temperature', 'f', lambda x: x > 79, lambda x: (x - 32) * 5./9),
('height', 'in', None, lambda x: x*2.54),
]
def standardize_units(X, name_col='itemid', unit_col='valueuom', value_col='value', inplace=True):
if not inplace: X = X.copy()
name_col_vals = get_values_by_name_from_df_column_or_index(X, name_col)
unit_col_vals = get_values_by_name_from_df_column_or_index(X, unit_col)
try:
name_col_vals = name_col_vals.str
unit_col_vals = unit_col_vals.str
except:
print("Can't call *.str")
print(name_col_vals)
print(unit_col_vals)
raise
#name_filter, unit_filter = [
# (lambda n: col.contains(n, case=False, na=False)) for col in (name_col_vals, unit_col_vals)
#]
# TODO(mmd): Why does the above not work, but the below does?
name_filter = lambda n: name_col_vals.contains(n, case=False, na=False)
unit_filter = lambda n: unit_col_vals.contains(n, case=False, na=False)
for name, unit, rng_check_fn, convert_fn in UNIT_CONVERSIONS:
name_filter_idx = name_filter(name)
needs_conversion_filter_idx = name_filter_idx & False
if unit is not None: needs_conversion_filter_idx |= name_filter(unit) | unit_filter(unit)
if rng_check_fn is not None: needs_conversion_filter_idx |= rng_check_fn(X[value_col])
idx = name_filter_idx & needs_conversion_filter_idx
X.loc[idx, value_col] = convert_fn(X[value_col][idx])
return X
def range_unnest(df, col, out_col_name=None, reset_index=False):
assert len(df.index.names) == 1, "Does not support multi-index."
if out_col_name is None: out_col_name = col
col_flat = pd.DataFrame(
[[i, x] for i, y in df[col].iteritems() for x in range(y+1)],
columns=[df.index.names[0], out_col_name]
)
if not reset_index: col_flat = col_flat.set_index(df.index.names[0])
return col_flat
# TODO(mmd): improve args
def save_numerics(
data, X, I, var_map, var_ranges, outPath, dynamic_filename, columns_filename, subjects_filename,
times_filename, dynamic_hd5_filename, group_by_level2, apply_var_limit, min_percent
):
assert len(data) > 0 and len(X) > 0, "Must provide some input data to process."
var_map = var_map[
['LEVEL2', 'ITEMID', 'LEVEL1']
].rename_axis(
{'LEVEL2': 'LEVEL2', 'LEVEL1': 'LEVEL1', 'ITEMID': 'itemid'}, axis=1
).set_index('itemid')
X['value'] = pd.to_numeric(X['value'], 'coerce')
X.astype({k: int for k in ID_COLS}, inplace=True)
to_hours = lambda x: max(0, x.days*24 + x.seconds // 3600)
X = X.set_index('icustay_id').join(data[['intime']])
X['hours_in'] = (X['charttime'] - X['intime']).apply(to_hours)
X.drop(columns=['charttime', 'intime'], inplace=True)
X.set_index('itemid', append=True, inplace=True)
# Pandas has a bug with the below for small X
#X = X.join([var_map, I]).set_index(['label', 'LEVEL1', 'LEVEL2'], append=True)
X = X.join(var_map).join(I).set_index(['label', 'LEVEL1', 'LEVEL2'], append=True)
standardize_units(X, name_col='LEVEL1', inplace=True)
if apply_var_limit > 0:
X = apply_variable_limits(X, var_ranges, 'LEVEL2')
group_item_cols = ['LEVEL2'] if group_by_level2 else ITEM_COLS
X = X.groupby(ID_COLS + group_item_cols + ['hours_in']).agg(['mean', 'std', 'count'])
X.columns = X.columns.droplevel(0)
X.columns.names = ['Aggregation Function']
data['max_hours'] = (data['outtime'] - data['intime']).apply(to_hours)
# TODO(mmd): Maybe can just create the index directly?
missing_hours_fill = range_unnest(data, 'max_hours', out_col_name='hours_in', reset_index=True)
missing_hours_fill['tmp'] = np.NaN
# TODO(mmd): The below is a bit wasteful.
#itemids = var_map.join(I['label']).reset_index()[group_item_cols].drop_duplicates()
#itemids['tmp'] = np.NaN
#missing_hours_fill = missing_hours_fill.merge(itemids, on='tmp', how='outer')
fill_df = data.reset_index()[ID_COLS].join(missing_hours_fill.set_index('icustay_id'), on='icustay_id')
fill_df.set_index(ID_COLS + ['hours_in'], inplace=True)
# Pivot table droups NaN columns so you lose any uniformly NaN.
X = X.unstack(level = group_item_cols)
X.columns = X.columns.reorder_levels(order=group_item_cols + ['Aggregation Function'])
#X = X.reset_index().pivot_table(index=ID_COLS + ['hours_in'], columns=group_item_cols, values=X.columns)
X = X.reindex(fill_df.index)
#X.columns = X.columns.droplevel(0).reorder_levels(order=[1, 0])
#if group_by_level2:
# X.columns.names = ['LEVEL2', 'Aggregation Function'] # Won't work with ungrouped!
#else:
# X.columns.names = ['itemid', 'Aggregation Function']
# X.columms = X.MultiIndex.from_frame(X[ITEM_COLS])
X = X.sort_index(axis=0).sort_index(axis=1)
print("Shape of X : ", X.shape)
# Turn back into columns
if columns_filename is not None:
col_names = [str(x) for x in X.columns.values]
with open(os.path.join(outPath, columns_filename), 'w') as f: f.write('\n'.join(col_names))
# Get the max time for each of the subjects so we can reconstruct!
if subjects_filename is not None:
np.save(os.path.join(outPath, subjects_filename), data['subject_id'].as_matrix())
if times_filename is not None:
np.save(os.path.join(outPath, times_filename), data['max_hours'].as_matrix())
#fix nan in count to be zero
idx = pd.IndexSlice
if group_by_level2:
X.loc[:, idx[:, 'count']] = X.loc[:, idx[:, 'count']].fillna(0)
else:
X.loc[:, idx[:,:,:,:, 'count']] = X.loc[:, idx[:,:,:,:, 'count']].fillna(0)
# Drop columns that have very few recordings
n = round((1-min_percent/100.0)*X.shape[0])
drop_col = []
for k in X.columns:
if k[-1] == 'mean':
if X[k].isnull().sum() > n:
drop_col.append(k[:-1])
X = X.drop(columns = drop_col)
########
if dynamic_filename is not None: np.save(os.path.join(outPath, dynamic_filename), X.as_matrix())
if dynamic_hd5_filename is not None: X.to_hdf(os.path.join(outPath, dynamic_hd5_filename), 'X')
return X
def save_notes(notes, outPath=None, notes_h5_filename=None):
notes_id_cols = list(set(ID_COLS).intersection(notes.columns))# + ['row_id'] TODO: what is row_id?
notes_metadata_cols = ['chartdate', 'charttime', 'category', 'description']
notes.set_index(notes_id_cols + notes_metadata_cols, inplace=True)
# preprocessing!!
# TODO(Scispacy)
# TODO(improve)
# TODO(spell checking)
# TODO(CUIs)
# TODO This takes forever. At the very least add a progress bar.
def sbd_component(doc):
for i, token in enumerate(doc[:-2]):
# define sentence start if period + titlecase token
if token.text == '.' and doc[i+1].is_title:
doc[i+1].sent_start = True
if token.text == '-' and doc[i+1].text != '-':
doc[i+1].sent_start = True
return doc
#convert de-identification text into one token
def fix_deid_tokens(text, processed_text):
deid_regex = r"\[\*\*.{0,15}.*?\*\*\]"
indexes = [m.span() for m in re.finditer(deid_regex,text,flags=re.IGNORECASE)]
for start,end in indexes:
processed_text.merge(start_idx=start,end_idx=end)
return processed_text
nlp = spacy.load('en_core_web_sm') # Maybe try lg model?
nlp.add_pipe(sbd_component, before='parser') # insert before the parser
disabled = nlp.disable_pipes('ner')
def process_sections_helper(section, note, processed_sections):
processed_section = nlp(section['sections'])
processed_section = fix_deid_tokens(section['sections'], processed_section)
processed_sections.append(processed_section)
def process_note_willie_spacy(note):
note_sections = sent_tokenize_rules(note)
processed_sections = []
section_frame = pd.DataFrame({'sections':note_sections})
section_frame.apply(process_sections_helper, args=(note,processed_sections,), axis=1)
return processed_sections
def text_process(sent, note):
sent_text = sent['sents'].text
if len(sent_text) > 0 and sent_text.strip() != '\n':
if '\n'in sent_text:
sent_text = sent_text.replace('\n', ' ')
note['text'] += sent_text + '\n'
def get_sentences(processed_section, note):
sent_frame = pd.DataFrame({'sents': list(processed_section['sections'].sents)})
sent_frame.apply(text_process, args=(note,), axis=1)
def process_frame_text(note):
try:
note_text = str(note['text'])
note['text'] = ''
processed_sections = process_note_willie_spacy(note_text)
ps = {'sections': processed_sections}
ps = pd.DataFrame(ps)
ps.apply(get_sentences, args=(note,), axis=1)
return note
except Exception as e:
print('error', e)
#raise e
notes = notes.apply(process_frame_text, axis=1)
if outPath is not None and notes_h5_filename is not None:
notes.to_hdf(os.path.join(outPath, notes_h5_filename), 'notes')
return notes
def save_icd9_codes(codes, outPath, codes_h5_filename):
codes.set_index(ID_COLS, inplace=True)
codes.to_hdf(os.path.join(outPath, codes_h5_filename), 'C')
return codes
def save_outcome(
data, querier, outPath, outcome_filename, outcome_hd5_filename,
outcome_columns_filename, outcome_schema, host=None
):
""" Retrieve outcomes from DB and save to disk
Vent and vaso are both there already - so pull the start and stop times from there! :)
Returns
-------
Y : Pandas dataframe
Obeys the outcomes data spec
"""
icuids_to_keep = get_values_by_name_from_df_column_or_index(data, 'icustay_id')
icuids_to_keep = set([str(s) for s in icuids_to_keep])
# Add a new column called intime so that we can easily subtract it off
data = data.reset_index()
data = data.set_index('icustay_id')
data['intime'] = pd.to_datetime(data['intime']) #, format="%m/%d/%Y"))
data['outtime'] = pd.to_datetime(data['outtime'])
icustay_timediff_tmp = data['outtime'] - data['intime']
icustay_timediff = pd.Series([timediff.days*24 + timediff.seconds//3600
for timediff in icustay_timediff_tmp], index=data.index.values)
query = """
select i.subject_id, i.hadm_id, v.icustay_id, v.ventnum, v.starttime, v.endtime
FROM icustay_detail i
INNER JOIN ventilation_durations v ON i.icustay_id = v.icustay_id
where v.icustay_id in ({icuids})
and v.starttime between intime and outtime
and v.endtime between intime and outtime;
"""
old_template_vars = querier.exclusion_criteria_template_vars
querier.exclusion_criteria_template_vars = dict(icuids=','.join(icuids_to_keep))
vent_data = querier.query(query_string=query)
vent_data = continuous_outcome_processing(vent_data, data, icustay_timediff)
vent_data = vent_data.apply(add_outcome_indicators)
vent_data.rename(columns = {'on':'vent'}, inplace=True)
vent_data = vent_data.reset_index()
# Get the patients without the intervention in there too so that we
ids_with = vent_data['icustay_id']
ids_with = set(map(int, ids_with))
ids_all = set(map(int, icuids_to_keep))
ids_without = (ids_all - ids_with)
#ids_without = map(int, ids_without)
# Create a new fake dataframe with blanks on all vent entries
out_data = data.copy(deep=True)
out_data = out_data.reset_index()
out_data = out_data.set_index('icustay_id')
out_data = out_data.iloc[out_data.index.isin(ids_without)]
out_data = out_data.reset_index()
out_data = out_data[['subject_id', 'hadm_id', 'icustay_id']]
out_data['max_hours'] = out_data['icustay_id'].map(icustay_timediff)
# Create all 0 column for vent
out_data = out_data.groupby('icustay_id')
out_data = out_data.apply(add_blank_indicators)
out_data.rename(columns = {'on':'vent'}, inplace=True)
out_data = out_data.reset_index()
# Concatenate all the data vertically
Y = pd.concat([vent_data[['subject_id', 'hadm_id', 'icustay_id', 'hours_in', 'vent']],
out_data[['subject_id', 'hadm_id', 'icustay_id', 'hours_in', 'vent']]],
axis=0)
# Start merging all other interventions
table_names = [
'vasopressor_durations',
'adenosine_durations',
'dobutamine_durations',
'dopamine_durations',
'epinephrine_durations',
'isuprel_durations',
'milrinone_durations',
'norepinephrine_durations',
'phenylephrine_durations',
'vasopressin_durations'
]
column_names = ['vaso', 'adenosine', 'dobutamine', 'dopamine', 'epinephrine', 'isuprel',
'milrinone', 'norepinephrine', 'phenylephrine', 'vasopressin']
# TODO(mmd): This section doesn't work. What is its purpose?
for t, c in zip(table_names, column_names):
# TOTAL VASOPRESSOR DATA
query = """
select i.subject_id, i.hadm_id, v.icustay_id, v.vasonum, v.starttime, v.endtime
FROM icustay_detail i
INNER JOIN {table} v ON i.icustay_id = v.icustay_id
where v.icustay_id in ({icuids})
and v.starttime between intime and outtime
and v.endtime between intime and outtime;
"""
new_data = querier.query(query_string=query, extra_template_vars=dict(table=t))
new_data = continuous_outcome_processing(new_data, data, icustay_timediff)
new_data = new_data.apply(add_outcome_indicators)
new_data.rename(columns={'on': c}, inplace=True)
new_data = new_data.reset_index()
# c may not be in Y if we are only extracting a subset of the population, in which c was never
# performed.
if not c in new_data:
print("Column ", c, " not in data.")
continue
Y = Y.merge(
new_data[['subject_id', 'hadm_id', 'icustay_id', 'hours_in', c]],
on=['subject_id', 'hadm_id', 'icustay_id', 'hours_in'],
how='left'
)
# Sort the values
Y.fillna(0, inplace=True)
Y[c] = Y[c].astype(int)
#Y = Y.sort_values(['subject_id', 'icustay_id', 'hours_in']) #.merge(df3,on='name')
Y = Y.reset_index(drop=True)
print('Extracted ' + c + ' from ' + t)
tasks=["colloid_bolus", "crystalloid_bolus", "nivdurations"]
for task in tasks:
if task=='nivdurations':
query = """
select i.subject_id, i.hadm_id, v.icustay_id, v.starttime, v.endtime
FROM icustay_detail i
INNER JOIN {table} v ON i.icustay_id = v.icustay_id
where v.icustay_id in ({icuids})
and v.starttime between intime and outtime
and v.endtime between intime and outtime;
"""
else:
query = """
select i.subject_id, i.hadm_id, v.icustay_id, v.charttime AS starttime,
v.charttime AS endtime
FROM icustay_detail i
INNER JOIN {table} v ON i.icustay_id = v.icustay_id
where v.icustay_id in ({icuids})
and v.charttime between intime and outtime
"""
new_data = querier.query(query_string=query, extra_template_vars=dict(table=task))
if new_data.shape[0] == 0: continue
new_data = continuous_outcome_processing(new_data, data, icustay_timediff)
new_data = new_data.apply(add_outcome_indicators)
new_data.rename(columns = {'on':task}, inplace=True)
new_data = new_data.reset_index()
Y = Y.merge(
new_data[['subject_id', 'hadm_id', 'icustay_id', 'hours_in', task]],
on=['subject_id', 'hadm_id', 'icustay_id', 'hours_in'],
how='left'
)
# Sort the values
Y.fillna(0, inplace=True)
Y[task] = Y[task].astype(int)
Y = Y.reset_index(drop=True)
print('Extracted ' + task)
# TODO: ADD THE RBC/PLT/PLASMA DATA
# TODO: ADD DIALYSIS DATA
# TODO: ADD INFECTION DATA
# TODO: Move queries to files
querier.exclusion_criteria_template_vars = old_template_vars
Y = Y.filter(items=['subject_id', 'hadm_id', 'icustay_id', 'hours_in', 'vent'] + column_names + tasks)
Y.subject_id = Y.subject_id.astype(int)
Y.icustay_id = Y.icustay_id.astype(int)
Y.hours_in = Y.hours_in.astype(int)
Y.vent = Y.vent.astype(int)
Y.vaso = Y.vaso.astype(int)
y_id_cols = ID_COLS + ['hours_in']
Y = Y.sort_values(y_id_cols)
Y.set_index(y_id_cols, inplace=True)
print('Shape of Y : ', Y.shape)
# SAVE AS NUMPY ARRAYS AND TEXT FILES
#np_Y = Y.as_matrix()
#np.save(os.path.join(outPath, outcome_filename), np_Y)
# Turn back into columns
df = Y.reset_index()
df = sanitize_df(df, outcome_schema)
csv_fpath = os.path.join(outPath, outcome_filename)
save_sanitized_df_to_csv(csv_fpath, df, outcome_schema)
col_names = list(df.columns.values)
col_names = col_names[3:]
with open(os.path.join(outPath, outcome_columns_filename), 'w') as f:
f.write('\n'.join(col_names))
# TODO(mmd): Why does df have the index? Is sanitize making multiindex?
# SAVE THE DATA AS A PANDAS OBJECT
# TODO(mike hughes): Why writing out Y after you've separately sanitized df?
Y.to_hdf(os.path.join(outPath, outcome_hd5_filename), 'Y')
return df
# Apply the variable limits to remove things
# TODO(mmd): controlled printing.
def apply_variable_limits(df, var_ranges, var_names_index_col='LEVEL2'):
idx_vals = df.index.get_level_values(var_names_index_col)
non_null_idx = ~df.value.isnull()
var_names = set(idx_vals)
var_range_names = set(var_ranges.index.values)
for var_name in var_names:
var_name_lower = var_name.lower()
if var_name_lower not in var_range_names:
print("No known ranges for %s" % var_name)
continue
outlier_low_val, outlier_high_val, valid_low_val, valid_high_val = [
var_ranges.loc[var_name_lower, x] for x in ('OUTLIER_LOW','OUTLIER_HIGH','VALID_LOW','VALID_HIGH')
]
running_idx = non_null_idx & (idx_vals == var_name)
outlier_low_idx = (df.value < outlier_low_val)
outlier_high_idx = (df.value > outlier_high_val)
valid_low_idx = ~outlier_low_idx & (df.value < valid_low_val)
valid_high_idx = ~outlier_high_idx & (df.value > valid_high_val)
var_outlier_idx = running_idx & (outlier_low_idx | outlier_high_idx)
var_valid_low_idx = running_idx & valid_low_idx
var_valid_high_idx = running_idx & valid_high_idx
df.loc[var_outlier_idx, 'value'] = np.nan
df.loc[var_valid_low_idx, 'value'] = valid_low_val
df.loc[var_valid_high_idx, 'value'] = valid_high_val
n_outlier = sum(var_outlier_idx)
n_valid_low = sum(var_valid_low_idx)
n_valid_high = sum(var_valid_high_idx)
if n_outlier + n_valid_low + n_valid_high > 0:
print(
"%s had %d / %d rows cleaned:\n"
" %d rows were strict outliers, set to np.nan\n"
" %d rows were low valid outliers, set to %.2f\n"
" %d rows were high valid outliers, set to %.2f\n"
"" % (
var_name,
n_outlier + n_valid_low + n_valid_high, sum(running_idx),
n_outlier, n_valid_low, valid_low_val, n_valid_high, valid_high_val
)
)
return df
def plot_variable_histograms(col_names, df):
# Plot some of the data, just to make sure it looks ok
for c, vals in df.iteritems():
n = vals.dropna().count()
if n < 2: continue
# get median, variance, skewness
med = vals.dropna().median()
var = vals.dropna().var()
skew = vals.dropna().skew()
# plot
fig = plt.figure(figsize=(13, 6))
plt.subplots(figsize=(13,6))
vals.dropna().plot.hist(bins=100, label='HIST (n={})'.format(n))
# fake plots for KS test, median, etc
plt.plot([], label=' ',color='lightgray')
plt.plot([], label='Median: {}'.format(format(med,'.2f')),
color='lightgray')
plt.plot([], label='Variance: {}'.format(format(var,'.2f')),
color='lightgray')
plt.plot([], label='Skew: {}'.format(format(skew,'.2f')),
color='light:gray')
# add title, labels etc.
plt.title('{} measurements in ICU '.format(str(c)))
plt.xlabel(str(c))
plt.legend(loc="upper left", bbox_to_anchor=(1,1),fontsize=12)
plt.xlim(0, vals.quantile(0.99))
fig.savefig(os.path.join(outPath, (str(c) + '_HIST_.png')), bbox_inches='tight')
# Main, where you can call what makes sense.
if __name__ == '__main__':
print("Running!")
# Construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument('--out_path', type=str, default= '/scratch/{}/phys_acuity_modelling/data'.format(os.environ['USER']),
help='Enter the path you want the output')
ap.add_argument('--resource_path',
type=str,
default=os.path.expandvars("$MIMIC_EXTRACT_CODE_DIR/resources/"))
ap.add_argument('--queries_path',
type=str,
default=os.path.expandvars("$MIMIC_EXTRACT_CODE_DIR/SQL_Queries/"))
ap.add_argument('--extract_pop', type=int, default=1,
help='Whether or not to extract population data: 0 - no extraction, ' +
'1 - extract if not present in the data directory, 2 - extract even if there is data')
ap.add_argument('--extract_numerics', type=int, default=1,
help='Whether or not to extract numerics data: 0 - no extraction, ' +
'1 - extract if not present in the data directory, 2 - extract even if there is data')
ap.add_argument('--extract_outcomes', type=int, default=1,
help='Whether or not to extract outcome data: 0 - no extraction, ' +
'1 - extract if not present in the data directory, 2 - extract even if there is data')
ap.add_argument('--extract_codes', type=int, default=1,
help='Whether or not to extract ICD9 codes: 0 - no extraction, ' +
'1 - extract if not present in the data directory, 2 - extract even if there is data')
ap.add_argument('--extract_notes', type=int, default=1,
help='Whether or not to extract notes: 0 - no extraction, ' +
'1 - extract if not present in the data directory, 2 - extract even if there is data')
ap.add_argument('--pop_size', type=int, default=0,
help='Size of population to extract')
ap.add_argument('--exit_after_loading', type=int, default=0)
ap.add_argument('--var_limits', type=int, default=1,
help='Whether to create a version of the data with variable limits included. ' +
'1 - apply variable limits, 0 - do not apply variable limits')
ap.add_argument('--plot_hist', type=int, default=1,
help='Whether to plot the histograms of the data')
ap.add_argument('--psql_host', type=str, default=None,
help='Postgres host. Try "/var/run/postgresql/" for Unix domain socket errors.')
ap.add_argument('--psql_dbname', type=str, default='mimic',
help='Postgres database name.')
ap.add_argument('--psql_schema_name', type=str, default='public,mimiciii',
help='Postgres database name.')
ap.add_argument('--psql_user', type=str, default=None,
help='Postgres user.')
ap.add_argument('--psql_password', type=str, default=None,
help='Postgres password.')
ap.add_argument('--no_group_by_level2', action='store_false', dest='group_by_level2', default=True,
help="Don't group by level2.")
ap.add_argument('--min_percent', type=float, default=0.0,
help='Minimum percentage of row numbers need to be observations for each numeric column. ' +
'min_percent = 1 means columns with more than 99 percent of nan will be removed. ' +
'Note that as our code does not split the data into train/test sets, ' +
'removing columns in this way prior to train/test splitting yields in a (very minor) ' +
'form of leakage across the train/test set, as the overall missingness measures are used ' +
'that are based on both the train and test sets, rather than just the train set.')
ap.add_argument('--min_age', type=int, default=15,
help='Minimum age of patients to be included')
ap.add_argument('--min_duration', type=int, default=12,
help='Minimum hours of stay to be included')
ap.add_argument('--max_duration', type=int, default=240,
help='Maximum hours of stay to be included')
#############
# Parse args
args = vars(ap.parse_args())
for key in sorted(args.keys()):
print(key, args[key])
if not isdir(args['resource_path']):
raise ValueError("Invalid resource_path: %s" % args['resource_path'])
mimic_mapping_filename = os.path.join(args['resource_path'], 'itemid_to_variable_map.csv')
range_filename = os.path.join(args['resource_path'], 'variable_ranges.csv')
# Load specs for output tables
static_data_schema = load_datapackage_schema(
os.path.join(args['resource_path'], 'static_data_spec.json'))
outcome_data_schema = load_datapackage_schema(
os.path.join(args['resource_path'], 'outcome_data_spec.json'))
if not isdir(args['out_path']):
print('ERROR: OUTPATH %s DOES NOT EXIST' % args['out_path'])
sys.exit()
else:
outPath = args['out_path']
# Modify the filenames
if args['pop_size'] > 0:
pop_size = str(args['pop_size'])
static_filename = splitext(static_filename)[0] + '_' + pop_size + splitext(static_filename)[1]
dynamic_filename = splitext(dynamic_filename)[0] + '_' + pop_size + splitext(dynamic_filename)[1]
#columns_filename = splitext(columns_filename)[0] + '_' + pop_size + splitext(columns_filename)[1]
subjects_filename = splitext(subjects_filename)[0] + '_' + pop_size + splitext(subjects_filename)[1]
times_filename = splitext(times_filename)[0] + '_' + pop_size + splitext(times_filename)[1]
dynamic_hd5_filename = splitext(dynamic_hd5_filename)[0] + '_' + pop_size + splitext(dynamic_hd5_filename)[1]
outcome_filename = splitext(outcome_filename)[0] + '_' + pop_size + splitext(outcome_filename)[1]
dynamic_hd5_filt_filename = splitext(dynamic_hd5_filt_filename)[0] + '_' + pop_size + splitext(dynamic_hd5_filt_filename)[1]
outcome_hd5_filename = splitext(outcome_hd5_filename)[0] + '_' + pop_size + splitext(outcome_hd5_filename)[1]
#outcome_columns_filename = splitext(outcome_columns_filename)[0] + '_' + pop_size + splitext(outcome_columns_filename)[1]
codes_hd5_filename = splitext(codes_hd5_filename)[0] + '_' + pop_size + splitext(codes_hd5_filename)[1]
notes_hd5_filename = splitext(notes_hd5_filename)[0] + '_' + pop_size + splitext(notes_hd5_filename)[1]
idx_hd5_filename = splitext(idx_hd5_filename)[0] + '_' + pop_size + splitext(idx_hd5_filename)[1]
dbname = args['psql_dbname']
schema_name = args['psql_schema_name']
query_args = {'dbname': dbname}
if args['psql_host'] is not None: query_args['host'] = args['psql_host']
if args['psql_user'] is not None: query_args['user'] = args['psql_user']
if args['psql_password'] is not None: query_args['password'] = args['psql_password']
querier = MIMIC_Querier(query_args=query_args, schema_name=schema_name)
#############
# Population extraction
data = None
if (args['extract_pop'] == 0 | (args['extract_pop'] == 1) ) & isfile(os.path.join(outPath, static_filename)):
print("Reloading data from %s" % os.path.join(outPath, static_filename))
data = pd.read_csv(os.path.join(outPath, static_filename))
data = sanitize_df(data, static_data_schema)
elif (args['extract_pop'] == 1 & (not isfile(os.path.join(outPath, static_filename)))) | (args['extract_pop'] == 2):
print("Building data from scratch.")
pop_size_string = ''
if args['pop_size'] > 0:
pop_size_string = 'LIMIT ' + str(args['pop_size'])
min_age_string = str(args['min_age'])
min_dur_string = str(args['min_duration'])
max_dur_string = str(args['max_duration'])
min_day_string = str(float(args['min_duration'])/24)
template_vars = dict(
limit=pop_size_string, min_age=min_age_string, min_dur=min_dur_string, max_dur=max_dur_string,
min_day=min_day_string
)
data_df = querier.query(query_file=STATICS_QUERY_PATH, extra_template_vars=template_vars)
data_df = sanitize_df(data_df, static_data_schema)
print("Storing data @ %s" % os.path.join(outPath, static_filename))
data = save_pop(data_df, outPath, static_filename, args['pop_size'], static_data_schema)
if data is None: print('SKIPPED static_data')
else:
# So all subsequent queries will limit to just that already extracted in data_df.
querier.add_exclusion_criteria_from_df(data, columns=['hadm_id', 'subject_id'])
print("loaded static_data")
#############
# If there is numerics extraction
X = None
if (args['extract_numerics'] == 0 | (args['extract_numerics'] == 1) ) & isfile(os.path.join(outPath, dynamic_hd5_filename)):
print("Reloading X from %s" % os.path.join(outPath, dynamic_hd5_filename))
X = pd.read_hdf(os.path.join(outPath, dynamic_hd5_filename))
elif (args['extract_numerics'] == 1 & (not isfile(os.path.join(outPath, dynamic_hd5_filename)))) | (args['extract_numerics'] == 2):
print("Extracting vitals data...")
start_time = time.time()
########
# Step 1) Get the set of variables we want for the patients we've identified!
icuids_to_keep = get_values_by_name_from_df_column_or_index(data, 'icustay_id')
icuids_to_keep = set([str(s) for s in icuids_to_keep])
data = data.copy(deep=True).reset_index().set_index('icustay_id')
# Select out SID, TIME, ITEMID, VALUE form each of the sources!
var_map = get_variable_mapping(mimic_mapping_filename)
var_ranges = get_variable_ranges(range_filename)
chartitems_to_keep = var_map.loc[var_map['LINKSTO'] == 'chartevents'].ITEMID
chartitems_to_keep = set([ str(i) for i in chartitems_to_keep ])
labitems_to_keep = var_map.loc[var_map['LINKSTO'] == 'labevents'].ITEMID
labitems_to_keep = set([ str(i) for i in labitems_to_keep ])
# TODO(mmd): Use querier, move to file
con = psycopg2.connect(**query_args)
cur = con.cursor()
print(" starting db query with %d subjects..." % (len(icuids_to_keep)))
cur.execute('SET search_path to ' + schema_name)
query = \
"""
select c.subject_id, i.hadm_id, c.icustay_id, c.charttime, c.itemid, c.value, valueuom
FROM icustay_detail i
INNER JOIN chartevents c ON i.icustay_id = c.icustay_id
where c.icustay_id in ({icuids})
and c.itemid in ({chitem})
and c.charttime between intime and outtime
and c.error is distinct from 1
and c.valuenum is not null
UNION ALL
select distinct i.subject_id, i.hadm_id, i.icustay_id, l.charttime, l.itemid, l.value, valueuom
FROM icustay_detail i
INNER JOIN labevents l ON i.hadm_id = l.hadm_id
where i.icustay_id in ({icuids})
and l.itemid in ({lbitem})
and l.charttime between (intime - interval '6' hour) and outtime
and l.valuenum > 0 -- lab values cannot be 0 and cannot be negative
;
""".format(icuids=','.join(icuids_to_keep), chitem=','.join(chartitems_to_keep), lbitem=','.join(labitems_to_keep))
X = pd.read_sql_query(query, con)
itemids = set(X.itemid.astype(str))
query_d_items = \
"""
SELECT itemid, label, dbsource, linksto, category, unitname
FROM d_items
WHERE itemid in ({itemids})
;
""".format(itemids=','.join(itemids))
I = pd.read_sql_query(query_d_items, con).set_index('itemid')
cur.close()
con.close()
print(" db query finished after %.3f sec" % (time.time() - start_time))
X = save_numerics(
data, X, I, var_map, var_ranges, outPath, dynamic_filename, columns_filename, subjects_filename,
times_filename, dynamic_hd5_filename, group_by_level2=args['group_by_level2'], apply_var_limit=args['var_limits'],
min_percent=args['min_percent']
)
if X is None: print("SKIPPED vitals_hourly_data")
else: print("LOADED vitals_hourly_data")
#############
# If there is codes extraction
C = None
if ( (args['extract_codes'] == 0) or (args['extract_codes'] == 1) ) and isfile(os.path.join(outPath, codes_hd5_filename)):
print("Reloading codes from %s" % os.path.join(outPath, codes_hd5_filename))
C = pd.read_hdf(os.path.join(outPath, codes_hd5_filename))
elif ( (args['extract_codes'] == 1) and (not isfile(os.path.join(outPath, codes_hd5_filename))) ) or (args['extract_codes'] == 2):
print("Saving codes...")
codes = querier.query(query_file=CODES_QUERY_PATH)
C = save_icd9_codes(codes, outPath, codes_hd5_filename)
if C is None: print("SKIPPED codes_data")
else: print("LOADED codes_data")
#############
# If there is notes extraction
N = None
if ( (args['extract_notes'] == 0) or (args['extract_codes'] == 1) ) and isfile(os.path.join(outPath, notes_hd5_filename)):
print("Reloading Notes.")
N = pd.read_hdf(os.path.join(outPath, notes_hd5_filename))
elif ( (args['extract_notes'] == 1) and (not isfile(os.path.join(outPath, notes_hd5_filename))) ) or (args['extract_notes'] == 2):
print("Saving notes...")
notes = querier.query(query_file=NOTES_QUERY_PATH)
N = save_notes(notes, outPath, notes_hd5_filename)
if N is None: print("SKIPPED notes_data")
else: print("LOADED notes_data")
#############
# If there is outcome extraction
Y = None
if ( (args['extract_outcomes'] == 0) | (args['extract_outcomes'] == 1) ) & isfile(os.path.join(outPath, outcome_hd5_filename)):
print("Reloading outcomes")
Y = pd.read_hdf(os.path.join(outPath, outcome_hd5_filename))
elif ( (args['extract_outcomes'] == 1) & (not isfile(os.path.join(outPath, outcome_hd5_filename))) ) | (args['extract_outcomes'] == 2):
print("Saving Outcomes...")
Y = save_outcome(
data, querier, outPath, outcome_filename, outcome_hd5_filename,
outcome_columns_filename, outcome_data_schema, host=args['psql_host'],
)
if X is not None: print("Numerics", X.shape, X.index.names, X.columns.names)
if Y is not None: print("Outcomes", Y.shape, Y.index.names, Y.columns.names, Y.columns)
if C is not None: print("Codes", C.shape, C.index.names, C.columns.names)
if N is not None: print("Notes", N.shape, N.index.names, N.columns.names)
# TODO(mmd): Do we want to align N like the others? Seems maybe wrong?
print(data.shape, data.index.names, data.columns.names)
if args['exit_after_loading']:
sys.exit()
shared_idx = X.index
shared_sub = list(X.index.get_level_values('icustay_id').unique())
#X = X.loc[shared_idx]
# TODO(mmd): Why does this work?
Y = Y.loc[shared_idx]
# Problems start here.
if C is not None: C = C.loc[shared_idx]
data = data[data.index.get_level_values('icustay_id').isin(set(shared_sub))]
data = data.reset_index().set_index(ID_COLS)
# Map the lowering function to all column names
X.columns = pd.MultiIndex.from_tuples(
[tuple((str(l).lower() for l in cols)) for cols in X.columns], names=X.columns.names
)
if args['group_by_level2']:
var_names = list(X.columns.get_level_values('LEVEL2'))
else:
var_names = list(X.columns.get_level_values('itemid'))
Y.columns = Y.columns.str.lower()