-
Notifications
You must be signed in to change notification settings - Fork 1
/
i8080_microcode.vhd
2289 lines (1618 loc) · 50.1 KB
/
i8080_microcode.vhd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
library ieee;
use ieee.std_logic_1164.all;
use work.i8080_util.all;
use work.i8080_microcode_util.all;
entity i8080_microcode is
port (
current_ui: in microinstruction;
inst_byte: in std_logic_vector(7 downto 0);
cs: out cpu_control_signals := CPU_CONTROL_SIGNALS_DEFAULT
);
end entity;
architecture rtl of i8080_microcode is
begin
microcode_proc: process (current_ui) is
variable csi: cpu_control_signals := CPU_CONTROL_SIGNALS_DEFAULT;
begin
csi := CPU_CONTROL_SIGNALS_DEFAULT;
case current_ui is
when fetch_inst_0 =>
-- If there is an interrupt and ie = '1', handle it.
csi.uc.op := Try_jump_to_int_handler;
when fetch_inst_1 =>
-- Register PC to output address register
csi.a.load := LOAD_PC;
when fetch_inst_2 =>
-- Fetch the instruction at PC
csi.m.op := Read;
when fetch_inst_3 =>
-- csi.uc.op := Jump_next_when_read_complete;
when fetch_inst_4 =>
-- Enable the data input register
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
when fetch_inst_5 =>
-- Enable the instruction register
csi.r.ir_ce := '1';
when fetch_inst_6 =>
-- Update PC to point to next instruction
csi.r.pc := PC_LOAD_NIA;
when fetch_inst_7 =>
-- Jump to corresponding microroutine
csi.uc.op := Jump_inst_byte;
when inst_LXI_0 =>
-- Increment addr by 1
csi.a.load := LOAD_OFFSET;
csi.a.offset := 1;
when inst_LXI_1 =>
-- Fetch low byte
csi.m.op := Read;
when inst_LXI_2 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_LXI_3 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
when inst_LXI_4 =>
csi.r.rf.sel_input_class := RF_SEL_DATA_IN;
csi.r.rf.sel := get_rf_sel_LXI_low(inst_byte);
csi.r.rf.en := '1';
csi.r.rf.wren := '1';
when inst_LXI_5 =>
-- Increment addr by 1
csi.a.load := LOAD_OFFSET;
csi.a.offset := 1;
when inst_LXI_6 =>
-- Fetch high byte
csi.m.op := Read;
when inst_LXI_7 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_LXI_8 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
when inst_LXI_9 =>
csi.r.rf.sel_input_class := RF_SEL_DATA_IN;
csi.r.rf.sel := get_rf_sel_LXI_high(inst_byte);
csi.r.rf.en := '1';
csi.r.rf.wren := '1';
csi.uc.op := Jump_fetch_inst_0;
when inst_MVI_R_0 =>
-- Increment addr by 1
csi.a.load := LOAD_OFFSET;
csi.a.offset := 1;
when inst_MVI_R_1 =>
-- Fetch byte
csi.m.op := Read;
when inst_MVI_R_2 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_MVI_R_3 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
when inst_MVI_R_4 =>
csi.r.rf.sel_input_class := RF_SEL_DATA_IN;
csi.r.rf.sel := get_rf_sel_MVI_R(inst_byte);
csi.r.rf.en := '1';
csi.r.rf.wren := '1';
csi.uc.op := Jump_fetch_inst_0;
when inst_MVI_M_0 =>
-- Increment addr by 1
csi.a.load := LOAD_OFFSET;
csi.a.offset := 1;
when inst_MVI_M_1 =>
-- Fetch byte
csi.m.op := Read;
when inst_MVI_M_2 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_MVI_M_3 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
-- Now we need to address *HL. Load HL into address regster.
when inst_MVI_M_4 =>
csi.r.rf.sel_input_class := RF_SEL_DATA_IN;
csi.r.rf.sel := RF_H;
csi.r.rf.en := '1';
when inst_MVI_M_5 =>
csi.a.load := LOAD_RF_H;
when inst_MVI_M_6 =>
csi.r.rf.sel_input_class := RF_SEL_DATA_IN;
csi.r.rf.sel := RF_L;
csi.r.rf.en := '1';
when inst_MVI_M_7 =>
csi.a.load := LOAD_RF_L;
-- Now load the data output register
when inst_MVI_M_8 =>
csi.r.do := LOAD_DI;
-- Now write the data in register to *HL that is loaded into addr reg.
when inst_MVI_M_9 =>
csi.m.op := Write;
csi.uc.op := Jump_fetch_inst_0;
-- First we load the low byte address buffer register
when inst_STA_0 =>
-- Increment addr by 1
csi.a.load := LOAD_OFFSET;
csi.a.offset := 1;
when inst_STA_1 =>
-- Fetch byte
csi.m.op := Read;
when inst_STA_2 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_STA_3 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
when inst_STA_4 =>
csi.a.loadbuf := LOAD_DATA_IN_L;
-- Now load the high byte address buffer register
when inst_STA_5 =>
-- Increment addr by 1
csi.a.load := LOAD_OFFSET;
csi.a.offset := 1;
when inst_STA_6 =>
-- Fetch byte
csi.m.op := Read;
when inst_STA_7 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_STA_8 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
when inst_STA_9 =>
csi.a.loadbuf := LOAD_DATA_IN_H;
-- The address buffer register is ready, but before we commit it to
-- the address register, lets get the accumulator out on the output
-- data register.
when inst_STA_10 =>
csi.r.rf.sel := RF_A;
csi.r.rf.en := '1';
when inst_STA_11 =>
csi.r.do := LOAD_RF;
-- Now load the address register proper
when inst_STA_12 =>
csi.a.load := LOAD_BUFFER;
-- Now issue the write command and leave
when inst_STA_13 =>
csi.m.op := Write;
csi.uc.op := Jump_fetch_inst_0;
-- First we load the low byte address buffer register
when inst_LDA_0 =>
-- Increment addr by 1
csi.a.load := LOAD_OFFSET;
csi.a.offset := 1;
when inst_LDA_1 =>
-- Fetch byte
csi.m.op := Read;
when inst_LDA_2 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_LDA_3 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
when inst_LDA_4 =>
csi.a.loadbuf := LOAD_DATA_IN_L;
-- Now load the high byte address buffer register
when inst_LDA_5 =>
-- Increment addr by 1
csi.a.load := LOAD_OFFSET;
csi.a.offset := 1;
when inst_LDA_6 =>
-- Fetch byte
csi.m.op := Read;
when inst_LDA_7 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_LDA_8 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
when inst_LDA_9 =>
csi.a.loadbuf := LOAD_DATA_IN_H;
-- Now load the address register proper
when inst_LDA_10 =>
csi.a.load := LOAD_BUFFER;
-- Read byte
when inst_LDA_11 =>
csi.m.op := Read;
when inst_LDA_12 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_LDA_13 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
-- Write byte to accumulator
when inst_LDA_14 =>
csi.r.rf.sel := RF_A;
csi.r.rf.sel_input_class := RF_SEL_DATA_IN;
csi.r.rf.en := '1';
csi.r.rf.wren := '1';
csi.uc.op := Jump_fetch_inst_0;
-- First we load the low byte address buffer register
when inst_SHLD_0 =>
-- Increment addr by 1
csi.a.load := LOAD_OFFSET;
csi.a.offset := 1;
when inst_SHLD_1 =>
-- Fetch byte
csi.m.op := Read;
when inst_SHLD_2 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_SHLD_3 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
when inst_SHLD_4 =>
csi.a.loadbuf := LOAD_DATA_IN_L;
-- Now load the high byte address buffer register
when inst_SHLD_5 =>
-- Increment addr by 1
csi.a.load := LOAD_OFFSET;
csi.a.offset := 1;
when inst_SHLD_6 =>
-- Fetch byte
csi.m.op := Read;
when inst_SHLD_7 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_SHLD_8 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
when inst_SHLD_9 =>
csi.a.loadbuf := LOAD_DATA_IN_H;
-- Load address register with [HI] [LO]
when inst_SHLD_10 =>
csi.a.load := LOAD_BUFFER;
-- Now load register L
when inst_SHLD_11 =>
csi.r.rf.sel := RF_L;
csi.r.rf.en := '1';
-- Load register L to data output
when inst_SHLD_12 =>
csi.r.do := LOAD_RF;
-- Write L to *([high][low])
when inst_SHLD_13 =>
csi.m.op := Write;
-- Increment address
when inst_SHLD_14 =>
csi.a.load := LOAD_OFFSET;
csi.a.offset := 1;
-- Now load register H
when inst_SHLD_15 =>
csi.r.rf.sel := RF_H;
csi.r.rf.en := '1';
-- Load register H to data output
when inst_SHLD_16 =>
csi.r.do := LOAD_RF;
-- Write H to *([high][low]) and LEAVE
when inst_SHLD_17 =>
csi.m.op := Write;
csi.uc.op := Jump_fetch_inst_0;
-- First we load the low byte argument
when inst_LHLD_0 =>
-- Increment addr by 1
csi.a.load := LOAD_OFFSET;
csi.a.offset := 1;
when inst_LHLD_1 =>
-- Fetch byte
csi.m.op := Read;
when inst_LHLD_2 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_LHLD_3 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
-- Now load the low byte into the address buffer
when inst_LHLD_4 =>
csi.a.loadbuf := LOAD_DATA_IN_L;
-- Now load the high byte argument
when inst_LHLD_5 =>
-- Increment addr by 1
csi.a.load := LOAD_OFFSET;
csi.a.offset := 1;
when inst_LHLD_6 =>
-- Fetch byte
csi.m.op := Read;
when inst_LHLD_7 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_LHLD_8 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
-- Now load high low byte into the address buffer
when inst_LHLD_9 =>
csi.a.loadbuf := LOAD_DATA_IN_H;
-- Load address register with [HI] [LO]
when inst_LHLD_10 =>
csi.a.load := LOAD_BUFFER;
-- Fetch low byte
when inst_LHLD_11 =>
csi.m.op := Read;
when inst_LHLD_12 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_LHLD_13 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
-- Load data into register L
when inst_LHLD_14 =>
csi.r.rf.sel_input_class := RF_SEL_DATA_IN;
csi.r.rf.sel := RF_L;
csi.r.rf.en := '1';
csi.r.rf.wren := '1';
-- Increment address
when inst_LHLD_15 =>
csi.a.load := LOAD_OFFSET;
csi.a.offset := 1;
when inst_LHLD_16 =>
csi.m.op := Read;
when inst_LHLD_17 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_LHLD_18 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
-- Load data into register H
when inst_LHLD_19 =>
csi.r.rf.sel_input_class := RF_SEL_DATA_IN;
csi.r.rf.sel := RF_H;
csi.r.rf.en := '1';
csi.r.rf.wren := '1';
csi.uc.op := Jump_fetch_inst_0;
-- Move register src to register dest
when inst_MOV_RR_0 =>
csi.r.rf.sel := get_rf_sel_MOV_RR_src(inst_byte);
csi.r.rf.en := '1';
when inst_MOV_RR_1 =>
csi.r.rf.sel_input_class := RF_SEL_SELF;
csi.r.rf.sel := get_rf_sel_MOV_RR_dest(inst_byte);
csi.r.rf.en := '1';
csi.r.rf.wren := '1';
csi.uc.op := Jump_fetch_inst_0;
-- Move register src to *(HL)
-- First, load address register with HL. We can bypass address buffer
-- because all data is already available.
when inst_MOV_RM_0 =>
csi.r.rf.sel := RF_L;
csi.r.rf.en := '1';
when inst_MOV_RM_1 =>
csi.a.load := LOAD_RF_L;
when inst_MOV_RM_2 =>
csi.r.rf.sel := RF_H;
csi.r.rf.en := '1';
when inst_MOV_RM_3 =>
csi.a.load := LOAD_RF_H;
-- Now load the register in the src to data output register
when inst_MOV_RM_4 =>
csi.r.rf.sel := get_rf_sel_MOV_RM_src(inst_byte);
csi.r.rf.en := '1';
when inst_MOV_RM_5 =>
csi.r.do := LOAD_RF;
when inst_MOV_RM_6 =>
csi.m.op := Write;
csi.uc.op := Jump_fetch_inst_0;
-- Move value pointed by immed16 to register in dst bitmask.
-- First, load immed16 into addr buffer (wee need to icnrement addr for 2nd immed8)
when inst_MOV_MR_0 =>
csi.a.load := LOAD_OFFSET;
csi.a.offset := 1;
when inst_MOV_MR_1 =>
csi.m.op := Read;
when inst_MOV_MR_2 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_MOV_MR_3 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
when inst_MOV_MR_4 =>
csi.a.loadbuf := LOAD_DATA_IN_L;
when inst_MOV_MR_5 =>
csi.a.load := LOAD_OFFSET;
csi.a.offset := 1;
when inst_MOV_MR_6 =>
csi.m.op := Read;
when inst_MOV_MR_7 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_MOV_MR_8 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
when inst_MOV_MR_9 =>
csi.a.loadbuf := LOAD_DATA_IN_H;
-- Read request for the specified byte
when inst_MOV_MR_10 =>
csi.a.load := LOAD_BUFFER;
when inst_MOV_MR_11 =>
csi.m.op := Read;
when inst_MOV_MR_12 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_MOV_MR_13 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
-- Load specified byte into corresponding dest register
when inst_MOV_MR_14 =>
csi.r.rf.sel_input_class := RF_SEL_DATA_IN;
csi.r.rf.sel := get_rf_sel_MOV_MR_dest(inst_byte);
csi.r.rf.en := '1';
csi.r.rf.wren := '1';
csi.uc.op := Jump_fetch_inst_0;
-- Store accumulator into register pair *BC or *DE depending on bit 4.
-- Get the low register into the output address register (dont need buffer)
when inst_STAX_0 =>
csi.r.rf.sel := get_rf_sel_STAX_L(inst_byte);
csi.r.rf.en := '1';
when inst_STAX_1 =>
-- Register the low output address register
csi.a.load := LOAD_RF_L;
-- Get the high register into the output address register (dont need buffer)
when inst_STAX_2 =>
csi.r.rf.sel := get_rf_sel_STAX_H(inst_byte);
csi.r.rf.en := '1';
when inst_STAX_3 =>
-- Register the low output address register
csi.a.load := LOAD_RF_H;
-- Register accumulator into output data register
when inst_STAX_4 =>
csi.r.rf.sel := RF_A;
csi.r.rf.en := '1';
when inst_STAX_5 =>
csi.r.do := LOAD_RF;
when inst_STAX_6 =>
csi.m.op := Write;
csi.uc.op := Jump_fetch_inst_0;
-- Load accumulator from register pair *BC or *DE depending on bit 4.
-- Get the low register into the output address register (dont need buffer)
when inst_LDAX_0 =>
csi.r.rf.sel := get_rf_sel_LDAX_L(inst_byte);
csi.r.rf.en := '1';
when inst_LDAX_1 =>
-- Register the low output address register
csi.a.load := LOAD_RF_L;
-- Get the high register into the output address register (dont need buffer)
when inst_LDAX_2 =>
csi.r.rf.sel := get_rf_sel_LDAX_H(inst_byte);
csi.r.rf.en := '1';
when inst_LDAX_3 =>
-- Register the low output address register
csi.a.load := LOAD_RF_H;
-- Read byte
when inst_LDAX_4 =>
csi.m.op := Read;
when inst_LDAX_5 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_LDAX_6 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
-- Write byte and exit
when inst_LDAX_7 =>
csi.r.rf.sel_input_class := RF_SEL_DATA_IN;
csi.r.rf.sel := RF_A;
csi.r.rf.en := '1';
csi.r.rf.wren := '1';
csi.uc.op := Jump_fetch_inst_0;
when inst_INR_R_0 =>
-- Load given register
csi.r.rf.sel := get_rf_sel_INR(inst_byte);
csi.r.rf.en := '1';
when inst_INR_R_1 =>
-- Load selected register into RHS of ALU
csi.alu.rsel := ALU_INPUT_RF_DO;
csi.alu.rhs_ce := '1';
when inst_INR_R_2 =>
-- Issue increment operation to ALU
csi.alu.op := ALU_OP_INC;
when inst_INR_R_3 =>
-- Issue update SZP flags operation to ALU
csi.alu.op := ALU_OP_SET_SZP_FLAGS;
when inst_INR_R_4 =>
-- Writeback register to register file
csi.r.rf.sel_input_class := RF_SEL_ALU;
csi.r.rf.sel := get_rf_sel_INR(inst_byte);
csi.r.rf.en := '1';
csi.r.rf.wren := '1';
-- Fetch next instruction
csi.uc.op := Jump_fetch_inst_0;
-- Get the HL registers into the output address register (dont need buffer)
when inst_INR_M_0 =>
csi.r.rf.sel := RF_L;
csi.r.rf.en := '1';
when inst_INR_M_1 =>
-- Register the low output address register
csi.a.load := LOAD_RF_L;
-- Get the high register into the output address register (dont need buffer)
when inst_INR_M_2 =>
csi.r.rf.sel := RF_H;
csi.r.rf.en := '1';
when inst_INR_M_3 =>
-- Register the low output address register
csi.a.load := LOAD_RF_H;
-- Read byte
when inst_INR_M_4 =>
csi.m.op := Read;
when inst_INR_M_5 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_INR_M_6 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
when inst_INR_M_7 =>
-- Load data input into ALU rhs register
csi.alu.rsel := ALU_INPUT_DATA_IN;
csi.alu.rhs_ce := '1';
when inst_INR_M_8 =>
-- Issue increment operation
csi.alu.op := ALU_OP_INC;
when inst_INR_M_9 =>
-- Issue update SZP flags operation to ALU
csi.alu.op := ALU_OP_SET_SZP_FLAGS;
when inst_INR_M_10 =>
-- Load data output register with ALU result
csi.r.do := LOAD_ALU;
when inst_INR_M_11 =>
-- Recall that the address hasn't changed; We're still pointing
-- to *(HL). All we have to do is issue the write.
csi.m.op := Write;
csi.uc.op := Jump_fetch_inst_0;
-- Get the HL registers into the output address register (dont need buffer)
when inst_DCR_M_0 =>
csi.r.rf.sel := RF_L;
csi.r.rf.en := '1';
when inst_DCR_M_1 =>
-- Register the low output address register
csi.a.load := LOAD_RF_L;
-- Get the high register into the output address register (dont need buffer)
when inst_DCR_M_2 =>
csi.r.rf.sel := RF_H;
csi.r.rf.en := '1';
when inst_DCR_M_3 =>
-- Register the low output address register
csi.a.load := LOAD_RF_H;
-- Read byte
when inst_DCR_M_4 =>
csi.m.op := Read;
when inst_DCR_M_5 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_DCR_M_6 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
when inst_DCR_M_7 =>
-- Load data input into ALU rhs register
csi.alu.rsel := ALU_INPUT_DATA_IN;
csi.alu.rhs_ce := '1';
when inst_DCR_M_8 =>
-- Issue decrement operation
csi.alu.op := ALU_OP_DEC;
when inst_DCR_M_9 =>
-- Issue update SZP flags operation to ALU
csi.alu.op := ALU_OP_SET_SZP_FLAGS;
when inst_DCR_M_10 =>
-- Load data output register with ALU result
csi.r.do := LOAD_ALU;
when inst_DCR_M_11 =>
-- Recall that the address hasn't changed; We're still pointing
-- to *(HL). All we have to do is issue the write.
csi.m.op := Write;
csi.uc.op := Jump_fetch_inst_0;
when inst_DCR_R_0 =>
-- Load given register
csi.r.rf.sel := get_rf_sel_DCR(inst_byte);
csi.r.rf.en := '1';
when inst_DCR_R_1 =>
-- Load selected register into RHS of ALU
csi.alu.rsel := ALU_INPUT_RF_DO;
csi.alu.rhs_ce := '1';
when inst_DCR_R_2 =>
-- Issue decrement operation to ALU
csi.alu.op := ALU_OP_DEC;
when inst_DCR_R_3 =>
-- Issue update SZP flags operation to ALU
csi.alu.op := ALU_OP_SET_SZP_FLAGS;
when inst_DCR_R_4 =>
-- Writeback register to register file
csi.r.rf.sel_input_class := RF_SEL_ALU;
csi.r.rf.sel := get_rf_sel_DCR(inst_byte);
csi.r.rf.en := '1';
csi.r.rf.wren := '1';
-- Fetch next instruction
csi.uc.op := Jump_fetch_inst_0;
when inst_CMA_0 =>
-- Load accumulator from register file
csi.r.rf.sel := RF_A;
csi.r.rf.en := '1';
when inst_CMA_1 =>
-- Load ALU lhs from rf_do
csi.alu.lsel := ALU_INPUT_RF_DO;
csi.alu.lhs_ce := '1';
when inst_CMA_2 =>
-- Issue CMA instruction to ALU
csi.alu.op := ALU_OP_CMA;
-- CMA instruction does not affect any flags
-- when inst_CMA_3 =>
-- csi.alu.op := ALU_OP_SET_SZP_FLAGS;
when inst_CMA_3 =>
-- Writeback register
csi.r.rf.sel_input_class := RF_SEL_ALU;
csi.r.rf.sel := RF_A;
csi.r.rf.en := '1';
csi.r.rf.wren := '1';
csi.uc.op := Jump_fetch_inst_0;
when inst_DAA_0 =>
-- Load accumulator from register file
csi.r.rf.sel := RF_A;
csi.r.rf.en := '1';
when inst_DAA_1 =>
-- Load ALU lhs from rf_do
csi.alu.lsel := ALU_INPUT_RF_DO;
csi.alu.lhs_ce := '1';
when inst_DAA_2 =>
-- Issue DAA instruction to ALU
csi.alu.op := ALU_OP_DAA;
when inst_DAA_3 =>
csi.alu.op := ALU_OP_SET_SZP_FLAGS;
when inst_DAA_4 =>
-- Writeback register
csi.r.rf.sel_input_class := RF_SEL_ALU;
csi.r.rf.sel := RF_A;
csi.r.rf.en := '1';
csi.r.rf.wren := '1';
csi.uc.op := Jump_fetch_inst_0;
when inst_CMC_0 =>
csi.alu.op := ALU_OP_CMC;
csi.uc.op := Jump_fetch_inst_0;
when inst_STC_0 =>
csi.alu.op := ALU_OP_STC;
csi.uc.op := Jump_fetch_inst_0;
when inst_ALU_IMMED_0 =>
-- First load the immediate byte into the data input register
csi.a.load := LOAD_OFFSET;
csi.a.offset := 1;
when inst_ALU_IMMED_1 =>
csi.m.op := Read;
when inst_ALU_IMMED_2 =>
-- csi.uc.op := Jump_next_when_read_complete;
when inst_ALU_IMMED_3 =>
csi.uc.op := Jump_next_when_read_complete;
csi.r.di_ce := '1';
when inst_ALU_IMMED_4 =>
-- Load immediate byte into ALU rhs register
csi.alu.rsel := ALU_INPUT_DATA_IN;
csi.alu.rhs_ce := '1';
when inst_ALU_IMMED_5 =>
-- Now load the accumulator register
csi.r.rf.sel := RF_A;
csi.r.rf.en := '1';
when inst_ALU_IMMED_6 =>
-- Load A register into ALU lhs register
csi.alu.lsel := ALU_INPUT_RF_DO;
csi.alu.lhs_ce := '1';
when inst_ALU_IMMED_7 =>
-- Issue ALU instruction that corresponds to bitfield (5 downto 3)
csi.alu.op := get_alu_op_ALU_IMMED(inst_byte);
-- FIXME: we writeback the register on CPI instructions, which
-- is just a waste of cycles. Differentiate the two somehow.
when inst_ALU_IMMED_8 =>
-- Issue update SZP flags operation to ALU
csi.alu.op := ALU_OP_SET_SZP_FLAGS;
when inst_ALU_IMMED_9 =>
-- Writeback result to register file MAYBE (not if CPI)
csi.r.rf.sel_input_class := RF_SEL_ALU;
csi.r.rf.sel := RF_A;
csi.r.rf.en := get_rf_wren_CPI_IMMED(inst_byte);
csi.r.rf.wren := get_rf_wren_CPI_IMMED(inst_byte);
csi.uc.op := Jump_fetch_inst_0;
when inst_XCHG_0 =>
-- Load HL into temporary register
csi.r.rf.sel := RF_L;
csi.r.rf.en := '1';
when inst_XCHG_1 =>
csi.r.rp := LOAD_RF_DO_LOW;
when inst_XCHG_2 =>
csi.r.rf.sel := RF_H;
csi.r.rf.en := '1';
when inst_XCHG_3 =>
csi.r.rp := LOAD_RF_DO_HIGH;
when inst_XCHG_4 =>
-- Overwrite HL with DE, lowest byte first
csi.r.rf.sel := RF_E;
csi.r.rf.en := '1';
when inst_XCHG_5 =>
csi.r.rf.sel_input_class := RF_SEL_SELF;
csi.r.rf.sel := RF_L;
csi.r.rf.en := '1';
csi.r.rf.wren := '1';
when inst_XCHG_6 =>
-- Do the same as 4 and 5, but for D and H
csi.r.rf.sel := RF_D;
csi.r.rf.en := '1';
when inst_XCHG_7 =>
csi.r.rf.sel_input_class := RF_SEL_SELF;
csi.r.rf.sel := RF_H;
csi.r.rf.en := '1';
csi.r.rf.wren := '1';
when inst_XCHG_8 =>
-- Now write rp_tmp to DE, low byte
csi.r.rf.sel_input_class := RF_SEL_RPOP_LOW;
csi.r.rf.sel := RF_E;
csi.r.rf.en := '1';
csi.r.rf.wren := '1';