-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
executable file
·299 lines (237 loc) · 11.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import copy
import glob
import os
import time
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from arguments import get_args
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv
from baselines.common.vec_env.vec_normalize import VecNormalize
from envs import make_env
from kfac import KFACOptimizer
from model import CNNPolicy, MLPPolicy
from storage import RolloutStorage
from visualize import visdom_plot
args = get_args()
assert args.algo in ['a2c', 'ppo', 'acktr']
if args.recurrent_policy:
assert args.algo in ['a2c', 'ppo'], \
'Recurrent policy is not implemented for ACKTR'
# NUM ENVS GIVEN IF IS MULTITASK OR NOT
num_envs = len(args.env_name)
print("GONNA TRAIN", num_envs, "GAMES!")
args.num_processes *= num_envs
if args.transfer:
print("LET'S MAKE A TRANFER POLICY")
factor = 0.1
else:
factor = 1
num_updates = int((int(args.num_frames) * num_envs // args.num_steps // args.num_processes) * factor)
print("DURING", num_updates, "STEPS!")
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
try:
os.makedirs(args.log_dir)
except OSError:
files = glob.glob(os.path.join(args.log_dir, '*.monitor.csv'))
for f in files:
os.remove(f)
def main():
print("#######")
print("WARNING: All rewards are clipped or normalized so you need to use a monitor (see envs.py) or visdom plot to get true rewards")
print("#######")
os.environ['OMP_NUM_THREADS'] = '1'
if args.vis:
from visdom import Visdom
viz = Visdom()
win = None
extra = "_".join([ name[:4] for name in args.env_name ])
if args.att != 'None':
extra = args.att+'_'+extra
if args.transfer:
extra = 'transfer_'+extra
# MODIFIED TO ACCEPT MULTI-TASK
num_proc = args.num_processes // num_envs
envs = [make_env(args.env_name[i//num_proc], args.seed, i, args.log_dir+extra+'/')
for i in range(args.num_processes)]
if args.num_processes > 1:
envs = SubprocVecEnv(envs)
else:
envs = DummyVecEnv(envs)
if len(envs.observation_space.shape) == 1:
envs = VecNormalize(envs)
obs_shape = envs.observation_space.shape
obs_shape = (obs_shape[0] * args.num_stack, *obs_shape[1:])
print(envs.observation_space.shape)
if args.load_model != None:
actor_critic, ob_rms = \
torch.load(args.load_model)
elif len(envs.observation_space.shape) == 3:
actor_critic = CNNPolicy(obs_shape[0], envs.action_space, args.recurrent_policy, args.att)
else:
assert not args.recurrent_policy, \
"Recurrent policy is not implemented for the MLP controller"
print("OI")
actor_critic = MLPPolicy(obs_shape[0], envs.action_space)
if envs.action_space.__class__.__name__ == "Discrete":
action_shape = 1
else:
action_shape = envs.action_space.shape[0]
if args.cuda:
actor_critic.cuda()
if args.algo == 'a2c':
optimizer = optim.RMSprop(actor_critic.parameters(), args.lr, eps=args.eps, alpha=args.alpha)
elif args.algo == 'ppo':
optimizer = optim.Adam(actor_critic.parameters(), args.lr, eps=args.eps)
elif args.algo == 'acktr':
optimizer = KFACOptimizer(actor_critic)
rollouts = RolloutStorage(args.num_steps, args.num_processes, obs_shape, envs.action_space, actor_critic.state_size)
current_obs = torch.zeros(args.num_processes, *obs_shape)
def update_current_obs(obs):
shape_dim0 = envs.observation_space.shape[0]
#print(shape_dim0,"<-------------- observation shape")
obs = torch.from_numpy(obs).float()
if args.num_stack > 1:
current_obs[:, :-shape_dim0] = current_obs[:, shape_dim0:]
current_obs[:, -shape_dim0:] = obs
obs = envs.reset()
update_current_obs(obs)
rollouts.observations[0].copy_(current_obs)
# These variables are used to compute average rewards for all processes.
episode_rewards = torch.zeros([args.num_processes, 1])
final_rewards = torch.zeros([args.num_processes, 1])
if args.cuda:
current_obs = current_obs.cuda()
rollouts.cuda()
start = time.time()
for j in range(num_updates):
for step in range(args.num_steps):
# Sample actions
value, action, action_log_prob, states = actor_critic.act(Variable(rollouts.observations[step], volatile=True),
Variable(rollouts.states[step], volatile=True),
Variable(rollouts.masks[step], volatile=True))
cpu_actions = action.data.squeeze(1).cpu().numpy()
# Obser reward and next obs
obs, reward, done, info = envs.step(cpu_actions)
reward = torch.from_numpy(np.expand_dims(np.stack(reward), 1)).float()
episode_rewards += reward
# If done then clean the history of observations.
masks = torch.FloatTensor([[0.0] if done_ else [1.0] for done_ in done])
final_rewards *= masks
final_rewards += (1 - masks) * episode_rewards
episode_rewards *= masks
if args.cuda:
masks = masks.cuda()
if current_obs.dim() == 4:
current_obs *= masks.unsqueeze(2).unsqueeze(2)
else:
current_obs *= masks
update_current_obs(obs)
rollouts.insert(step, current_obs, states.data, action.data, action_log_prob.data, value.data, reward, masks)
next_value = actor_critic(Variable(rollouts.observations[-1], volatile=True),
Variable(rollouts.states[-1], volatile=True),
Variable(rollouts.masks[-1], volatile=True))[0].data
rollouts.compute_returns(next_value, args.use_gae, args.gamma, args.tau)
if args.algo in ['a2c', 'acktr']:
values, action_log_probs, dist_entropy, states = actor_critic.evaluate_actions(Variable(rollouts.observations[:-1].view(-1, *obs_shape)),
Variable(rollouts.states[0].view(-1, actor_critic.state_size)),
Variable(rollouts.masks[:-1].view(-1, 1)),
Variable(rollouts.actions.view(-1, action_shape)))
values = values.view(args.num_steps, args.num_processes, 1)
action_log_probs = action_log_probs.view(args.num_steps, args.num_processes, 1)
advantages = Variable(rollouts.returns[:-1]) - values
value_loss = advantages.pow(2).mean()
action_loss = -(Variable(advantages.data) * action_log_probs).mean()
if args.algo == 'acktr' and optimizer.steps % optimizer.Ts == 0:
# Sampled fisher, see Martens 2014
actor_critic.zero_grad()
pg_fisher_loss = -action_log_probs.mean()
value_noise = Variable(torch.randn(values.size()))
if args.cuda:
value_noise = value_noise.cuda()
sample_values = values + value_noise
vf_fisher_loss = -(values - Variable(sample_values.data)).pow(2).mean()
fisher_loss = pg_fisher_loss + vf_fisher_loss
optimizer.acc_stats = True
fisher_loss.backward(retain_graph=True)
optimizer.acc_stats = False
optimizer.zero_grad()
(value_loss * args.value_loss_coef + action_loss - dist_entropy * args.entropy_coef).backward()
if args.algo == 'a2c':
nn.utils.clip_grad_norm(actor_critic.parameters(), args.max_grad_norm)
optimizer.step()
elif args.algo == 'ppo':
advantages = rollouts.returns[:-1] - rollouts.value_preds[:-1]
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-5)
for e in range(args.ppo_epoch):
if args.recurrent_policy:
data_generator = rollouts.recurrent_generator(advantages,
args.num_mini_batch)
else:
data_generator = rollouts.feed_forward_generator(advantages,
args.num_mini_batch)
for sample in data_generator:
observations_batch, states_batch, actions_batch, \
return_batch, masks_batch, old_action_log_probs_batch, \
adv_targ = sample
# Reshape to do in a single forward pass for all steps
values, action_log_probs, dist_entropy, states = actor_critic.evaluate_actions(Variable(observations_batch),
Variable(states_batch),
Variable(masks_batch),
Variable(actions_batch))
adv_targ = Variable(adv_targ)
ratio = torch.exp(action_log_probs - Variable(old_action_log_probs_batch))
surr1 = ratio * adv_targ
surr2 = torch.clamp(ratio, 1.0 - args.clip_param, 1.0 + args.clip_param) * adv_targ
action_loss = -torch.min(surr1, surr2).mean() # PPO's pessimistic surrogate (L^CLIP)
value_loss = (Variable(return_batch) - values).pow(2).mean()
optimizer.zero_grad()
(value_loss + action_loss - dist_entropy * args.entropy_coef).backward()
nn.utils.clip_grad_norm(actor_critic.parameters(), args.max_grad_norm)
optimizer.step()
rollouts.after_update()
if j % args.save_interval == 0 and args.save_dir != "":
save_path = os.path.join(args.save_dir, args.algo)
try:
os.makedirs(save_path)
except OSError:
pass
# A really ugly way to save a model to CPU
save_model = actor_critic
if args.cuda:
save_model = copy.deepcopy(actor_critic).cpu()
save_model = [save_model,
hasattr(envs, 'ob_rms') and envs.ob_rms or None]
if args.att != 'None':
extra = args.att
else:
extra = ''
if args.transfer:
extra += '_transfer'
torch.save(save_model, os.path.join(save_path, extra+"_".join(args.env_name)+'_'+str(args.seed)+ ".pt"))
if j % args.log_interval == 0:
end = time.time()
total_num_steps = (j + 1) * args.num_processes * args.num_steps
print("Updates {}, num timesteps {}, FPS {}, mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}, entropy {:.5f}, value loss {:.5f}, policy loss {:.5f}".
format(j, total_num_steps,
int(total_num_steps / (end - start)),
final_rewards.mean(),
final_rewards.median(),
final_rewards.min(),
final_rewards.max(), dist_entropy.data[0],
value_loss.data[0], action_loss.data[0]))
if args.vis and j % args.vis_interval == 0:
try:
# Sometimes monitor doesn't properly flush the outputs
win = visdom_plot(viz, win, args.log_dir, args.env_name, args.algo)
except IOError:
pass
if __name__ == "__main__":
main()