-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
180 lines (162 loc) · 5.73 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import torch
from torch import nn
from torch.nn import functional as F
from torch.autograd import Variable
from torch import autograd
EPSILON = 1e-16
class Critic(nn.Module):
def __init__(self, image_size, image_channel_size, channel_size):
# configurations
super().__init__()
self.image_size = image_size
self.image_channel_size = image_channel_size
self.channel_size = channel_size
# layers
self.conv1 = nn.Conv2d(
image_channel_size, channel_size,
kernel_size=4, stride=2, padding=1
)
self.conv2 = nn.Conv2d(
channel_size, channel_size*2,
kernel_size=4, stride=2, padding=1
)
self.conv3 = nn.Conv2d(
channel_size*2, channel_size*4,
kernel_size=4, stride=2, padding=1
)
self.conv4 = nn.Conv2d(
channel_size*4, channel_size*8,
kernel_size=4, stride=1, padding=1,
)
self.fc = nn.Linear(4608, 1) # TODO remove hard coded
def forward(self, x):
batch_size = x.size(0)
x = F.leaky_relu(self.conv1(x))
x = F.leaky_relu(self.conv2(x))
x = F.leaky_relu(self.conv3(x))
x = F.leaky_relu(self.conv4(x))
x = x.view(batch_size, -1)
return self.fc(x)
class Generator(nn.Module):
def __init__(self, z_size, image_size, image_channel_size, channel_size):
# configurations
super().__init__()
self.z_size = z_size
self.image_size = image_size
self.image_channel_size = image_channel_size
self.channel_size = channel_size
# layers
self.fc = nn.Linear(z_size, (image_size//8)**2 * channel_size*8)
self.bn0 = nn.BatchNorm2d(channel_size*8)
self.bn1 = nn.BatchNorm2d(channel_size*4)
self.deconv1 = nn.ConvTranspose2d(
channel_size*8, channel_size*4,
kernel_size=4, stride=2, padding=1
)
self.bn2 = nn.BatchNorm2d(channel_size*2)
self.deconv2 = nn.ConvTranspose2d(
channel_size*4, channel_size*2,
kernel_size=4, stride=2, padding=1,
)
self.bn3 = nn.BatchNorm2d(channel_size)
self.deconv3 = nn.ConvTranspose2d(
channel_size*2, channel_size,
kernel_size=4, stride=2, padding=1
)
self.deconv4 = nn.ConvTranspose2d(
channel_size, image_channel_size,
kernel_size=3, stride=1, padding=1
)
def forward(self, z):
g = F.relu(self.bn0(self.fc(z).view(
z.size(0),
self.channel_size*8,
self.image_size//8,
self.image_size//8,
)))
g = F.relu(self.bn1(self.deconv1(g)))
g = F.relu(self.bn2(self.deconv2(g)))
g = F.relu(self.bn3(self.deconv3(g)))
g = self.deconv4(g)
return F.sigmoid(g)
class WGAN(nn.Module):
def __init__(self, label, z_size,
image_size, image_channel_size,
c_channel_size, g_channel_size):
# configurations
super().__init__()
self.label = label
self.z_size = z_size
self.image_size = image_size
self.image_channel_size = image_channel_size
self.c_channel_size = c_channel_size
self.g_channel_size = g_channel_size
# components
self.critic = Critic(
image_size=self.image_size,
image_channel_size=self.image_channel_size,
channel_size=self.c_channel_size,
)
self.generator = Generator(
z_size=self.z_size,
image_size=self.image_size,
image_channel_size=self.image_channel_size,
channel_size=self.g_channel_size,
)
@property
def name(self):
return (
'WGAN-GP'
'-z{z_size}'
'-c{c_channel_size}'
'-g{g_channel_size}'
'-{label}-{image_size}x{image_size}x{image_channel_size}'
).format(
z_size=self.z_size,
c_channel_size=self.c_channel_size,
g_channel_size=self.g_channel_size,
label=self.label,
image_size=self.image_size,
image_channel_size=self.image_channel_size,
)
def c_loss(self, x, z, return_g=False):
g = self.generator(z)
c_x = self.critic(x).mean()
c_g = self.critic(g).mean()
l = -(c_x-c_g)
return (l, g) if return_g else l
def g_loss(self, z, return_g=False):
g = self.generator(z)
l = -self.critic(g).mean()
return (l, g) if return_g else l
def sample_image(self, size):
return self.generator(self.sample_noise(size))
def sample_noise(self, size):
z = Variable(torch.randn(size, self.z_size)) * .1
return z.cuda() if self._is_on_cuda() else z
def gradient_penalty(self, x, g, lamda):
assert x.size() == g.size()
a = torch.rand(x.size(0), 1)
a = a.cuda() if self._is_on_cuda() else a
a = a\
.expand(x.size(0), x.nelement()//x.size(0))\
.contiguous()\
.view(
x.size(0),
self.image_channel_size,
self.image_size,
self.image_size
)
interpolated = Variable(a*x.data + (1-a)*g.data, requires_grad=True)
c = self.critic(interpolated)
gradients = autograd.grad(
c, interpolated, grad_outputs=(
torch.ones(c.size()).cuda() if self._is_on_cuda() else
torch.ones(c.size())
),
create_graph=True,
retain_graph=True,
)[0]
return lamda * ((1-(gradients+EPSILON).norm(2, dim=1))**2).mean()
def _is_on_cuda(self):
return next(self.parameters()).is_cuda